Differential Polynomials

Size: px
Start display at page:

Download "Differential Polynomials"

Transcription

1 JASS 07 - Polynomals: Ther Power and How to Use Them Dfferental Polynomals Stephan Rtscher March 18, 2007 Abstract Ths artcle gves an bref ntroducton nto dfferental polynomals, deals and manfolds and ther correlatons. Some examples for bad behavour (n comparson to algebrac polynomals) are gven. 1

2 Contents 1 Algebrac Aspects Defntons Nonrecursve Ideals Reducton Geometrc Ascpects Manfolds Algebrac Representaton Concluson 8 2

3 1 Algebrac Aspects 1.1 Defntons Defnton 1.1 (Dfferental Rng) A dfferental rng R s a rng wth dfferental operators = {δ 1,..., δ m } and for all, j: δ (ab) = (δ a)b + a(δ b) δ (a + b) = δ a + δ b δ δ j = δ j δ Θ = s called the free abelan monod of dervatons. Example 1.2 Let R be an arbtrary rng and δ(x) = 0 for x R. Then R s a dfferental rng wth = {δ}. Consder the polynomals over a rng R wth varables θx for θ Θ and {1,..., n}. They form an dfferental rng denoted by R{X} = R{x 1,..., x n }. The degree deg(f) for a monomal f = s =1 vα s defned as n the algebrac case: deg(f) = s =1 α where v = θ x wth θ Θ, {1,..., n} On the other hand one defnes the order of a varable v to be the number of dfferentatons contaned n v, so ord(δ α x) = n =1 α wth multndex α. To combne these two, one defnes the weght wt(f) = r =1 β ord(v ). Defnton 1.3 (Dfferental Ideal) An dfferental deal I s a deal of R wth δ : δi I. The dfferental deal generated by a set G s denoted by [G]. Example 1.4 (Dfferental Ideal) The followng polynomals are members of the dfferental deal I generated by x 2 over F {x} wth = {d} (x (k) := d k x): (You obtan them by dfferentatng x 2 (x p for the general case) and then cancellng terms by lnear combnatons.) 1. fx 2 for f F {x} 2. fx (1) x 3. f(x (2) x + (x (1) ) 2 ) and therefore f(x (1) ) 2 x 4. f(2x (1) x (2) x + (x (1) ) 3 ) and therefore f(x (1) ) 3 5. f(x (k) ) s for some s > Nonrecursve Ideals Example 1.5 Consder over Z{x} wth = {d} the functons f = (d x) 2 for 0 and I k = [f 0,..., f k ] Then I clam: I 0 I 1... Proof Frst note that deg(f ) = 2, wt(f ) = 2. If we dfferentate a monomal, all resultng terms have the same degree as the orgnal monomal. Therefore d j f s homogeneous of degree 2. The weght of the terms ncreases by one per dfferentaton and therefore d j f s sobarc of weght 2 + j. k j=0 α,jd j (f ). Now assume f n I n 1, ths means f n = n 1 =0 If deg(α,j ) 1 for some, j, these terms must cancel because deg(f n ) = 2 and the dervatves of f are homogeneous. So we can assume that α,j Z. Analogously we can assume α,j = 0 for j 2n 2 because wt(f n ) = 2n and d j f are sobarc 3

4 of weght 2 + j. So the equaton smplfes to f n = c 0 d 2n f 0 + c 1 d (2n 2) f c n 1 d 2 f n 1 for c Z. d 2n f 0 contans the monomal x (2n) x. No other term contans an x (that s not dervated). So c 0 must be zero. For analogous reasons also c must be 0. But f n 0, so we have a contradcton. Example 1.6 Let S N 0 and I S = [{f : S}]. Then f I S S. (Ths follows from a proof smlar to the one above.) So for a nonrecursve set S N 0 there s no algorthm to decde f a gven dfferental polynomal g s n I S. Ths means that we have to consder nce deals f we want to do calculaons, e.g. recursvely generated or even fntely generated deals. 1.3 Reducton Defnton 1.7 (Rankng) Let < be a total orderng on the set ΘX of dfferental varables whch fulflls the followng propertes: v < w θv < θw for all v, w ΘX, θ Θ v θv for v ΘX Then < s called rankng of ΘX. Now let be X = {x 1,..., x n } wth x 1 <... < x n. Example 1.8 (Lexcographc Rankng on ΘX) Consder a monomal orderng < on the dfferental operators Θ. Then the lexcographc orderng s gven by θx < ηx k ff < k or = k and θ < η. Example 1.9 (Dervaton Rankng on ΘX) Consder a monomal orderng < on the dfferental operators Θ. Then the dervaton orderng s gven by θx < ηx k ff θ < η or θ = η and < k. For X = = 1 there s only one rankng: x () < x (+1) Defnton 1.10 (Admssble Orderng) Let < be a total orderng on the set M of monomals of F {X}. Then < s called admssble ff 1. The restrcton of < to ΘX s a rankng f for all f M 3. f < g hf < hg for all f, g, h M Let be f = r =1 vα wth v 1 >... > v r and g = s =1 wβ wth w 1 >... > w s. Example 1.11 (Lexcographc Orderng on M) Gven an rankng on ΘX. f < lex g ff k r, s : v = w for < k and v k < w k or v k = w k and α < β or v = w for r and r < s. Example 1.12 (Graded (by Degree) Reverse Lexcographc Orderng on M) Gven an rankng on ΘX. f < degrevlex g ff deg(f) < deg(g) or deg(f) = deg(g) and f < revlex g. 4

5 Defnton 1.13 Let f R{X} be an dfferental polynomal and fx a monomal orderng. Then lm(f) denotes the leadng monomal of f wth respect to the monomal orderng. lc(f) denotes the leadng coeffcent of f and lt(f) = lc(f)lm(f) the leadng term of f. Defnton 1.14 f s reduced by g to h ff θ Θ, m M such that lm(f) = mlm(θg) and h = f lc(f) lc(g) mθg. f s reducable by g, ff there s an h such that f s reduced by g to h. Procedure : Reduce ( f, g, r = 1) f ( deg ( lm ( f ) ) < deg ( lm ( g ) ) wt ( lm ( f ) ) < wt ( lm ( g ) ) ) return f ; f ( lm ( g ) lm ( f ) ) return Reduce ( f ( l t ( f )/ l t ( g ) ) g, g ) ; f o r ( = r ; <= m; ++) { t = Reduce ( f, d e l t a ( g, ), ) ; f ( t!= f ) return Reduce ( t, g ) ; } return f ; Ths procedure termnates. On every recursve call ether f s reduced and therefore the leadng monomal gets smaller or g s dervated (delta(g, )) and therefore the weght of g ncreases. So after a fnte number of calls Reduce termnates. The returned polynomal cannot be reduced by g further because n Reduce the recucton wth respect to all dervatves of g (whch have no bgger weght or degree than f) s tred. Ths process can - as n the algebrac case - be generalzed to a reducton by several polynomals, but n general the remander of the reducton s dependent on the order of these polynomals. Defnton 1.15 (Monodeal) E M s called a monodeal ff ME E and lm( E) E. Please note that n contrast to the algebrac case the defnton of the monodeal needs an monomal orderng and s hghly dependend on ths (as we wll see n the examples). Defnton 1.16 (Standard Bass) G I s called a standard bass ff lm(g) generates lm(i) as monodeal. We now wll nvestgate the monodeals generated by the polynomal x 2, for whch we already consdered the dfferental deal. Example 1.17 (Monodeal - Lexcographc Orderng) The followng monomals are members of the monodeal I generated by x 2 over F {x} wth = {d} usng lexcographc orderng (x (k) := d k x): 1. mx 2 for m M 2. mx (1) x 3. mx (2) x 4. mx (k) x 5. BUT (x (k) ) r / I Example 1.18 (Monodeal - Graded Reverse Lexcographc Orderng) The followng monomals are members of the monodeal I generated by x 2 over F {x} wth = { } usng graded lexcographc orderng (x (k) := d k x): 5

6 1. mx 2 for m M 2. mx (1) x 3. m(x (1) ) 2 4. mx (1) x (2) 5. m(x (2) ) 2 6. mx (k) x (k+1) 7. mx 2 (k) Theorem 1 Let G be a set of polynomals, I a dfferental deal. Then the followng propostons are equvalent: 1. G s a standard bass of I. 2. For f F {X} yelds: f I f s reduced to 0 by G. Proof Let 0 f I. Then f s reducble by G because the leadng monomal of f s n the monodeal generated by I and therefore also n the monodeal generated by G. The reducton of f s h I. Therefore h s reducble agan untl h = 0. The process termnates because the leadng monomal of the polynomal gets smaller n each reducton. Let g G. Then obvously g s reduced to 0 by G and therefore G I. Let f I. Then f s reduced to 0 by G by defnton and therefore lmi lm(mθlm(g)) (otherwse reducton would fal). Example 1.19 Remember I = [x 2 ] over F {x} wth = { }. Then for every r 0 there s an q > 1 such that (x (r) ) q I. LEX: lm(d( r =1 vα )) = d(v 1 )v α 1 1 r 1 =2 vα f v 1 >... > v r. Therefore (x (r) ) s for every r 0 for some s > 0 s n every standard bass ( nfnte). DEGREVLEX: x 2 s a standard bass. Example 1.20 Conjecture: There s no fnte standard bass for [xx ] for no monomal orderng. Lemma 1.21 The famles of monomals 1. x r x (r) for r 1 2. x tr (r) for r 1 and some t r r x 2 (r) x2 (r+2) x (r+2k r) for r 0 and some k r 4. x 2 (r) x2 (r+3) x (r+3l r) for r 0 and some l r 2r 1 belong to the deal [xx ]. Ths lemma (wthout proof) mples that all mentoned famles of monomals have to be n the monodeal generated by the standard bass. 6

7 2 Geometrc Ascpects 2.1 Manfolds We choose e.g. F as set of all meromorphc functon. Defnton 2.1 Let Σ be a system of dfferental polynomals over F {x 1,..., x n }, F 1 an extenson of F. If Y = (y 1,..., y n ) F1 n such that for all f Σ f(y 1,..., y n ) = 0, then Y s a zero of Σ. The set of all zeros of Σ (for all possble extentons of F ) s called manfold. Let M 1, M 2 be the manfolds of Σ 1, Σ 2. If M 1 M 2 then M 1 M 2 s the manfold of Σ 1 + Σ 2. M 1 M 2 s the manfold of {AB : A Σ 1, B Σ 2 }. M s called reducble f t s unon of two manfolds M 1, M 2 M. Otherwse t s called rreducble. Lemma 2.2 M s rreducble (AB vanshes over M A or B vanshes over M) Proof Assume A, B such that AB vanshes over M, but A, B don t. Then the manfolds of Σ + A, Σ + B are proper parts of M, ther unon s M. Let M be proper unon of M 1, M 2 wth systems Σ 1, Σ 2. Then A Σ be dfferental polynomals that do not vansh over M. A 1 A 2 vanshes over M. Theorem 2 Every manfold s the unon of a fnte number of rreducble manfolds. Consder dfferental polynomals over F {x} wth = {d} and F the meromorphc functons: Example 2.3 Let Σ = {f} wth f = x 2 (1) 4x. Then df = 2x (1)(x (2) 2). x (1) = 0 has the soluton x(t) = c. Lookng at f, only c = 0 s vald. x (2) 2 = 0 has the soluton x(t) = (x + b) 2 + c. Agan c = 0. There are no other solutons. 2.2 Algebrac Representaton Theorem 3 Let Σ = [f 1,..., f k ] wth manfold M. If g vanshes over M then g s Σ for some s N 0. So the manfolds are represented by perfect deals. Theorem 4 Every perfect dfferental deal has a fnte bass. Let Σ be a fnte system of dfferental polynomals. Queston: Is f Σ? Resolve Σ nto prme deals. f must be member of each of these prme deals. Test f the remander of f wth respect to the characterstc sets of the prme deals s zero. 7

8 3 Concluson We have seen that dfferental polynomals can be used to model dfferental equaton systems. There are many problems n contrast to algebrac polynomals. E.g. there are dfferental deals that have no fnte (even no recursve) bass and there are fntely generated deals that have (presumably) no fnte standard bass. The dffcultes that arse when tryng to fnd standard bases are also caused by the fact that dfferental monomal deals depend on orderng. We saw that manfolds (solutons of dfferental equaton systems) correspond to perfect deals, that are easer to handle than general dfferental deals. To conclude we remember that for some mportant problems fnte algorthms exst, e.g. for the reducton wth respect to a fnte bass and the membershp test for perfect deals. References [GMO94] G. Gallo, B. Mshra, and F. Ollver. Some constructons n rngs of dfferental polynomals. Lecture Notes In Computer Scence, 539, [Oll90] F. Ollver. Standard bases of dfferental deals. Lecture Notes In Computer Scence, 508, [Rt50] J. Rtt. Dfferental Algebra. AMS, [Zob06] A. I. Zobnn. On standard bases n rngs of dfferental polynomals. Journal of Mathematcal Scences, 135(5),

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

A proof of the dimension conjecture and of Jacobi's bound. François Ollivier (CNRS) LIX UMR CNRS École polytechnique

A proof of the dimension conjecture and of Jacobi's bound. François Ollivier (CNRS) LIX UMR CNRS École polytechnique A proof of the dmenson conjecture and of Jacob's bound Franços Ollver (CNRS) LIX UMR CNRS École polytechnque Jacob s bound Proposton. Let P 1,..., P n , a,j = ord xj P and = max σ S n Σ

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Fixed points of IA-endomorphisms of a free metabelian Lie algebra Proc. Indan Acad. Sc. (Math. Sc.) Vol. 121, No. 4, November 2011, pp. 405 416. c Indan Academy of Scences Fxed ponts of IA-endomorphsms of a free metabelan Le algebra NAIME EKICI 1 and DEMET PARLAK SÖNMEZ

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Group Analysis of Ordinary Differential Equations of the Order n>2

Group Analysis of Ordinary Differential Equations of the Order n>2 Symmetry n Nonlnear Mathematcal Physcs 997, V., 64 7. Group Analyss of Ordnary Dfferental Equatons of the Order n> L.M. BERKOVICH and S.Y. POPOV Samara State Unversty, 4430, Samara, Russa E-mal: berk@nfo.ssu.samara.ru

More information

An application of non-associative Composition-Diamond lemma

An application of non-associative Composition-Diamond lemma An applcaton of non-assocatve Composton-Damond lemma arxv:0804.0915v1 [math.ra] 6 Apr 2008 Yuqun Chen and Yu L School of Mathematcal Scences, South Chna Normal Unversty Guangzhou 510631, P. R. Chna Emal:

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Geometry of Müntz Spaces

Geometry of Müntz Spaces WDS'12 Proceedngs of Contrbuted Papers, Part I, 31 35, 212. ISBN 978-8-7378-224-5 MATFYZPRESS Geometry of Müntz Spaces P. Petráček Charles Unversty, Faculty of Mathematcs and Physcs, Prague, Czech Republc.

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i MTH 819 Algebra I S13 Homework 1/ Solutons Defnton A. Let R be PID and V a untary R-module. Let p be a prme n R and n Z +. Then d p,n (V) = dm R/Rp p n 1 Ann V (p n )/p n Ann V (p n+1 ) Note here that

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

ALGEBRA MID-TERM. 1 Suppose I is a principal ideal of the integral domain R. Prove that the R-module I R I has no non-zero torsion elements.

ALGEBRA MID-TERM. 1 Suppose I is a principal ideal of the integral domain R. Prove that the R-module I R I has no non-zero torsion elements. ALGEBRA MID-TERM CLAY SHONKWILER 1 Suppose I s a prncpal deal of the ntegral doman R. Prove that the R-module I R I has no non-zero torson elements. Proof. Note, frst, that f I R I has no non-zero torson

More information

ALGEBRA HW 7 CLAY SHONKWILER

ALGEBRA HW 7 CLAY SHONKWILER ALGEBRA HW 7 CLAY SHONKWILER 1 Whch of the followng rngs R are dscrete valuaton rngs? For those that are, fnd the fracton feld K = frac R, the resdue feld k = R/m (where m) s the maxmal deal), and a unformzer

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Selecting a Monomial Basis for Sums of Squares Programming over a Quotient Ring

Selecting a Monomial Basis for Sums of Squares Programming over a Quotient Ring Selectng a Monomal Bass for Sums of Squares Programmng over a Quotent Rng Frank Permenter 1 and Pablo A. Parrlo 2 Abstract In ths paper we descrbe a method for choosng a good monomal bass for a sums of

More information

18.781: Solution to Practice Questions for Final Exam

18.781: Solution to Practice Questions for Final Exam 18.781: Soluton to Practce Questons for Fnal Exam 1. Fnd three solutons n postve ntegers of x 6y = 1 by frst calculatng the contnued fracton expanson of 6. Soluton: We have 1 6=[, ] 6 6+ =[, ] 1 =[,, ]=[,,

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Algebraic properties of polynomial iterates

Algebraic properties of polynomial iterates Algebrac propertes of polynomal terates Alna Ostafe Department of Computng Macquare Unversty 1 Motvaton 1. Better and cryptographcally stronger pseudorandom number generators (PRNG) as lnear constructons

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

CALCULUS CLASSROOM CAPSULES

CALCULUS CLASSROOM CAPSULES CALCULUS CLASSROOM CAPSULES SESSION S86 Dr. Sham Alfred Rartan Valley Communty College salfred@rartanval.edu 38th AMATYC Annual Conference Jacksonvlle, Florda November 8-, 202 2 Calculus Classroom Capsules

More information

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets 5. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solvng n Math (Math 43900) Fall 2013 Week four (September 17) solutons Instructor: Davd Galvn 1. Let a and b be two nteger for whch a b s dvsble by 3. Prove that a 3 b 3 s dvsble by 9. Soluton:

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

R n α. . The funny symbol indicates DISJOINT union. Define an equivalence relation on this disjoint union by declaring v α R n α, and v β R n β

R n α. . The funny symbol indicates DISJOINT union. Define an equivalence relation on this disjoint union by declaring v α R n α, and v β R n β Readng. Ch. 3 of Lee. Warner. M s an abstract manfold. We have defned the tangent space to M va curves. We are gong to gve two other defntons. All three are used n the subject and one freely swtches back

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

SMARANDACHE-GALOIS FIELDS

SMARANDACHE-GALOIS FIELDS SMARANDACHE-GALOIS FIELDS W. B. Vasantha Kandasamy Deartment of Mathematcs Indan Insttute of Technology, Madras Chenna - 600 036, Inda. E-mal: vasantak@md3.vsnl.net.n Abstract: In ths aer we study the

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS

THERE ARE INFINITELY MANY FIBONACCI COMPOSITES WITH PRIME SUBSCRIPTS Research and Communcatons n Mathematcs and Mathematcal Scences Vol 10, Issue 2, 2018, Pages 123-140 ISSN 2319-6939 Publshed Onlne on November 19, 2018 2018 Jyot Academc Press http://jyotacademcpressorg

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Random Partitions of Samples

Random Partitions of Samples Random Parttons of Samples Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract In the present paper we construct a decomposton of a sample nto a fnte number of subsamples

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

On a Theorem of J. A. Green

On a Theorem of J. A. Green JOUNL OF LEB 209, 708712 1998 TICLE NO J987552 On a Theorem of J reen Kench Yamauch Department of Mathematcs, Facult of Educaton, Chba Unerst, Yaocho, Chba 263-8522, Japan E-mal: amauch@mathechba-uacjp

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

CONJUGACY IN THOMPSON S GROUP F. 1. Introduction

CONJUGACY IN THOMPSON S GROUP F. 1. Introduction CONJUGACY IN THOMPSON S GROUP F NICK GILL AND IAN SHORT Abstract. We complete the program begun by Brn and Squer of charactersng conjugacy n Thompson s group F usng the standard acton of F as a group of

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne The Ramanujan-Nagell Theorem: Understandng the Proof By Spencer De Chenne 1 Introducton The Ramanujan-Nagell Theorem, frst proposed as a conjecture by Srnvasa Ramanujan n 1943 and later proven by Trygve

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture.

LECTURE V. 1. More on the Chinese Remainder Theorem We begin by recalling this theorem, proven in the preceeding lecture. LECTURE V EDWIN SPARK 1. More on the Chnese Remander Theorem We begn by recallng ths theorem, proven n the preceedng lecture. Theorem 1.1 (Chnese Remander Theorem). Let R be a rng wth deals I 1, I 2,...,

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials.

Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials. Power-sum roblem, Bernoull Numbers and Bernoull Polynomals. Arady M. Alt Defnton 1 Power um Problem Fnd the sum n : 1... n where, n N or, usng sum notaton, n n n closed form. Recurrence for n Exercse Usng

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

ON A DIOPHANTINE EQUATION ON TRIANGULAR NUMBERS

ON A DIOPHANTINE EQUATION ON TRIANGULAR NUMBERS Mskolc Mathematcal Notes HU e-issn 787-43 Vol. 8 (7), No., pp. 779 786 DOI:.854/MMN.7.536 ON A DIOPHANTINE EUATION ON TRIANGULAR NUMBERS ABDELKADER HAMTAT AND DJILALI BEHLOUL Receved 6 February, 5 Abstract.

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information