Probability, Random Variables, and Processes. Probability

Size: px
Start display at page:

Download "Probability, Random Variables, and Processes. Probability"

Transcription

1 Prbability, Randm Variables, and Prcesses Prbability Prbability Prbability thery: branch f mathematics fr descriptin and mdelling f randm events Mdern prbability thery - the aximatic definitin f prbability - intrduced by Klmgrv in [Klmgrv, 1933] Octber 25, / 18

2 Prbability, Randm Variables, and Prcesses Prbability Definitin f Prbability Experiment with an uncertain utcme: randm experiment Unin f all pssible utcmes ζ f the randm experiment: certain event r sample space f the randm experiment - O Event: subset A O Prbability: measure P (A) assigned t A satisfying the fllwing three axims 1 Prbabilities are nn-negative real numbers: P (A) 0, A O 2 Prbability f the certain event: P (O) = 1 3 If {A i : i = 0, 1, } is a cuntable set f events such that A i A j = fr i j, then ( ) P A i = P (A i ) (1) i i Octber 25, / 18

3 Prbability, Randm Variables, and Prcesses Prbability Independence and Cnditinal Prbability Tw events A i and A j are independent if P (A i A j ) = P (A i ) P (A j ) (2) The cnditinal prbability f an event A i given anther event A j, with P (A j ) > 0 is P (A i A j ) = P (A i A j ) P (A j ) (3) With direct cnsequence: Bayes therem P (A i A j ) = P (A j A i ) P (A i) P (A j ) with P (A i ), P (A j ) > 0 (4) Definitins (2) and (3) als imply that, if A i and A j are independent and P (A j ) > 0, then P (A i A j ) = P (A i ) (5) Octber 25, / 18

4 Prbability, Randm Variables, and Prcesses Randm Variables Randm Variables Randm variable S: functin f the sample space O that assigns a real value S(ζ) t each utcme ζ O f a randm experiment Cumulative distributin functin (cdf) f a randm variable S: F S (s) = P (S s) = P ( {ζ : S(ζ) s} ) (6) Prperties f cdf: nn-decreasing, F S ( ) = 0, and F S ( ) = 1 N-dimensinal cdf, jint cdf, r jint distributin: F S (s) = P (S s) = P (S 0 s 0,, S N 1 s N 1 ) (7) with S = {S 0,, S N 1 } T being a randm vectr Jint cdf f tw randm vectrs X and Y F XY (x, y) = P (X x, Y y) (8) Octber 25, / 18

5 Prbability, Randm Variables, and Prcesses Randm Variables Cnditinal Cdfs Cnditinal cdf f randm variable S given event B with P (B) > 0 F S B (s B) = P (S s B) = P ({S s} B) P (B) (9) Cnditinal cdf f a randm variable X given anther randm variable Y F X Y (x y) = F XY (x, y) F Y (y) = P (X x, Y y) P (Y y) (10) Cnditinal cdf f a randm vectr X given anther randm vectr Y is given by F X Y (x y) = F XY (x, y)/f Y (y) Octber 25, / 18

6 Prbability, Randm Variables, and Prcesses Randm Variables Cntinuus Randm Variables If cdf F S (s) is a cntinuus functin: prbability density functin (pdf) f S (s) = df S(s) ds Prperties f pdfs: f S (s) 0, Unifrm pdf: F S (s) = s f S(t) dt = 1 f S (t) dt (11) Laplacian pdf: Gaussian pdf: f S (s) = 1/A fr A/2 s A/2 A > 0 (12) f S (s) = 1 e s µ S 2/σS σ S > 0 (13) σ S 2 f S (s) = 1 e (s µ S) 2 /(2σ 2 S ) σ S > 0 (14) σ S 2π Octber 25, / 18

7 Prbability, Randm Variables, and Prcesses Randm Variables Generalized Gaussian Distributin f S (s) = β 2αΓ(1/β) β e ( x µ /α) Γ(z) = 0 e t t z 1 dt (15) Octber 25, / 18

8 Prbability, Randm Variables, and Prcesses Randm Variables Jint and Cnditinal pdfs N-dimensinal pdf, jint pdf, r jint density f S (s) = N F S (s) s 0 s N 1 (16) Cnditinal pdf r cnditinal density f S B (s B) f a randm variable S given an event B f S B (s B) = df S B (s B)/ds (17) Cnditinal density f a randm vectr X given anther randm vectr Y f X Y (x y) = f XY (x, y) f Y (y) (18) Octber 25, / 18

9 Prbability, Randm Variables, and Prcesses Randm Variables Discrete Randm Variables Discrete randm variable S: if its cdf F S (s) represents a staircase functin S takes values f cuntable set A = {a 0, a 1,...} Prbability mass functin (pmf): Cdf f discrete randm variable p S (a) = P (S = a) = P ( {ζ : S(ζ)= a} ) (19) F S (s) = a s p(a) (20) Binary pmf: A = {a 0, a 1 } p S (a 0 ) = p, p S (a 1 ) = 1 p (21) Unifrm pmf: A = {a 0, a 1,, a M 1 } p S (a i ) = 1/M a i A (22) Gemetric pmf: A = {a 0, a 1, } p S (a i ) = (1 p) p i a i A (23) Octber 25, / 18

10 Prbability, Randm Variables, and Prcesses Randm Variables Jint and Cnditinal pmfs N-dimensinal pmf r jint pmf fr a randm vectr S = (S 0,, S N 1 ) T p S (a) = P (S = a) = P (S 0 = a 0,, S N 1 = a N 1 ) (24) Jint pmf f tw randm vectrs X and Y : p XY (a x, a y ) Cnditinal pmf p S B (a B) f a randm variable S given an event B, with P (B) > 0 p S B (a B) = P (S = a B) (25) Cnditinal pmf f a randm vectr X given anther randm vectr Y p X Y (a x a y ) = p XY (a x, a y ) p Y (a y ) (26) Octber 25, / 18

11 Prbability, Randm Variables, and Prcesses Randm Variables Example fr Jint pmf Fr example, samples in picture and vide signals typically shw strng statistical dependencies Belw: histgram f tw hrizntally adjacent sampels fr the picture Lena Relative frequency f ccurence Amplitude f adjacent pixel Amplitude f current pixel Octber 25, / 18

12 Prbability, Randm Variables, and Prcesses Randm Variables Expectatin Expectatin values r expected values f cntinuus randm variables S E {g(s)} = f discrete randm variables S g(s) f S (s) ds (27) E {g(s)} = a A g(a) p S (a) (28) Imprtant expectatin values are mean µ S and variance σs 2 µ S = E {S} and σs 2 = E { (S µ s ) 2} (29) Expectatin value f a functin g(s) f a set N randm variables S = {S 0,, S N 1 } E {g(s)} = g(s) f S (s) ds (30) R N Octber 25, / 18

13 Prbability, Randm Variables, and Prcesses Randm Variables Cnditinal Expectatin Cnditinal expectatin value f functin g(s) given an event B, with P (B) > 0 E {g(s) B} = g(s) f S B (s B) ds (31) Cnditinal expectatin value f functin g(x) given a particular value y fr anther randm variable Y E {g(x) y} = E {g(x) Y =y} = g(x) f X Y (x, y) dx (32) Octber 25, / 18

14 Prbability, Randm Variables, and Prcesses Randm Prcesses Randm Prcesses Series f randm experiments at time instants t n, with n = 0, 1, 2,... Outcme f experiment: randm variable S n = S(t n ) Discrete-time randm prcess: series f randm variables S = {S n } Statistical prperties f discrete-time randm prcess S: N-th rder jint cdf F Sk (s) = P (S (N) k s) = P (S k s 0,, S k+n 1 s N 1 ) (33) Cntinuus randm prcess f Sk (s) = N s 0 s N 1 F Sk (s) (34) Discrete randm prcess F Sk (s) = a A N p Sk (a) (35) A N prduct space f the alphabets A n and p Sk (a) = P (S k = a 0,, S k+n 1 = a N 1 ) (36) Octber 25, / 18

15 Prbability, Randm Variables, and Prcesses Randm Prcesses Statinary Randm Prcess Statinary randm prcess: statistical prperties invariant t a shift in time N-th rder jint cdf F Sk (s), pdf f Sk (s), and pmf p Sk (a) are independent f time instant t k and are dented by F S (s), f S (s), and p S (a), respectively N-th rder autcvariance matrix C N = E { (S (N) µ N )(S (N) µ N ) T } (37) is a symmetric Teplitz matrix 1 ρ 1 ρ 2 ρ N 1 ρ 1 1 ρ 1 ρ N 2 C N = σs 2 ρ 2 ρ 1 1 ρ N ρ N 1 ρ N 2 ρ N 3 1 (38) Fr Teplitz matrices, see the standard reference [Grenander and Szegö, 1958] and the tutrial [Gray, 2005] Octber 25, / 18

16 Prbability, Randm Variables, and Prcesses Randm Prcesses Memryless and i.i.d. Randm Prcesses Memryless randm prcess: randm prcess S = {S n } fr which the randm variables S n are independent Independent and identical distributed (iid) randm prcess: statinary and memryless randm prcess N-th rder cdf F S (s), pdf f S (s), and pmf p S (a) fr iid prcesses, with s = (s 0,, s N 1 ) T and a = (a 0,, a N 1 ) T F S (s) = N 1 k=0 F S (s k ), f S (s) = N 1 k=0 f S (s k ), p S (a) = N 1 k=0 p S (a k ) (39) F S (s), f S (s), and p S (a) are the marginal cdf, pdf, and pmf, respectively Octber 25, / 18

17 Prbability, Randm Variables, and Prcesses Randm Prcesses Markv Prcesses Markv prcess: future utcmes d nt depend n past utcmes, but nly n the present utcme, Discrete prcesses P (S n s n S n 1 =s n 1, ) = P (S n s n S n 1 =s n 1 ) (40) p Sn (a n a n 1, ) = p Sn (a n a n 1 ) (41) Example fr a discrete Markv prcess (calculate p(a)) a a 0 a 1 a 2 p(a a 0) p(a a 1) p(a a 2) p(a) Octber 25, / 18

18 Prbability, Randm Variables, and Prcesses Randm Prcesses Markv Prcesses II Cntinuus Markv prcesses f Sn (s n s n 1, ) = f Sn (s n s n 1 ) (42) Given zer-mean iid prcess Z = {Z n }, cntinuus Markv prcess S = {S n } with mean µ S Variance σ 2 S S n = Z n + ρ (S n 1 µ S ) + µ S, with ρ < 1 (43) f statinary Markv prcess S σ 2 S = E { (S n µ S ) 2} = E { (Z n ρ (S n 1 µ S ) ) 2} = Gauss-Markv Prcess, ρ = 0.9, µ S = σ2 Z 1 ρ 2 (44) s(t) t Octber 25, / 18

Source Coding and Compression

Source Coding and Compression Surce Cding and Cmpressin Heik Schwarz Cntact: Dr.-Ing. Heik Schwarz heik.schwarz@hhi.fraunhfer.de Heik Schwarz Surce Cding and Cmpressin September 22, 2013 1 / 60 PartI: Surce Cding Fundamentals Heik

More information

Source Coding Fundamentals

Source Coding Fundamentals Surce Cding Fundamentals Surce Cding Fundamentals Thmas Wiegand Digital Image Cmmunicatin 1 / 54 Surce Cding Fundamentals Outline Intrductin Lssless Cding Huffman Cding Elias and Arithmetic Cding Rate-Distrtin

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

ELT COMMUNICATION THEORY

ELT COMMUNICATION THEORY ELT 41307 COMMUNICATION THEORY Matlab Exercise #2 Randm variables and randm prcesses 1 RANDOM VARIABLES 1.1 ROLLING A FAIR 6 FACED DICE (DISCRETE VALIABLE) Generate randm samples fr rlling a fair 6 faced

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Source Coding: Part I of Fundamentals of Source and Video Coding

Source Coding: Part I of Fundamentals of Source and Video Coding Foundations and Trends R in sample Vol. 1, No 1 (2011) 1 217 c 2011 Thomas Wiegand and Heiko Schwarz DOI: xxxxxx Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand 1 and Heiko

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Transform Coding. coefficient vectors u = As. vectors u into decoded source vectors s = Bu. 2D Transform: Rotation by ϕ = 45 A = Transform Coding

Transform Coding. coefficient vectors u = As. vectors u into decoded source vectors s = Bu. 2D Transform: Rotation by ϕ = 45 A = Transform Coding Transfrm Cding Transfrm Cding Anther cncept fr partially expliting the memry gain f vectr quantizatin Used in virtually all lssy image and vide cding applicatins Samples f surce s are gruped int vectrs

More information

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

A new Type of Fuzzy Functions in Fuzzy Topological Spaces IOSR Jurnal f Mathematics (IOSR-JM e-issn: 78-578, p-issn: 39-765X Vlume, Issue 5 Ver I (Sep - Oct06, PP 8-4 wwwisrjurnalsrg A new Type f Fuzzy Functins in Fuzzy Tplgical Spaces Assist Prf Dr Munir Abdul

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Sectin 8.1: The Binmial Distributins Chapter 8: The Binmial and Gemetric Distributins A randm variable X is called a BINOMIAL RANDOM VARIABLE if it meets ALL the fllwing cnditins: 1) 2) 3) 4) The MOST

More information

Quantization. Quantization is the realization of the lossy part of source coding Typically allows for a trade-off between signal fidelity and bit rate

Quantization. Quantization is the realization of the lossy part of source coding Typically allows for a trade-off between signal fidelity and bit rate Quantizatin Quantizatin is the realizatin f the lssy part f surce cding Typically allws fr a trade-ff between signal fidelity and bit rate s! s! Quantizer Quantizatin is a functinal mapping f a (cntinuus

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Lyapunov Stability Stability of Equilibrium Points

Lyapunov Stability Stability of Equilibrium Points Lyapunv Stability Stability f Equilibrium Pints 1. Stability f Equilibrium Pints - Definitins In this sectin we cnsider n-th rder nnlinear time varying cntinuus time (C) systems f the frm x = f ( t, x),

More information

Bayesian nonparametric modeling approaches for quantile regression

Bayesian nonparametric modeling approaches for quantile regression Bayesian nnparametric mdeling appraches fr quantile regressin Athanasis Kttas Department f Applied Mathematics and Statistics University f Califrnia, Santa Cruz Department f Statistics Athens University

More information

FINITE BOOLEAN ALGEBRA. 1. Deconstructing Boolean algebras with atoms. Let B = <B,,,,,0,1> be a Boolean algebra and c B.

FINITE BOOLEAN ALGEBRA. 1. Deconstructing Boolean algebras with atoms. Let B = <B,,,,,0,1> be a Boolean algebra and c B. FINITE BOOLEAN ALGEBRA 1. Decnstructing Blean algebras with atms. Let B = be a Blean algebra and c B. The ideal generated by c, (c], is: (c] = {b B: b c} The filter generated by c, [c), is:

More information

Pure adaptive search for finite global optimization*

Pure adaptive search for finite global optimization* Mathematical Prgramming 69 (1995) 443-448 Pure adaptive search fr finite glbal ptimizatin* Z.B. Zabinskya.*, G.R. Wd b, M.A. Steel c, W.P. Baritmpa c a Industrial Engineering Prgram, FU-20. University

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Mathematics Methods Units 1 and 2

Mathematics Methods Units 1 and 2 Mathematics Methds Units 1 and 2 Mathematics Methds is an ATAR curse which fcuses n the use f calculus and statistical analysis. The study f calculus prvides a basis fr understanding rates f change in

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 3, 2010 Prbabilistic Analysis f Lateral Displacements f Shear in a 20 strey building Samir Benaissa 1, Belaid Mechab 2 1 Labratire de Mathematiques, Université de Sidi Bel Abbes BP 89, Sidi Bel Abbes 22000, Algerie.

More information

AN INTERMITTENTLY USED SYSTEM WITH PREVENTIVE MAINTENANCE

AN INTERMITTENTLY USED SYSTEM WITH PREVENTIVE MAINTENANCE J. Operatins Research Sc. f Japan V!. 15, N. 2, June 1972. 1972 The Operatins Research Sciety f Japan AN INTERMITTENTLY USED SYSTEM WITH PREVENTIVE MAINTENANCE SHUNJI OSAKI University f Suthern Califrnia

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Quantile Autoregression

Quantile Autoregression Quantile Autregressin Rger Kenker University f Illinis, Urbana-Champaign University f Minh 12-14 June 2017 Centercept Lag(y) 6.0 7.0 8.0 0.8 0.9 1.0 1.1 1.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Math 10 - Exam 1 Topics

Math 10 - Exam 1 Topics Math 10 - Exam 1 Tpics Types and Levels f data Categrical, Discrete r Cntinuus Nminal, Ordinal, Interval r Rati Descriptive Statistics Stem and Leaf Graph Dt Plt (Interpret) Gruped Data Relative and Cumulative

More information

Predictive Coding. U n " S n

Predictive Coding. U n  S n Intrductin Predictive Cding The better the future f a randm prcess is predicted frm the past and the mre redundancy the signal cntains, the less new infrmatin is cntributed by each successive bservatin

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

On Topological Structures and. Fuzzy Sets

On Topological Structures and. Fuzzy Sets L - ZHR UNIVERSIT - GZ DENSHIP OF GRDUTE STUDIES & SCIENTIFIC RESERCH On Tplgical Structures and Fuzzy Sets y Nashaat hmed Saleem Raab Supervised by Dr. Mhammed Jamal Iqelan Thesis Submitted in Partial

More information

The multivariate skew-slash distribution

The multivariate skew-slash distribution Jurnal f Statistical Planning and Inference 136 (6) 9 wwwelseviercm/lcate/jspi The multivariate skew-slash distributin Jing Wang, Marc G Gentn Department f Statistics, Nrth Carlina State University, Bx

More information

GMM with Latent Variables

GMM with Latent Variables GMM with Latent Variables A. Rnald Gallant Penn State University Raffaella Giacmini University Cllege Lndn Giuseppe Ragusa Luiss University Cntributin The cntributin f GMM (Hansen and Singletn, 1982) was

More information

MAKING DOUGHNUTS OF COHEN REALS

MAKING DOUGHNUTS OF COHEN REALS MAKING DUGHNUTS F CHEN REALS Lrenz Halbeisen Department f Pure Mathematics Queen s University Belfast Belfast BT7 1NN, Nrthern Ireland Email: halbeis@qub.ac.uk Abstract Fr a b ω with b \ a infinite, the

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 4. Function spaces

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 4. Function spaces SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 4 Fall 2008 IV. Functin spaces IV.1 : General prperties (Munkres, 45 47) Additinal exercises 1. Suppse that X and Y are metric spaces such that X is cmpact.

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 4. Function spaces

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 4. Function spaces SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 4 Fall 2014 IV. Functin spaces IV.1 : General prperties Additinal exercises 1. The mapping q is 1 1 because q(f) = q(g) implies that fr all x we have f(x)

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Emphases in Common Core Standards for Mathematical Content Kindergarten High School

Emphases in Common Core Standards for Mathematical Content Kindergarten High School Emphases in Cmmn Cre Standards fr Mathematical Cntent Kindergarten High Schl Cntent Emphases by Cluster March 12, 2012 Describes cntent emphases in the standards at the cluster level fr each grade. These

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Math 302 Learning Objectives

Math 302 Learning Objectives Multivariable Calculus (Part I) 13.1 Vectrs in Three-Dimensinal Space Math 302 Learning Objectives Plt pints in three-dimensinal space. Find the distance between tw pints in three-dimensinal space. Write

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Versatility of Singular Value Decomposition (SVD) January 7, 2015

Versatility of Singular Value Decomposition (SVD) January 7, 2015 Versatility f Singular Value Decmpsitin (SVD) January 7, 2015 Assumptin : Data = Real Data + Nise Each Data Pint is a clumn f the n d Data Matrix A. Assumptin : Data = Real Data + Nise Each Data Pint is

More information

CALCULATION OF BRAKING FORCE IN EDDY CURRENT BRAKES

CALCULATION OF BRAKING FORCE IN EDDY CURRENT BRAKES CALCULATION OF BRAKING FORCE IN EDDY CURRENT BRAKES By P. HANYECZ Department f Theretical Electricity. Technical University Budapest Received March 2. 1982 Presented by Prf. Dr. I. V,\GO Intrductin The

More information

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs Admissibility Cnditins and Asympttic Behavir f Strngly Regular Graphs VASCO MOÇO MANO Department f Mathematics University f Prt Oprt PORTUGAL vascmcman@gmailcm LUÍS ANTÓNIO DE ALMEIDA VIEIRA Department

More information

ELE Final Exam - Dec. 2018

ELE Final Exam - Dec. 2018 ELE 509 Final Exam Dec 2018 1 Cnsider tw Gaussian randm sequences X[n] and Y[n] Assume that they are independent f each ther with means and autcvariances μ ' 3 μ * 4 C ' [m] 1 2 1 3 and C * [m] 3 1 10

More information

15-381/781 Bayesian Nets & Probabilistic Inference

15-381/781 Bayesian Nets & Probabilistic Inference 15-381/781 Bayesian Nets & Prbabilistic Inference Emma Brunskill (this time) Ariel Prcaccia With thanks t Dan Klein (Berkeley), Percy Liang (Stanfrd) and Past 15-381 Instructrs fr sme slide cntent, and

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Ecology 302 Lecture III. Exponential Growth (Gotelli, Chapter 1; Ricklefs, Chapter 11, pp )

Ecology 302 Lecture III. Exponential Growth (Gotelli, Chapter 1; Ricklefs, Chapter 11, pp ) Eclgy 302 Lecture III. Expnential Grwth (Gtelli, Chapter 1; Ricklefs, Chapter 11, pp. 222-227) Apcalypse nw. The Santa Ana Watershed Prject Authrity pulls n punches in prtraying its missin in apcalyptic

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Engineering Decision Methods

Engineering Decision Methods GSOE9210 vicj@cse.unsw.edu.au www.cse.unsw.edu.au/~gs9210 Maximin and minimax regret 1 2 Indifference; equal preference 3 Graphing decisin prblems 4 Dminance The Maximin principle Maximin and minimax Regret

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property Functin ntatin & cmpsite functins Factring Dividing plynmials Remainder therem & factr prperty Can d s by gruping r by: Always lk fr a cmmn factr first 2 numbers that ADD t give yu middle term and MULTIPLY

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

A proposition is a statement that can be either true (T) or false (F), (but not both).

A proposition is a statement that can be either true (T) or false (F), (but not both). 400 lecture nte #1 [Ch 2, 3] Lgic and Prfs 1.1 Prpsitins (Prpsitinal Lgic) A prpsitin is a statement that can be either true (T) r false (F), (but nt bth). "The earth is flat." -- F "March has 31 days."

More information

THE DEVELOPMENT OF AND GAPS IN THE THEORY OF PRODUCTS OF INITIALLY M-COMPACT SPACES

THE DEVELOPMENT OF AND GAPS IN THE THEORY OF PRODUCTS OF INITIALLY M-COMPACT SPACES Vlume 6, 1981 Pages 99 113 http://tplgy.auburn.edu/tp/ THE DEVELOPMENT OF AND GAPS IN THE THEORY OF PRODUCTS OF INITIALLY M-COMPACT SPACES by R. M. Stephensn, Jr. Tplgy Prceedings Web: http://tplgy.auburn.edu/tp/

More information

Modeling of ship structural systems by events

Modeling of ship structural systems by events UNIVERISTY OF SPLIT FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE Mdeling ship structural systems by events Brank Blagjević Mtivatin Inclusin the cncept entrpy rm inrmatin

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

f t(y)dy f h(x)g(xy) dx fk 4 a. «..

f t(y)dy f h(x)g(xy) dx fk 4 a. «.. CERTAIN OPERATORS AND FOURIER TRANSFORMS ON L2 RICHARD R. GOLDBERG 1. Intrductin. A well knwn therem f Titchmarsh [2] states that if fel2(0, ) and if g is the Furier csine transfrm f/, then G(x)=x~1Jx0g(y)dy

More information

Appendix I: Derivation of the Toy Model

Appendix I: Derivation of the Toy Model SPEA ET AL.: DYNAMICS AND THEMODYNAMICS OF MAGMA HYBIDIZATION Thermdynamic Parameters Appendix I: Derivatin f the Ty Mdel The ty mdel is based upn the thermdynamics f an isbaric twcmpnent (A and B) phase

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

Quantum Harmonic Oscillator, a computational approach

Quantum Harmonic Oscillator, a computational approach IOSR Jurnal f Applied Physics (IOSR-JAP) e-issn: 78-4861.Vlume 7, Issue 5 Ver. II (Sep. - Oct. 015), PP 33-38 www.isrjurnals Quantum Harmnic Oscillatr, a cmputatinal apprach Sarmistha Sahu, Maharani Lakshmi

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter 5 1 Chapter Summary Mathematical Inductin Strng Inductin Recursive Definitins Structural Inductin Recursive Algrithms Sectin 5.1 3 Sectin Summary Mathematical Inductin Examples f Prf by Mathematical

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

Ship-Track Models Based on Poisson-Distributed Port-Departure Times

Ship-Track Models Based on Poisson-Distributed Port-Departure Times Naval Research Labratry Washingtn, DC 20375-5320 NRL/FR/7121--06-10,122 Ship-Track Mdels Based n Pissn-Distributed Prt-Departure Times RICHARD HEITMEYER Acustic Signal Prcessing Branch Acustic Divisin

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 11: Mdeling with systems f ODEs In Petre Department f IT, Ab Akademi http://www.users.ab.fi/ipetre/cmpmd/ Mdeling with differential equatins Mdeling strategy Fcus

More information

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)?

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)? THESE ARE SAMPLE QUESTIONS FOR EACH OF THE STUDENT LEARNING OUTCOMES (SLO) SET FOR THIS COURSE. SLO 1: Understand and use the cncept f the limit f a functin i. Use prperties f limits and ther techniques,

More information

THE TOPOLOGY OF SURFACE SKIN FRICTION AND VORTICITY FIELDS IN WALL-BOUNDED FLOWS

THE TOPOLOGY OF SURFACE SKIN FRICTION AND VORTICITY FIELDS IN WALL-BOUNDED FLOWS THE TOPOLOGY OF SURFACE SKIN FRICTION AND VORTICITY FIELDS IN WALL-BOUNDED FLOWS M.S. Chng Department f Mechanical Engineering The University f Melburne Victria 3010 AUSTRALIA min@unimelb.edu.au J.P. Mnty

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

The Electromagnetic Form of the Dirac Electron Theory

The Electromagnetic Form of the Dirac Electron Theory 0 The Electrmagnetic Frm f the Dirac Electrn Thery Aleander G. Kyriaks Saint-Petersburg State Institute f Technlgy, St. Petersburg, Russia* In the present paper it is shwn that the Dirac electrn thery

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCurseWare http://cw.mit.edu 2.161 Signal Prcessing: Cntinuus and Discrete Fall 2008 Fr infrmatin abut citing these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. Massachusetts Institute

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

Pre-Calculus Individual Test 2017 February Regional

Pre-Calculus Individual Test 2017 February Regional The abbreviatin NOTA means Nne f the Abve answers and shuld be chsen if chices A, B, C and D are nt crrect. N calculatr is allwed n this test. Arcfunctins (such as y = Arcsin( ) ) have traditinal restricted

More information

Copyright 1963, by the author(s). All rights reserved.

Copyright 1963, by the author(s). All rights reserved. Cpyright 1963, by the authr(s). All rights reserved. Permissin t make digital r hard cpies f all r part f this wrk fr persnal r classrm use is granted withut fee prvided that cpies are nt made r distributed

More information

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Chapter 9 Vector Differential Calculus, Grad, Div, Curl Chapter 9 Vectr Differential Calculus, Grad, Div, Curl 9.1 Vectrs in 2-Space and 3-Space 9.2 Inner Prduct (Dt Prduct) 9.3 Vectr Prduct (Crss Prduct, Outer Prduct) 9.4 Vectr and Scalar Functins and Fields

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

ON TRANSFORMATIONS OF WIENER SPACE

ON TRANSFORMATIONS OF WIENER SPACE Jurnal f Applied Mathematics and Stchastic Analysis 7, Number 3, 1994, 239-246. ON TRANSFORMATIONS OF WIENER SPACE ANATOLI V. SKOROKHOD Ukranian Academy f Science Institute f Mathematics Kiev, UKRAINE

More information

SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES

SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES Philips J. Res. 39, 293-304,1984 R 1097 SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES by W. J. VAN OILS Philips Research Labratries, 5600 JA Eindhven, The Netherlands Abstract

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Supplement 8: Conservative and non-conservative partitioned systems: equivalences and interconversions

Supplement 8: Conservative and non-conservative partitioned systems: equivalences and interconversions Research The quantitatin f buffering actin. I. A frmal and general apprach. Bernhard M. Schmitt Supplement 8: Cnservative and nn-cnservative partitined systems: equivalences and intercnversins The aims

More information