Mark Redekopp, All rights reserved. Lecture 5 Slides. Canonical Sums and Products (Minterms and Maxterms) 2-3 Variable Theorems DeMorgan s Theorem

Size: px
Start display at page:

Download "Mark Redekopp, All rights reserved. Lecture 5 Slides. Canonical Sums and Products (Minterms and Maxterms) 2-3 Variable Theorems DeMorgan s Theorem"

Transcription

1 Lecture 5 Slides Canonical Sums and Products (Minterms and Materms) 2-3 Variable Theorems DeMorgan s Theorem

2 Using products of materms to implement a function MAXTERMS

3 Question Is there a set of functions (F1, F2, etc.) that would allow ou to build ANY 3- variable function X Y Z F1 Fn?? Think simple, think man X Y Z F1 F2 Fn? 0 0 0? 0 0 1? 0 1 0? 0 1 1? 1 0 0? 1 0 1? 1 1 0? 1 1 1? X Y Z m0 m1 m2 m3 m4 m5 m6 m7? ? ? ? ? ? ? ? ? OR together an combination of m I s

4 Question OR this set of functions would also work. X Y Z F1 Fn?? X Y Z M0 M1 M2 M3 M4 M5 M6 M7? ? ? ? ? ? ? ? ? AND together an combination of M I s G G = M1 M3 M6

5 Materm Definition Materm: A sum term where each input variable of a function appears eactl once in that term (either in its true or complemented form) f(,,z) => + +z ++z +z z

6 Venn Diagram of Materms Onl one region OFF and all others ON M0 M2 X=0,Y=0 X+Y X=1,Y=0 X+Y M1 X=0,Y=1 X +Y M3 X=1,Y=1 X +Y

7 Product of Materms To compose a function we can AND the materms from the function s OFF-Set X Y F AND AND F=1 X=0,Y=0 X+Y X=1,Y=1 X +Y = F = XY + X Y

8 Checkers / Decoders An OR gate onl outputs 0 for 1 combination That combination can be changed b adding inverters to the inputs We can think of the OR gate as checking or decoding a specific combination and outputting a 0 when it matches. z OR gate decoding (checking for) combination 010 F X Y Z F z OR gate decoding (checking for) combination 110 F X Y Z F

9 Finding Equations/Circuits Given a function and checkers (called decoders) for each combination, we just need to AND together the checkers where F = 0 3-bit number {,,z} Mark Redekopp, All rights reserved Checker for 000 Checker for 001 Checker for 010 Checker for 011 Checker for 100 Checker for 101 Checker for 110 Checker for 111 Assume we use ORgate decoders that output a 0 when the combination is found F X Y Z F

10 LOGIC FUNCTION NOTATION Mark Redekopp, All rights reserved

11 Canonical Sums We OR together all the minterms where F = 1 ( = SUM or OR of all the minterms) F = m 2 +m 3 +m 5 +m 7 m 0 m 1 Canonical Sum: F = z (2,3,5,7) List the minterms where F is 1. m 2 m 3 m 4 m 5 m 6 m 7 X Y Z F

12 Canonical Products We AND together all the materms where F = 0 F = M 0 M 1 M 4 M 6 M 0 M 1 Canonical Product: F = z (0,1,4,6) List the materms where F is 0. M 2 M 3 M 4 M 5 M 6 M 7 X Y Z F

13 Canonical Form Practice X Y Z G Mark Redekopp, All rights reserved P. 60 and 61 in the Lecture Notes X Y Z F

14 Logic Functions A logic function maps input combinations to an output value ( 1 or 0 ) 3 possible representations of a function Equation Schematic Truth Table Can convert between representations Truth table is onl unique representation* * Canonical Sums/Products (minterm/materm) representation provides a standard equation/schematic form that is unique per function Mark Redekopp, All rights reserved

15 Unique Representations Canonical => Same functions will have same representations Truth Tables along with Canonical Sums and Products specif a function uniquel Equations/circuit schematics are NOT inherentl canonical Truth Table z P P, Canonical Sum ( 2,3,5,7 ), z ON-Set of P (minterms) Yields SOP equation, AND-OR circuit Canonical Product P (0,1,4,6 ),, z OFF-Set of P (materms) Yields POS equation, OR-AND circuit

16 Boolean Algebra Terminolog SOP (Sum of Products) Form: An SOP epression is a logical sum (OR) of product terms. Correct Eamples: [ z + w + a b c], [w + z + z] Incorrect Eamples: [ z + w (a+b) ], [ + ( z) ] POS (Product of Sums) Form: A POS epression is a logical product (AND) of sum terms. Correct Eamples: [(+ +z) (w +z) (a)], [z (+) (w +)] Incorrect Eamples: [ + (+w)], [(+) (+z) ]

17 Check Yourself Epression SOP / POS / Both / Neither w ( z) + z + w +z+(w z) (w+ +z)(w+) (w+)(w +z) w + w + w++

18 Check Yourself Epression SOP / POS / Both / Neither w ( z) + z + w +z+(w z) (w+ +z)(w+) (w+)(w +z) w + w + w++ Neither (Can t have complements of sub-epressions onl literal) SOP (parentheses are unnecessar) POS POS (a single literal is a sum term) SOP (redundanc doesn t matter) Both (individual literals are both a product and sum term)

19 2- and 3-variable Theorems BOOLEAN ALGEBRA AGAIN

20 2 & 3 Variable Theorems T8 XY+XZ = X(Y+Z) T8 (X+Y)(X+Z) = X+YZ T9 X + XY = X T9 X(X+Y) = X T10 XY + XY = X T10 (X+Y)(X+Y ) = X T11 XY + X Z + YZ = XY + X Z T11 (X+Y)(X +Z)(Y+Z) = (X+Y)(X +Z)

21 T8 Proof The police are looking for drunk drivers. The can arrest a person if his breath test is positive OR if the find an open container in the car and the contents are alcoholic. Mark Redekopp, All rights reserved Arrest = Breath + OpenContainer ContentsAlcoholic B T8 Arrest = (Breath + OpenContainer)(Breath + ContentsAlcoholic) B O C O C B+O C B+O B+C (B+O)(B+C)

22 Boolean Algebra Terminolog Literal: A literal is an instance of a single variable or its complement. Correct Eamples:,,, ALARM, (LON) Incorrect Eamples: +, (these are epressions) Product Term: A single literal or a logical product (AND ing) of two or more literals. Correct Eamples: z, w, w a b, c Incorrect Eamples: (+) z w, ( ) Onl evaluates to 1 for a single input combination Sum Term: A single literal or a logical sum (OR ing) of two or more literals. Correct Eamples: z +w+, +, Incorrect Eamples: ab+c, ( + z) Onl evaluates to 0 for a single input combination SOP (Sum of Products) Form: An SOP epression is a logical sum (OR) of product terms. (Convert to SOP b distributing full using T8) Correct Eamples: [ z + w + a b c], [w + z + z] Incorrect Eamples: [ z+w (a+b) ], [ + ( z) ] POS (Product of Sums) Form: A POS epression is a logical product (AND) of sum terms. (Convert to POS b distributing full using T8 ) Correct Eamples: [(+ +z) (w +z) (a)], [z (+) (w +)] Incorrect Eamples: [( +) +(+w)], [(+) (+z) ]

23 Convert to SOP/POS Epression + (+w) to SOP SOP or POS + +z to POS (XZ + X Z )(WY + W Y ) to SOP X Y + (X+Y)Z to POS

24 T9 Proof X + XY = X X XY + = X

25 T9 Proof X(X+Y)= X X X+Y = X

26 T10 Proof XY + XY = X XY XY + = X

27 T10 Proof (X+Y )(X+Y)= X X+Y X+Y = X

28 Proof b Other Theorems T9: X+XY = X T9 : X(X+Y) = X T10: XY +XY = X T10 : (X+Y )(X+Y) = X

29 T11 Proof Proof T11: XY + X Z + YZ = XY + X Z z z XY+X Z+YZ XY+X Z

30 T11 Proof Proof T11: (X+Y)(X +Z)(Y+Z) = (X+Y)(X +Z) z z (X+Y)(X +Z)(Y+Z) (X+Y)(X +Z)

31 DeMorgan s Theorem Consider the statement You will get a Good grade if ou do our Homework and go to Class When will ou get a bad grade? Consider the statement: USC will Win if we Pla better or UCLA Turns the ball over When will USC lose?

32 DeMorgan s Theorem Inverting output of an AND gate = inverting the inputs of an OR gate Inverting output of an OR gate = inverting the inputs of an AND gate A function s inverse is equivalent to inverting all the inputs and changing AND to OR and vice versa A B Out A B Out A B A+B A B Out A B Out A+B A B

33 DeMorgan s Theorem F = (X+Y) + Z (Y+W) To find F, invert both sides of the equation and then use DeMorgan s theorem to simplif F = (X+Y) + Z (Y+W) F = (X+Y) (Z (Y+W)) F = (X Y) (Z + (Y+W)) F = (X Y) (Z + (Y W))

34 Generalized DeMorgan s Theorem F (X 1,,X n,+, ) = F(X 1,,X n,,+) To find F, swap AND s and OR s and complement each literal. However, ou must maintain the original order of operations. Note: This parentheses doesn t matter (we are just OR ing X, Y, and the following subepression) F = (X+Y) + Z (Y+W) F = X+Y + (Z (Y+W)) Full parenthesized to show original order of ops. F = X Y (Z + (Y W)) AND s & OR s swapped Each literal is inverted

35 DeMorgan s Theorem Eample Cancel as man bubbles as ou can using DeMorgan s theorem then convert to either SOP or POS. W X Y F Z

36 OLD LECTURE 5 Mark Redekopp, All rights reserved

37 Unique Representations Canonical => Same functions will have same representations Truth Tables along with Canonical Sums and Products specif a function uniquel Equations/circuit schematics are NOT inherentl canonical Truth Table z P P, Canonical Sum ( 2,3,5,7 ), z Canonical Product P (0,1,4,6 ),, z rows where P=1 rows where P=0 Yields SOP equation, AND-OR circuit Yields POS equation, OR-AND circuit

38 Binar Decision Diagram Graph (binar tree) representation of logic function Verte = Variable/Decision Edge = Variable value (T / F) X Y Z F X Y Z F X Y Z X Y Z 0 1 True False BDD for F Mark Redekopp, All rights reserved 0 1

39 Venn Diagrams Practice F = (X Y)

40 Venn Diagrams Answer F = (X Y) X Y F = (X Y)

41 3-Variable Venn Diagrams All the same rules appl Since there are 3-variables, we must have 8 disjoint regions (1 for each combination / minterm / materm) z

42 3-Variable Venn Diagrams Each area represents a different combination of X, Y, and Z This area represent where X=1 and Y=1 and Z=0 (i.e. F=X Y Z ) z

43 3-Variable Venn Diagrams Each area represents a different combination of X, Y, and Z This area represent where X=1 and Y=1 and Z=0 (i.e. F=X Y Z ) This area represent where X=1 and Y=1 and Z=1 (i.e. F=X Y Z) z

44 3-Variable Venn Diagrams Each area represents a different combination of X, Y, and Z This area represent where X=1 and Y=1 and Z=0 (i.e. F=X Y Z ) This area represent where X=1 and Y=1 and Z=1 (i.e. F=X Y Z) z This area represent where X=0 and Y=0 and Z=1 (i.e. F=X Y Z)

7.1. Unit 7. Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra

7.1. Unit 7. Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra 7.1 Unit 7 Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra CHECKERS / DECODERS 7.2 7.3 Gates Gates can have more than 2 inputs

More information

Mark Redekopp, All rights reserved. Lecture 4 Slides. Boolean Algebra Logic Functions Canonical Sums/Products

Mark Redekopp, All rights reserved. Lecture 4 Slides. Boolean Algebra Logic Functions Canonical Sums/Products Lecture 4 Slides Boolean Algebra Logic Functions Canonical Sums/Products LOGIC FUNCTION REPRESENTATION Logic Functions A logic function maps input combinations to an output value ( 1 or ) 3 possible representations

More information

Outcomes. Spiral 1 / Unit 3. The Problem SYNTHESIZING LOGIC FUNCTIONS

Outcomes. Spiral 1 / Unit 3. The Problem SYNTHESIZING LOGIC FUNCTIONS -3. -3.2 Outcomes Spiral / Unit 3 Minterm and Materms Canonical Sums and Products 2 and 3 Variable oolean lgebra Theorems emorgan's Theorem unction Snthesis use Canonical Sums/Products Mark Redekopp I

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

Spiral 1 / Unit 3

Spiral 1 / Unit 3 -3. Spiral / Unit 3 Minterm and Maxterms Canonical Sums and Products 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Function Synthesis use Canonical Sums/Products -3.2 Outcomes I know the

More information

This form sometimes used in logic circuit, example:

This form sometimes used in logic circuit, example: Objectives: 1. Deriving of logical expression form truth tables. 2. Logical expression simplification methods: a. Algebraic manipulation. b. Karnaugh map (k-map). 1. Deriving of logical expression from

More information

Lecture 4: More Boolean Algebra

Lecture 4: More Boolean Algebra Lecture 4: More Boolean Algebra Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University ENGIN2

More information

Chapter 2 : Boolean Algebra and Logic Gates

Chapter 2 : Boolean Algebra and Logic Gates Chapter 2 : Boolean Algebra and Logic Gates By Electrical Engineering Department College of Engineering King Saud University 1431-1432 2.1. Basic Definitions 2.2. Basic Theorems and Properties of Boolean

More information

Digital Logic Design. Malik Najmus Siraj

Digital Logic Design. Malik Najmus Siraj Digital Logic Design Malik Najmus Siraj siraj@case.edu.pkedu LECTURE 4 Today s Agenda Recap 2 s complement Binary Logic Boolean algebra Recap Computer Arithmetic Signed numbers Radix and diminished radix

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Boolean Algebra & Logic Gates. By : Ali Mustafa

Boolean Algebra & Logic Gates. By : Ali Mustafa Boolean Algebra & Logic Gates By : Ali Mustafa Digital Logic Gates There are three fundamental logical operations, from which all other functions, no matter how complex, can be derived. These Basic functions

More information

Chapter-2 BOOLEAN ALGEBRA

Chapter-2 BOOLEAN ALGEBRA Chapter-2 BOOLEAN ALGEBRA Introduction: An algebra that deals with binary number system is called Boolean Algebra. It is very power in designing logic circuits used by the processor of computer system.

More information

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hperlinks are active in

More information

Standard Expression Forms

Standard Expression Forms ThisLecture will cover the following points: Canonical and Standard Forms MinTerms and MaxTerms Digital Logic Families 24 March 2010 Standard Expression Forms Two standard (canonical) expression forms

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

Chapter 2: Switching Algebra and Logic Circuits

Chapter 2: Switching Algebra and Logic Circuits Chapter 2: Switching Algebra and Logic Circuits Formal Foundation of Digital Design In 1854 George Boole published An investigation into the Laws of Thoughts Algebraic system with two values 0 and 1 Used

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept.

Chapter 2: Princess Sumaya Univ. Computer Engineering Dept. hapter 2: Princess Sumaya Univ. omputer Engineering Dept. Basic Definitions Binary Operators AND z = x y = x y z=1 if x=1 AND y=1 OR z = x + y z=1 if x=1 OR y=1 NOT z = x = x z=1 if x=0 Boolean Algebra

More information

Chapter 2 Combinational

Chapter 2 Combinational Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations HOANG Trang Reference: 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 2 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Boolean Algebra Boolean Algebra A Boolean algebra is defined with: A set of

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 7: Design Goals (Metrics) 2-Level Logic Negative Logic Warmup Consider F(w,x,y,z). Show the algebraic form of m4 and M4? Use Boolean algebra to find the minimal SOP

More information

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2

ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture) Email: abk@ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office: 3802

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA 1 Learning Objectives Understand the basic operations and laws of Boolean algebra. Relate these operations and laws to circuits composed of AND gates, OR gates, INVERTERS

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways:

Functions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: Boolean Algebra (1) Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: An expression is finite but not unique f(x,y)

More information

Combinational Logic Circuits Part II -Theoretical Foundations

Combinational Logic Circuits Part II -Theoretical Foundations Combinational Logic Circuits Part II -Theoretical Foundations Overview Boolean Algebra Basic Logic Operations Basic Identities Basic Principles, Properties, and Theorems Boolean Function and Representations

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 1. Developed by George Boole in 1847 2. Applied to the Design of Switching Circuit by Claude Shannon in 1939 Department of Communication Engineering, NCTU 1 2.1 Basic Operations

More information

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Boolean Algebra and Logic Gates ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines Basic

More information

In Module 3, we have learned about Exclusive OR (XOR) gate. Boolean Expression AB + A B = Y also A B = Y. Logic Gate. Truth table

In Module 3, we have learned about Exclusive OR (XOR) gate. Boolean Expression AB + A B = Y also A B = Y. Logic Gate. Truth table Module 8 In Module 3, we have learned about Exclusive OR (XOR) gate. Boolean Expression AB + A B = Y also A B = Y Logic Gate Truth table A B Y 0 0 0 0 1 1 1 0 1 1 1 0 In Module 3, we have learned about

More information

BOOLEAN ALGEBRA TRUTH TABLE

BOOLEAN ALGEBRA TRUTH TABLE BOOLEAN ALGEBRA TRUTH TABLE Truth table is a table which represents all the possible values of logical variables / statements along with all the possible results of the given combinations of values. Eg:

More information

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT):

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT): ENGI 386 Digital Logic II. COMBINATIONAL LOGIC DESIGN Combinational Logic output of digital system is only dependent on current inputs (i.e., no memory) (a) Boolean Algebra - developed by George Boole

More information

Computer Organization I

Computer Organization I Computer Organization I Lecture 6: Boolean Algebra /2/29 Wei Lu CS283 Overview Two Principles in Boolean Algebra () Duality Principle (2) Complement Principle Standard Form of Logic Expression () Sum of

More information

Combinational Logic. Fan-in/ Fan-out Timing. Copyright (c) 2012 Sean Key

Combinational Logic. Fan-in/ Fan-out Timing. Copyright (c) 2012 Sean Key Combinational Logic Fan-in/ Fan-out Timing Copyright (c) 2012 Sean Key Fan-in & Fan-out Fan-in The number of inputs to a logic gate Higher fan-in can lead to longer gate delays because of the higher input

More information

Signals and Systems Digital Logic System

Signals and Systems Digital Logic System Signals and Systems Digital Logic System Prof. Wonhee Kim Chapter 2 Design Process for Combinational Systems Step 1: Represent each of the inputs and outputs in binary Step 1.5: If necessary, break the

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENEL 353 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2016 SN s ENEL 353 Fall 2016 Slide Set 3 slide

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Ch1: Digital Systems and Binary Numbers Ch2: Ch3: Gate-Level Minimization Ch4: Combinational Logic Ch5: Synchronous Sequential Logic Ch6: Registers and Counters Switching Theory & Logic Design Prof. Adnan

More information

CS 226: Digital Logic Design

CS 226: Digital Logic Design CS 226: Digital Logic Design 0 1 1 I S 0 1 0 S Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 29 Objectives In this lecture we will introduce: 1. Logic functions

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

EC-121 Digital Logic Design

EC-121 Digital Logic Design EC-121 Digital Logic Design Lecture 2 [Updated on 02-04-18] Boolean Algebra and Logic Gates Dr Hashim Ali Spring 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Overview What

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC. Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Basic Definitions A binary operator defined on a set S of elements is a rule that assigns, to each pair of elements from S, a unique element from S. The most common

More information

ENGR 303 Introduction to Logic Design Lecture 3. Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College

ENGR 303 Introduction to Logic Design Lecture 3. Dr. Chuck Brown Engineering and Computer Information Science Folsom Lake College Introduction to Logic Design Lecture 3 Dr. Chuck rown Engineering and Computer Information Science Folsom Lake College Outline for Todays Lecture Logic Circuits SOP / POS oolean Theorems DeMorgan s Theorem

More information

Learning Objectives 10/7/2010. CE 411 Digital System Design. Fundamental of Logic Design. Review the basic concepts of logic circuits. Dr.

Learning Objectives 10/7/2010. CE 411 Digital System Design. Fundamental of Logic Design. Review the basic concepts of logic circuits. Dr. /7/ CE 4 Digital ystem Design Dr. Arshad Aziz Fundamental of ogic Design earning Objectives Review the basic concepts of logic circuits Variables and functions Boolean algebra Minterms and materms ogic

More information

Binary Logic and Gates. Our objective is to learn how to design digital circuits.

Binary Logic and Gates. Our objective is to learn how to design digital circuits. Binary Logic and Gates Introduction Our objective is to learn how to design digital circuits. These circuits use binary systems. Signals in such binary systems may represent only one of 2 possible values

More information

Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Huntington Postulates 1. (a) Closure w.r.t. +. (b) Closure w.r.t.. 2. (a) Identity element 0 w.r.t. +. x + 0 = 0 + x = x. (b) Identity element 1 w.r.t.. x 1 =

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

Boolean Algebra and Logic Simplification

Boolean Algebra and Logic Simplification S302 Digital Logic Design Boolean Algebra and Logic Simplification Boolean Analysis of Logic ircuits, evaluating of Boolean expressions, representing the operation of Logic circuits and Boolean expressions

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris Combinational Logic Design Chapter

More information

Logic Gate Level. Part 2

Logic Gate Level. Part 2 Logic Gate Level Part 2 Constructing Boolean expression from First method: write nonparenthesized OR of ANDs Each AND is a 1 in the result column of the truth table Works best for table with relatively

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

1. Name the person who developed Boolean algebra

1. Name the person who developed Boolean algebra MATHEMATIC CENTER D96 MUNIRKA VILLAGE NEW DELHI 67 & VIKAS PURI NEW DELHI CONTACT FOR COACHING MATHEMATICS FOR TH 2TH NDA DIPLOMA SSC CAT SAT CPT CONTACT FOR ADMISSION GUIDANCE B.TECH BBA BCA, MCA MBA

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms

Chapter 2 (Lect 2) Canonical and Standard Forms. Standard Form. Other Logic Operators Logic Gates. Sum of Minterms Product of Maxterms Chapter 2 (Lect 2) Canonical and Standard Forms Sum of Minterms Product of Maxterms Standard Form Sum of products Product of sums Other Logic Operators Logic Gates Basic and Multiple Inputs Positive and

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

EE 110 Practice Problems for Exam 1: Solutions, Fall 2008

EE 110 Practice Problems for Exam 1: Solutions, Fall 2008 EE Practice Problems for Exam : Solutions, Fall 28. ircle T (true) or F (false) for each of these oolean equations. (a). T FO + = (b). T FO + = ( + )( + ) (c). TO F = (d). TO F () = () (e). TO F + + =

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates The most common postulates used to formulate various algebraic structures are: 1. Closure. N={1,2,3,4 }, for any a,b N we obtain a unique c N by the operation

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Chapter 2 - Part 1 2 Chapter 2 - Part 1 3 Chapter 2 - Part 1 4 Chapter 2 - Part

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life...

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life... Part 1: Digital Logic and Gates Analog vs Digital waveforms An analog signal assumes a continuous range of values: v(t) ANALOG A digital signal assumes discrete (isolated, separate) values Usually there

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Boolean Representations

Introduction to Digital Logic Missouri S&T University CPE 2210 Boolean Representations Introduction to Digital Logic Missouri S&T University CPE 2210 Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology cetinkayae@mst.edu

More information

Chapter 7 Logic Circuits

Chapter 7 Logic Circuits Chapter 7 Logic Circuits Goal. Advantages of digital technology compared to analog technology. 2. Terminology of Digital Circuits. 3. Convert Numbers between Decimal, Binary and Other forms. 5. Binary

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 2.1 Introduction We will use variables like x or y to represent inputs and outputs (I/O) of a switching circuit. Since most switching circuits are 2 state devices (having only 2

More information

Binary Logic and Gates

Binary Logic and Gates 1 COE 202- Digital Logic Binary Logic and Gates Dr. Abdulaziz Y. Barnawi COE Department KFUPM 2 Outline Introduction Boolean Algebra Elements of Boolean Algebra (Binary Logic) Logic Operations & Logic

More information

EXPERIMENT #4: SIMPLIFICATION OF BOOLEAN FUNCTIONS

EXPERIMENT #4: SIMPLIFICATION OF BOOLEAN FUNCTIONS EXPERIMENT #4: SIMPLIFICATION OF BOOLEAN FUNCTIONS OBJECTIVES: Simplify Boolean functions using K-map method Obtain Boolean expressions from timing diagrams Design and implement logic circuits Equipment

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

WEEK 2.1 BOOLEAN ALGEBRA

WEEK 2.1 BOOLEAN ALGEBRA WEEK 2.1 BOOLEAN ALGEBRA 1 Boolean Algebra Boolean algebra was introduced in 1854 by George Boole and in 1938 was shown by C. E. Shannon to be useful for manipulating Boolean logic functions. The postulates

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year معالجات دقيقة المرحلة الرابعة ھندسة الليزر والبصريات االلكترونية Lecture 3 & 4 Boolean Algebra and Logic Gates

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA 1 Learning Objectives Understand the basic operations and laws of Boolean algebra. Relate these operations and laws to circuits composed of AND gates, OR gates, INVERTERS

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

EEE130 Digital Electronics I Lecture #4

EEE130 Digital Electronics I Lecture #4 EEE130 Digital Electronics I Lecture #4 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi Topics to be discussed 4-1 Boolean Operations and Expressions 4-2 Laws and Rules of Boolean

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology

More information

Optimizations and Tradeoffs. Combinational Logic Optimization

Optimizations and Tradeoffs. Combinational Logic Optimization Optimizations and Tradeoffs Combinational Logic Optimization Optimization & Tradeoffs Up to this point, we haven t really considered how to optimize our designs. Optimization is the process of transforming

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

Lecture 5. Karnaugh-Map

Lecture 5. Karnaugh-Map Lecture 5 - Lecture 5 Karnaugh-Map Lecture 5-2 Karnaugh-Map Set Logic Venn Diagram K-map Lecture 5-3 K-Map for 2 Variables Lecture 5-4 K-Map for 3 Variables C C C Lecture 5-5 Logic Expression, Truth Table,

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active

More information

CHAPTER 3 BOOLEAN ALGEBRA

CHAPTER 3 BOOLEAN ALGEBRA CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus

More information

Boolean Algebra. Examples: (B=set of all propositions, or, and, not, T, F) (B=2 A, U,, c, Φ,A)

Boolean Algebra. Examples: (B=set of all propositions, or, and, not, T, F) (B=2 A, U,, c, Φ,A) Boolean Algebra Definition: A Boolean Algebra is a math construct (B,+,.,, 0,1) where B is a non-empty set, + and. are binary operations in B, is a unary operation in B, 0 and 1 are special elements of

More information