Machine Learning - MT Clustering

Size: px
Start display at page:

Download "Machine Learning - MT Clustering"

Transcription

1 Machine Learning - MT Clustering Varun Kanade University of Oxford November 28, 2016

2 Announcements No new practical this week All practicals must be signed off in sessions this week Firm Deadline: Reports handed in at CS reception by Friday noon Revision Class for M.Sc. + D.Phil. Thu Week 9 (2pm & 3pm) Work through ML HT2016 Exam (Problem 3 is optional) 1

3 Outline This week, we will study some approaches to clustering Defining an objective function for clustering k-means formulation for clustering Multidimensional Scaling Hierarchical clustering Spectral clustering 2

4 England pushed towards Test defeat by India France election: Socialists scramble to avoid split after Fillon win Giants Add to the Winless Browns Misery Strictly Come Dancing: Ed Balls leaves programme Trump Claims, With No Evidence, That Millions of People Voted Illegally Vive La Binoche, the reigning queen of French cinema 3

5 Sports Politics Sports Film&TV Politics Film&TV England pushed towards Test defeat by India France election: Socialists scramble to avoid split after Fillon win Giants Add to the Winless Browns Misery Strictly Come Dancing: Ed Balls leaves programme Trump Claims, With No Evidence, That Millions of People Voted Illegally Vive La Binoche, the reigning queen of French cinema 3

6 England France USA England USA France England pushed towards Test defeat by India France election: Socialists scramble to avoid split after Fillon win Giants Add to the Winless Browns Misery Strictly Come Dancing: Ed Balls leaves programme Trump Claims, With No Evidence, That Millions of People Voted Illegally Vive La Binoche, the reigning queen of French cinema 3

7 Clustering Often data can be grouped together into subsets that are coherent. However, this grouping may be subjective. It is hard to define a general framework. Two types of clustering algorithms 1. Feature-based - Points are represented as vectors in R D 2. (Dis)similarity-based - Only know pairwise (dis)similarities Two types of clustering methods 1. Flat - Partition the data into k clusters 2. Hierarchical - Organise data as clusters, clusters of clusters, and so on 4

8 Defining Dissimilarity Weighted dissimilarity between (real-valued) attributes D d(x, x ) = f w id i(x i, x i) i=1 In the simplest setting w i = 1 and d i(x i, x i) = (x i x i) 2 and f(z) = z, which corresponds to the squared Euclidean distance Weights allow us to emphasise features differently If features are ordinal or categorical then define distance suitably Standardisation (mean 0, variance 1) may or may not help 5

9 Helpful Standardisation 6

10 Unhelpful Standardisation 7

11 Partition Based Clustering Want to partition the data into subsets C 1,..., C k, where k is fixed in advance Define quality of a partition by W (C) = 1 2 k j=1 If we use d(x, x ) = x x 2, then where µ j = 1 C j i C j x i W (C) = 1 C j k j=1 i,i C j d(x i, x i ) i C j x i µ j 2 The objective is minimising the sum of squares of distances to the mean within each cluster 8

12 Outline Clustering Objective k-means Formulation of Clustering Multidimensional Scaling Hierarchical Clustering Spectral Clustering

13 Partition Based Clustering : k-means Objective Minimise jointly over partitions C 1,..., C k and µ 1,..., µ k W (C) = k j=1 i C j x i µ j 2 This problem is NP-hard even for k = 2 for points in R D If we fix µ 1,..., µ j, finding a partition (C j) k j=1 that minimises W is easy C j = {i x i µ j = min x i µ j } j If we fix the clusters C 1,..., C k minimising W with respect to (µ j ) k j=1 is easy µ j = 1 x i C j i C j Iteratively run these two steps - assignment and update 9

14 10

15 10

16 10

17 10

18 10

19 Ground Truth Clusters k-means Clusters (k = 3) 11

20 The k-means Algorithm 1. Intialise means µ 1,..., µ k randomly 2. Repeat until convergence: a. Find assignments of data to clusters represented by the mean that is closest to obtain, C 1,..., C k : C j = {i j = argmin j x i µ j 2 } b. Update means using the current cluster assignments: µ j = 1 x i C j i C j Note 1: Ties can be broken arbitrarily Note 2: Choosing k random datapoints to be the initial k-means is a good idea 12

21 The k-means Algorithm Does the algorithm always converge? Yes, because the W function decreases every time a new partition is used; there are only finitely many partitions W (C) = k j=1 i C j x i µ j 2 Convergence may be very slow in the worst-case, but typically fast on real-world instances Convergence is probably to a local minimum. Run multiple times with random initialisation. Can use other criteria: k-medoids, k-centres, etc. Selecting the right k is not easy: plot W against k and identify a "kink" 13

22 Ground Truth Clusters k-means Clusters (k = 4) 14

23 Choosing the number of clusters k 0.25 MSE on test vs K for K means As in the case of PCA, larger k will give better value of the objective Choose suitable k by identifying a kink or elbow in the curve (Source: Kevin Murphy, Chap 11) 15

24 Outline Clustering Objective k-means Formulation of Clustering Multidimensional Scaling Hierarchical Clustering Spectral Clustering

25 Multidimensional Scaling (MDS) In certain cases, it may be easier to define (dis)similarity between objects than embed them in Euclidean space Algorithms such as k-means require points to be in Euclidean space Ideal Setting: Suppose for some N points in R D we are given all pairwise Euclidean distances in a matrix D Can we reconstruct x 1,..., x N, i.e., all of X? 16

26 Multidimensional Scaling Distances are preserved under translation, rotation, reflection, etc. We cannot recover X exactly; we can aim to determine X up to these transformations If D ij is the distance between points x i and x j, then D 2 ij = x i x j 2 = x T i x i 2x T i x j + x T j x j = M ii 2M ij + M jj Here M = XX T is the N N matrix of dot products Exercise: Show that assuming i xi = 0, M can be recovered from D 17

27 Multidimensional Scaling Consider the (full) SVD: X = UΣV T We can write M as M = XX T = UΣΣ T U T Starting from M, we can reconstruct X using the eigendecomposition of M M = UΛU T Because, M is symmetric and positive semi-definite, U T = U 1 and all entries of (diagonal matrix) Λ are non-negative Let X = UΛ 1/2 If we are satisfied with approximate reconstruction, we can use truncated eigendecomposition 18

28 Multidimensional Scaling: Additional Comments In general if you define (dis)similarities on objects such as text documents, genetic sequences, etc., we cannot be sure that the generated similarity matrix M will be positive semi-definite or that the dissimilarity matrix D is a valid squared Euclidean distance If such cases, we cannot always find a Euclidean embeddding that recovers the (dis)similarities exactly Minimize stress function: Find z 1,..., z N that minimizes S(Z) = i j (D ij z i z j ) 2 Several other types of stress functions can be used 19

29 Multidimensional Scaling: Summary In certain applications, it may be easier to define pairwise similarities or distances, rather than construct a Euclidean embedding of discrete objects, e.g., genetic data, text data, etc. Many machine learning algorithms require (or are more naturally expressed with) data in some Euclidean space Multidimensional Scaling gives a way to find an embedding of the data in Euclidean space that (approximately) respects the original distance/similarity values 20

30 Outline Clustering Objective k-means Formulation of Clustering Multidimensional Scaling Hierarchical Clustering Spectral Clustering

31 Hierarchical Clustering Hierarchical structured data exists all around us Measurements of different species and individuals within species Top-level and low-level categories in news articles Country, county, town level data Two Algorithmic Strategies for Clustering Agglomerative: Bottom-up, clusters formed by merging smaller clusters Divisive: Top-down, clusters formed by splitting larger clusters Visualise this as a dendogram or tree 21

32 Measuring Dissimilarity at Cluster Level To find hierarchical clusters we need to define dissimilarity at cluster level, not just at datapoints Suppose we have dissimilarity at datapoint level, e.g., d(x, x ) = x x Different ways to define dissimilarity at cluster level, say C and C Single Linkage Complete Linkage D(C, C ) = D(C, C ) = min d(x, x ) x C,x C max d(x, x ) x C,x C Average Linkage D(C, C ) = 1 C C x C,x C d(x, x ) 22

33 Measuring Dissimilarity at Cluster Level Single Linkage D(C, C ) = min d(x, x ) x C,x C Complete Linkage D(C, C ) = max d(x, x ) x C,x C Average Linkage D(C, C ) = 1 C C x C,x C d(x, x ) 23

34 Linkage-based Clustering Algorithm 1. Initialise clusters as singletons C i = {i} 2. Initialise clusters available for merging S = {1,..., N} 3. Repeat a. Pick 2 most similar clusters, (j, k) = argmin D(j, k) j,k S b. Let C l = C j C k c. If C l = {1,..., N}, break; d. Set S = (S \ {j, k}) {l} e. Update D(i, l) for all i S (using desired linkage property) 24

35 Hierarchical Clustering: Dendogram Outputs of hierarchical clustering algorithms are typically represented using dendograms A dendogram is a binary tree, representing clusters as they were merged The height of a node represents dissimilarity Cutting the dendogram at some level gives a partition of data 25

36 Outline Clustering Objective k-means Formulation of Clustering Multidimensional Scaling Hierarchical Clustering Spectral Clustering

37 Spectral Clustering 26

38 Spectral Clustering: Limitations of k-means 27

39 Limitations of k-means k-means will typically form clusters that are spherical, elliptical, convex Kernel PCA followed by k-means can result in better clusters Spectral clustering is a (related) alternative that often works better 28

40 Spectral Clustering Construct a graph from data; one node for every point in dataset Use similarity measure, e.g., s i,j = exp( x i x j 2 /σ) Construct mutual K-nearest neighbour graph, i.e., (i, j) is an edge if either i is among the K nearest neighbours of j or vice versa The weight of edge (i, j), if it exists is s i,j 29

41 Spectral Clustering 30

42 Spectral Clustering Use graph partitioning algorithms Mincut can give bad cuts (only one node on one side of the cut) Multi-way cuts, balanced cuts, are typically NP-hard to compute Relaxations of these problems give eigenvectors of Laplacian W is the weighted adjacency matrix D is (diagonal) degree matrix: D ii = j Wij Laplacian L = D W Normalised Laplacian: L = I D 1 W 31

43 Spectral Clustering: Simple Example Suppose all edge weights are 1 (0 for missing edges) The weighted adjacency matrix, the degree matrix and the Laplacian are given by W = D = L = D W =

44 Spectral Clustering: Simple Example Let us consider some eigenvectors of L L = D W = Suppose all edge weights are 1 (0 for missing edges) v 1 = [1, 1, 1, 1, 1, 1] T is an eigenvector with eigenvalue 0 v 2 = [1, 1, 1, 1, 1, 1] T is also an eigenvector with eigenvalue 0 α 1v 1 + α 2v 2 for any α 1, α 2 is also an eigenvector with eigenvalue 0 We can use the matrix [v 1v 2] as the N 2 feature matrix and perform k-means 33

45 Spectral Clustering: Simple Example Suppose all edge weights are 1 (0 for missing edges) 34

46 Spectral Clustering: Simple Example Suppose all edge weights are 1 (0 for missing edges) Let us consider some eigenvectors of L L = D W = When the weights are slightly perturbed, v 1 = [1,..., 1] T is still an eigenvector with eigenvalue 1 We can t compute the second eigenvector v 2 by hand Nevertheless, we expect that the eigenspace corresponding to similar eigenvalues is relatively stable We can still use the matrix [v 1v 2] as the N 2 feature matrix and perform k-means 35

47 Spectral Clustering: Simple Example Suppose all edge weights are 1 (0 for missing edges) 36

48 Spectral Clustering Algorithm Input: Weighted graph with weighted adjacency matrix W 1. Construct Laplacian L = D W 2. Find v 1 = 1, v 2,..., v l+1 the k-eigenvectors 3. Construct the N l feature matrix V l = [v 2,, v l ] 4. Apply clustering algorithm using V l as features, e.g., k-means Note: If the degrees of nodes are not balanced, using the normalised Laplacian, L = I D 1 W may be a better idea 37

49 Spectral Clustering 38

50 Summary: Clustering Clustering is grouping together similar data in a larger collection of heterogeneous data Definition of good clusters often user-dependent Clustering algorithms in feature space, e.g., k-means Clustering algorithms that only use (dis)similarities: k-medoids, hierarchical clustering Spectral clustering when clusters may be non-convex 39

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Clustering. Stephen Scott. CSCE 478/878 Lecture 8: Clustering. Stephen Scott. Introduction. Outline. Clustering.

Clustering. Stephen Scott. CSCE 478/878 Lecture 8: Clustering. Stephen Scott. Introduction. Outline. Clustering. 1 / 19 sscott@cse.unl.edu x1 If no label information is available, can still perform unsupervised learning Looking for structural information about instance space instead of label prediction function Approaches:

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Clusters. Unsupervised Learning. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Clusters. Unsupervised Learning. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Clusters Unsupervised Learning Luc Anselin http://spatial.uchicago.edu 1 curse of dimensionality principal components multidimensional scaling classical clustering methods 2 Curse of Dimensionality 3 Curse

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Machine Learning - MT Classification: Generative Models

Machine Learning - MT Classification: Generative Models Machine Learning - MT 2016 7. Classification: Generative Models Varun Kanade University of Oxford October 31, 2016 Announcements Practical 1 Submission Try to get signed off during session itself Otherwise,

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Unsupervised machine learning

Unsupervised machine learning Chapter 9 Unsupervised machine learning Unsupervised machine learning (a.k.a. cluster analysis) is a set of methods to assign objects into clusters under a predefined distance measure when class labels

More information

Preprocessing & dimensionality reduction

Preprocessing & dimensionality reduction Introduction to Data Mining Preprocessing & dimensionality reduction CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Dimensionality reduction Yale - Fall 2016

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Chapter 5-2: Clustering

Chapter 5-2: Clustering Chapter 5-2: Clustering Jilles Vreeken Revision 1, November 20 th typo s fixed: dendrogram Revision 2, December 10 th clarified: we do consider a point x as a member of its own ε-neighborhood 12 Nov 2015

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Dimensionality Reduc1on

Dimensionality Reduc1on Dimensionality Reduc1on contd Aarti Singh Machine Learning 10-601 Nov 10, 2011 Slides Courtesy: Tom Mitchell, Eric Xing, Lawrence Saul 1 Principal Component Analysis (PCA) Principal Components are the

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 2 Nonlinear Manifold Learning Multidimensional Scaling (MDS) Locally Linear Embedding (LLE) Beyond Principal Components Analysis (PCA)

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

Clustering compiled by Alvin Wan from Professor Benjamin Recht s lecture, Samaneh s discussion

Clustering compiled by Alvin Wan from Professor Benjamin Recht s lecture, Samaneh s discussion Clustering compiled by Alvin Wan from Professor Benjamin Recht s lecture, Samaneh s discussion 1 Overview With clustering, we have several key motivations: archetypes (factor analysis) segmentation hierarchy

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Applying cluster analysis to 2011 Census local authority data

Applying cluster analysis to 2011 Census local authority data Applying cluster analysis to 2011 Census local authority data Kitty.Lymperopoulou@manchester.ac.uk SPSS User Group Conference November, 10 2017 Outline Basic ideas of cluster analysis How to choose variables

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

SC4/SM4 Data Mining and Machine Learning Clustering

SC4/SM4 Data Mining and Machine Learning Clustering SC4/SM4 Data Mining and Machine Learning Clustering Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/dmml Department of Statistics,

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Data Exploration and Unsupervised Learning with Clustering

Data Exploration and Unsupervised Learning with Clustering Data Exploration and Unsupervised Learning with Clustering Paul F Rodriguez,PhD San Diego Supercomputer Center Predictive Analytic Center of Excellence Clustering Idea Given a set of data can we find a

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures STIAN NORMANN ANFINSEN ROBERT JENSSEN TORBJØRN ELTOFT COMPUTATIONAL EARTH OBSERVATION AND MACHINE LEARNING LABORATORY

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

Spectral Feature Vectors for Graph Clustering

Spectral Feature Vectors for Graph Clustering Spectral Feature Vectors for Graph Clustering Bin Luo,, Richard C. Wilson,andEdwinR.Hancock Department of Computer Science, University of York York YO DD, UK Anhui University, P.R. China {luo,wilson,erh}@cs.york.ac.uk

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Spectral Clustering. Zitao Liu

Spectral Clustering. Zitao Liu Spectral Clustering Zitao Liu Agenda Brief Clustering Review Similarity Graph Graph Laplacian Spectral Clustering Algorithm Graph Cut Point of View Random Walk Point of View Perturbation Theory Point of

More information

Unsupervised Learning Basics

Unsupervised Learning Basics SC4/SM8 Advanced Topics in Statistical Machine Learning Unsupervised Learning Basics Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 1 Introduction, researchy course, latest papers Going beyond simple machine learning Perception, strange spaces, images, time, behavior

More information

Overview of clustering analysis. Yuehua Cui

Overview of clustering analysis. Yuehua Cui Overview of clustering analysis Yuehua Cui Email: cuiy@msu.edu http://www.stt.msu.edu/~cui A data set with clear cluster structure How would you design an algorithm for finding the three clusters in this

More information

Multivariate Statistics: Hierarchical and k-means cluster analysis

Multivariate Statistics: Hierarchical and k-means cluster analysis Multivariate Statistics: Hierarchical and k-means cluster analysis Steffen Unkel Department of Medical Statistics University Medical Center Goettingen, Germany Summer term 217 1/43 What is a cluster? Proximity

More information

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction A presentation by Evan Ettinger on a Paper by Vin de Silva and Joshua B. Tenenbaum May 12, 2005 Outline Introduction The

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Spectral Clustering. by HU Pili. June 16, 2013

Spectral Clustering. by HU Pili. June 16, 2013 Spectral Clustering by HU Pili June 16, 2013 Outline Clustering Problem Spectral Clustering Demo Preliminaries Clustering: K-means Algorithm Dimensionality Reduction: PCA, KPCA. Spectral Clustering Framework

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Fundamentals of Matrices

Fundamentals of Matrices Maschinelles Lernen II Fundamentals of Matrices Christoph Sawade/Niels Landwehr/Blaine Nelson Tobias Scheffer Matrix Examples Recap: Data Linear Model: f i x = w i T x Let X = x x n be the data matrix

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

7 Principal Component Analysis

7 Principal Component Analysis 7 Principal Component Analysis This topic will build a series of techniques to deal with high-dimensional data. Unlike regression problems, our goal is not to predict a value (the y-coordinate), it is

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Module Master Recherche Apprentissage et Fouille

Module Master Recherche Apprentissage et Fouille Module Master Recherche Apprentissage et Fouille Michele Sebag Balazs Kegl Antoine Cornuéjols http://tao.lri.fr 19 novembre 2008 Unsupervised Learning Clustering Data Streaming Application: Clustering

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Salvador Dalí, Galatea of the Spheres CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy and Lisa Zhang Some slides from Derek Hoiem and Alysha

More information

Spectral Generative Models for Graphs

Spectral Generative Models for Graphs Spectral Generative Models for Graphs David White and Richard C. Wilson Department of Computer Science University of York Heslington, York, UK wilson@cs.york.ac.uk Abstract Generative models are well known

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

Dimensionality reduction

Dimensionality reduction Dimensionality Reduction PCA continued Machine Learning CSE446 Carlos Guestrin University of Washington May 22, 2013 Carlos Guestrin 2005-2013 1 Dimensionality reduction n Input data may have thousands

More information

Dimension Reduc-on. Example: height of iden-cal twins. PCA, SVD, MDS, and clustering [ RI ] Twin 2 (inches away from avg)

Dimension Reduc-on. Example: height of iden-cal twins. PCA, SVD, MDS, and clustering [ RI ] Twin 2 (inches away from avg) Dimension Reduc-on PCA, SVD, MDS, and clustering Example: height of iden-cal twins Twin (inches away from avg) 0 5 0 5 0 5 0 5 0 Twin (inches away from avg) Expression between two ethnic groups Frequency

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 5: Multi-class and preference learning Juho Rousu 11. October, 2017 Juho Rousu 11. October, 2017 1 / 37 Agenda from now on: This week s theme: going

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 12: Graph Clustering Cho-Jui Hsieh UC Davis May 29, 2018 Graph Clustering Given a graph G = (V, E, W ) V : nodes {v 1,, v n } E: edges

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Distance Preservation - Part I

Distance Preservation - Part I October 2, 2007 1 Introduction 2 Scalar product Equivalence with PCA Euclidean distance 3 4 5 Spatial distances Only the coordinates of the points affects the distances. L p norm: a p = p D k=1 a k p Minkowski

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 6: Cluster Analysis Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2017/2018 Master in Mathematical Engineering

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps Analysis of Interest Rate Curves Clustering Using Self-Organising Maps M. Kanevski (1), V. Timonin (1), A. Pozdnoukhov(1), M. Maignan (1,2) (1) Institute of Geomatics and Analysis of Risk (IGAR), University

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE

FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE FINAL EXAM: FALL 2013 CS 6375 INSTRUCTOR: VIBHAV GOGATE You are allowed a two-page cheat sheet. You are also allowed to use a calculator. Answer the questions in the spaces provided on the question sheets.

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

An indicator for the number of clusters using a linear map to simplex structure

An indicator for the number of clusters using a linear map to simplex structure An indicator for the number of clusters using a linear map to simplex structure Marcus Weber, Wasinee Rungsarityotin, and Alexander Schliep Zuse Institute Berlin ZIB Takustraße 7, D-495 Berlin, Germany

More information

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes Week 10 Based in part on slides from textbook, slides of Susan Holmes Part I Linear regression & December 5, 2012 1 / 1 2 / 1 We ve talked mostly about classification, where the outcome categorical. If

More information

Machine Learning. Clustering 1. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Clustering 1. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Clustering 1 Hamid Beigy Sharif University of Technology Fall 1395 1 Some slides are taken from P. Rai slides Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1

More information

Kernel Methods in Machine Learning

Kernel Methods in Machine Learning Kernel Methods in Machine Learning Autumn 2015 Lecture 1: Introduction Juho Rousu ICS-E4030 Kernel Methods in Machine Learning 9. September, 2015 uho Rousu (ICS-E4030 Kernel Methods in Machine Learning)

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information