3 at MAC 1140 TEST 3 NOTES. 5.1 and 5.2. Exponential Functions. Form I: P is the y-intercept. (0, P) When a > 1: a = growth factor = 1 + growth rate

Size: px
Start display at page:

Download "3 at MAC 1140 TEST 3 NOTES. 5.1 and 5.2. Exponential Functions. Form I: P is the y-intercept. (0, P) When a > 1: a = growth factor = 1 + growth rate"

Transcription

1 1 5.1 and 5. Eponenial Funcions Form I: Y Pa, a 1, a > 0 P is he y-inercep. (0, P) When a > 1: a = growh facor = 1 + growh rae The equaion can be wrien as The larger a is, he seeper he graph is. Y P( 1 r) When 0 < a < 1: a = decay facor = 1-decay rae The equaion can be wrien as Y P( 1 r) The closer a is o zero, he seeper he graph. Horizonal Asympoe a y = 0. **This can change wih ransformaions. Domain: All real numbers. Range: (0, ) **This can change wih ransformaions. Eample: Evaluae 3 g( ) a 4 a) = 1 b) Does g() model eponenial growh or decay? Find he rae.

2 To graph eponenial Funcions: Mehod I: Make a able of values. E: Graph y 4 3. Idenify wiher he equaion models eponenial growh or decay. Find he rae.

3 3 Mehod II: Transformaions. Y Pa c d (Form ) Reflecions of Y Pa Y Pa 1 P a Reflec over he y-ais. Y Y Pa Reflec over he -ais. Y Pa 1 P a Reflec over he -ais and he y-ais Horizonal Shifs Verical Shifs Pay aenion o moving he asympoe!

4 4 Eample: Graph h ( ) Eample: Wrie he equaion of he graph below.

5 5 In 5. Y Pa, le base a =.7188 = e. (Form 3) Naural Eponenial Funcion: c Y Pe. Transformaions: Y Pe d. Eample: Graph 1 h( ) e 3. Concep: The concenraion (in milligrams) of drug in he human body as he iniial amoun of 100mg dissipaes over ime (in hours) is graphed below. a) Esimae when half of he drug will be gone. Half Life: The amoun of ime i akes for half a quaniy o decay. b) Esimae when wo half-lives will occur. Doubling Time: The amoun of ime required for a quaniy o double in size.

6 6 Form 4: Y Pa n n Y P () for doubling ime; n = doubling inerval. 1 n n Y P P(.5) P() n for half life; n = half life inerval. Commen: The unis on n and mus mach! Eample: A breed of mouse was inroduced ono a small island wih an iniial populaion of 30 mice. a) Scieniss esimae ha he mouse populaion doubles every year. Find a funcion ha models he number of mice afer years. b) Scieniss esimae ha he mouse populaion halves every hree years. Find a funcion ha models he number of mice afer years.

7 7 Form 5: A( ) P 1 r n n A = fuure value P = principal (presen value) r = ineres rae as a decimal (APR) n = compounding inerval = ime in years Eample: $500 is invesed a an ineres rae of 3.75% per year, compounded quarerly, find he value of he invesmen afer: a) 10 years b) 10 monhs c) 10 days Eample: Find he presen value of $10,000 if ineres is paid a a rae of 9% per year, compounded semiannually, for 3 years.

8 8 Growh Facor/Growh Rae: r Consider A( ) P 1 P( a) P(1 r) n n APR = APY = Eample: Find he APY for $500 invesed earning 3.75% ineres per year, compounded quarerly.

9 9 Form 6: r Y Pe. r < 0, eponenial decay r e = decay facor r > 0, eponenial growh r e = growh facor Eample: A sky diver jumps from a heigh above he ground. The air resisance is proporional o he diver s velociy, and he consan of proporionaliy is 0.. I can be shown ha he downward velociy 0. of he sky diver a ime is V( ) 80(1 e ), where is in seconds and V() is in fee per second. a) Find he iniial velociy. b) Graph he velociy, and use his o find he erminal velociy.

10 Eponenial Form Log Form y a log a y Common log: Base y log10 y Naural log: Base e y e ln e y Cancellaion Properies 1. log a a e) log a a ln e e) lne. log a a e) ln e 3. ln(1)=0 The -inercep is (1, 0) unless here are ransformaions. log (1) 0 a Eample: Wrie log in eponenial form. Eample: Wrie in log form.

11 11 Eample: Evaluae each saemen. a) log9 81 b) 1 ln e Eample: Find. a) log 16 4 b) log 5 0.5

12 1 Poin (a, b) on Inverses Y a becomes (b, a) on y log a. Y log. Eample: Skech Y 3. Use his o graph 3

13 13 Reflecions Domain of f() = log ( ) b g consiss of all -values such ha g() > 0. Eample: Find he domain of Y 4 log ( 8 4 ).

14 14 Eample: Le f() = log5 and g() =. Find he domain of ( f g)( ).

15 15 Transformaions of Y log b( a c) d a > 1 epands he graph 0< a < 1 conracs he graph (, y) -> (, ay) Visual: (-c) shifs he graph righ on he -ais. (+c) shifs he graph lef on he -ais. (,y) -> ( c, y) +d shifs he graph up on he y-ais. -d shifs he graph down on he y-ais. (,y) -> (, y d) Eample: Graph Y log 5( 1) 1.

16 Change of base formula log b log log a a b To change from base b o base 10: log log b log b To change from base b o base e: ln log b ln b Use his on he calculaor! Eample: Evaluae log 4 15 on he calculaor.

17 17 Rules of Logs: 1. log b( AB) log b( A) log b( B) A. log b( ) log b( A) log b( B) B p 3. log ( A ) p log ( A ) b b Eample: Epand 10 log ( 1) Eample: Combine log( ) [log log( 6) ]. 3

18 Mehods o solve Equaions Type I: Variable in a log 1. Conrac he log. Rewrie he log in erms of eponens 3. Simplify and solve for he variable. Eample: Solve he equaion log ( ). Eample: Find he inverse of f() = log 5 ( 1). Type II: Variable in one eponen. 1. Isolae he base and eponen on one side of he equaion. Take he log of boh sides of he equaion. 3. Simplify and solve for he variable. Eample: Solve each equaion. a) e b) e 4 4e 1 0

19 19 Eample: Find he inverse of g ( ). Eample: Find he ime required for an invesmen of $5,000 o grow o $8,000 a an ineres rae of 7.5%, compounded quarerly. Type III: Two of he same bases, each wih an eponen. 1. Rewrie he equaion in he form. Se M = N 3. Solve for he variable. b M b N Eample: Solve he equaion Type IV: Two differen bases, each wih an eponen. 5 1 Eample: Solve he equaion 7.

20 0 Type V: One variable is normal and he oher variable is conained in a log or eponen. 1. Se he equaion = 0.. Solve graphically. Eample: Solve each equaion. a) 1 3 b) log( 1)

21 1 5.6 Recall Form 6: r Y Pe. r < 0, eponenial decay r e = decay facor r > 0, eponenial growh r e = growh facor We re going o sar applying his o word problems, yeah!! ;> Eample: The populaion of a cerain species of fish has growh rae of 1.% per year. I is esimaed ha he fish populaion in 000 was 1 million. a) Wrie an equaion using he eponenial model b) Esimae he populaion in 005. c) In wha year will he populaion reach 15 million? P ) r ( Pe, where is years afer 000. Commen: You could have been presened wih he same siuaion as in he above eample, bu given a graphical descripion insead of a verbal descripion.

22 Form 7: Eponenial growh/decay model r Y Pe ; r ln n Eample: The half life of cesium-137 is 30 years. Suppose we have a 10gram sample. a) Model he daa using m ) r ( Pe. b) How long will i ake for grams of cesium-137 o remain?

23 3 Eample: If 50 mg of radioacive elemen decays o 00 mg in 48 hours, find he half-life. Eample: Afer 3 days, a sample of radon- decayed o 58% of is original amoun. a) Find he half-life. b) How long does i ake o reach % of he original amoun?

24 4.1 and. Types of Symmery 1. X-Ais Symmery: Replace y by (-y).. Y-Ais Symmery: Replace by (-). 3. Origin Symmery: Replace (, y) by (-, -y). Eample: Deermine he ype of symmery shown by he equaion, if any. Y

25 5 Sandard Form of a Circle: ( r h) ( y k). Cener a (h, k). Radius r. Eample: Find he cener, he radius, and graph y y. Eample: Wrie he equaion of a circle wih a cener a (-1, 5) and passing hrough he poin (-4, -6). Eample: Wrie he equaion of a circle when he endpoins P(-1, 1) and Q(5, 9) are on he diameer of he circle.

26 6 Eample: Skech he region bound by he se { (, y) 1 y 9} Eample: Find he area of he region ha lies ouside he circle y 4y 1 0. y 4 bu inside he circle

27 7 1. Visual: Two Scenarios:

28 8 Eample: Find he verices, he foci, he lengh of he minor ais, and he lengh of he major ais. Graph on he calculaor and by hand. 4 5y 100 Eample: Wrie he equaion for he scenario below: Foci (0, 3) and Verices (0, 5)

29 9 Commen: In he equaion 1, le a = b: a y b Eccenriciy (e) Measures he srech of he ellipse. e c a measure o he focus measure o he vere 0 < e < 1 e 0, e 1, Eample: Wrie he equaion of an ellipse when he eccenriciy is he lengh of he major ais is 4. 3 he foci are on he y-ais, and

30 Think of he ellipse wih fied poins. Wha if he second poin could slide along a fied line? Pick a poin P such ha Parabola Se of all poins in a plane equidisan from a fied poin F (Focus) and a fied line l (direcri) ha also lies in he plane.

31 31 Sandard Form of a Parabola wih a: I. Verical Ais 4 py p = disance from he focus o he vere p > 0, CCU p < 0, CCD Small p indicaes ha he vere is close o he focus and we ge a parabola. Small p indicaes ha he vere is far from he focus and we ge a parabola.

32 3 Sandard Form of a Parabola wih a: I. Horizonal Ais y 4 p or on calculaor: Laus recum: Line running hrough he focus wih endpoins on he parabola, perpendicular o he ais. Widh of he parabola = focal diameer = magniude of he laus recum = 4p Eample: Find he focus, direcri, and focal diameer. Graph by hand and on he calculaor. a) y b) 7y 0

33 33 Eample: Wrie he equaion of he parabola given: a) Vere a he origin and direcri y = 6. b) Focal diameer = 8 and focus on he negaive y-ais. c) Eample: In a suspension bridge he shape of he suspension cables is parabolic. The bridge has owers 600 meers apar and he lowes poin of he suspension cables is 150 meers below he op of he owers. Find he equaion of he parabolic par of he cable. Eample: A reflecor for a saellie dish is parabolic in cross secion, wih receiver a he focus F. The reflecor is 1 foo deep and 0 fee wide from rim o rim. How far is he receiver from he vere of he parabolic reflecor?

34 Concep: Hyperbola wih a I. Horizonal Transverse Ais a: Disance from he cener o he vere. b: Disance perpendicular o he ransverse ais. c: disance from he cener o he focus. c a b.

35 35 Seps o graph: 1. Draw he reference recangle.. Draw he asympoes. 3. The hyperbola hugs he asympoes and passes hrough he verices. General Equaion: ransverse ais conjugae ais a b 1 Horizonal Transverse Ais: a y b 1 II. Verical Transverse Ais

36 36 Eample: Graph each equaion. y a) b) 9 16 y 1 Eample: Wrie an equaion given he informaion. a) verices ( 0, 6) asympoe a y 1 3 b) Foci a ( 0, 1) lengh of he ransverse ais = 1

37 Shifed Conics -h moves he graph righ on he -ais +h moves he graph lef on he -ais y k moves he graph up on he y-ais y+k moves he graph down on he y-ais. Circle ( h) ( y k) r cener a (h, k) Ellipse ( h) ( y k) a b 1 cener a (h, k) foci ( h c, k ) verices ( h a, k ) ( 3) Eample: Graph ( y 3) Label he cener, foci, and verices. Sae he lengh of he major and minor aes.

38 38 Parabola ( h) 4 p( y k ) ( y k) 4 p( h ) Vere (h, k) Vere (h, k) focus (h+p, k) focus (h, k+p) direcri y = k p direcri = h p Eample: Graph ( y 5) 6 1. Sae he vere, focus, and direcri.

39 39 Hyperbola ( h) ( y k) a b 1 ( y k) ( h) a b 1 Cener (h, k) Cener (h, k) Verices (h a, k) Verices (h, k a) foci (h c, k) foci (h, k c) asympoes ( y k) b a ( h) asympoes ( y k) ( a b h) ( y 1) Eample: Graph ( 3) 1. 5 Sae he cener, foci, verices, and he equaion of he asympoes.

40 40 Eample: Wrie an equaion for he graph below.

41 41 Shifed Conics A Cy D Ey F 0, A and C are no boh zero. Circle: A = C Ellipse: A and C have he same sign. Hyperbola: A and C have opposie signs. Commen: Degenerae conics can resul. Degenerae conics are lines, inersecing lines, and poins. I is also possible ha he conic does no eis. Eample: Complee he square and deermine wheher he equaion represens a circle, ellipse, hyperbola, parabola, or degenerae conic. a) y b) y y 1 c) 16 4( y )

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

MATH ANALYSIS HONORS UNIT 6 EXPONENTIAL FUNCTIONS TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /19 10/22 10/23 10/24 10/25 10/26 10/29 10/30

MATH ANALYSIS HONORS UNIT 6 EXPONENTIAL FUNCTIONS TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /19 10/22 10/23 10/24 10/25 10/26 10/29 10/30 NAME DATE PERIOD MATH ANALYSIS HONORS UNIT 6 EXPONENTIAL FUNCTIONS DATE TOPIC ASSIGNMENT 10 0 10/19 10/ 10/ 10/4 10/5 10/6 10/9 10/0 10/1 11/1 11/ TOTAL Mah Analysis Honors Workshee 1 Eponenial Funcions

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

Exponential and Logarithmic Functions -- ANSWERS -- Logarithms Practice Diploma ANSWERS 1

Exponential and Logarithmic Functions -- ANSWERS -- Logarithms Practice Diploma ANSWERS 1 Eponenial and Logarihmic Funcions -- ANSWERS -- Logarihms racice Diploma ANSWERS www.puremah.com Logarihms Diploma Syle racice Eam Answers. C. D 9. A 7. C. A. C. B 8. D. D. C NR. 8 9. C 4. C NR. NR 6.

More information

6. Solve by applying the quadratic formula.

6. Solve by applying the quadratic formula. Dae: Chaper 7 Prerequisie Skills BLM 7.. Apply he Eponen Laws. Simplify. Idenify he eponen law ha you used. a) ( c) ( c) ( c) ( y)( y ) c) ( m)( n ). Simplify. Idenify he eponen law ha you used. 8 w a)

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

Logarithms Practice Exam - ANSWERS

Logarithms Practice Exam - ANSWERS Logarihms racice Eam - ANSWERS Answers. C. D 9. A 9. D. A. C. B. B. D. C. B. B. C NR.. C. B. B. B. B 6. D. C NR. 9. NR. NR... C 7. B. C. B. C 6. C 6. C NR.. 7. B 7. D 9. A. D. C Each muliple choice & numeric

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

Note: For all questions, answer (E) NOTA means none of the above answers is correct.

Note: For all questions, answer (E) NOTA means none of the above answers is correct. Thea Logarihms & Eponens 0 ΜΑΘ Naional Convenion Noe: For all quesions, answer means none of he above answers is correc.. The elemen C 4 has a half life of 70 ears. There is grams of C 4 in a paricular

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS Name: Par I Quesions UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS Dae: 1. The epression 1 is equivalen o 1 () () 6. The eponenial funcion y 16 could e rewrien as y () y 4 () y y. The epression

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Section 4.1 Exercises

Section 4.1 Exercises Secion 4.1 Eponenial Funcions 459 Secion 4.1 Eercises For each able below, could he able represen a funcion ha is linear, eponenial, or neiher? 1. 1 2 3 4 f() 70 40 10-20 3. 1 2 3 4 h() 70 49 34.3 24.01

More information

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e 66 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES SLUTIN We use a graphing device o produce he graphs for he cases a,,.5,.,,.5,, and shown in Figure 7. Noice ha all of hese curves (ecep he case a ) have

More information

Math 105 Second Midterm March 16, 2017

Math 105 Second Midterm March 16, 2017 Mah 105 Second Miderm March 16, 2017 UMID: Insrucor: Iniials: Secion: 1. Do no open his exam unil you are old o do so. 2. Do no wrie your name anywhere on his exam. 3. This exam has 9 pages including his

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Funcions Modeling Change: A Preparaion for Calculus, 4h Ediion, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Growing a a Consan Percen Rae Example 2 During he 2000 s, he populaion

More information

10.6 Parametric Equations

10.6 Parametric Equations 0_006.qd /8/05 9:05 AM Page 77 Secion 0.6 77 Parameric Equaions 0.6 Parameric Equaions Wha ou should learn Evaluae ses of parameric equaions for given values of he parameer. Skech curves ha are represened

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 5 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing?

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing? CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH Work he following on noebook paper. Use your calculaor on 4(b) and 4(c) only. 1. Suppose he populaion of bears in a naional park grows according o he logisic

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

MAC1105-College Algebra

MAC1105-College Algebra . Inverse Funcions I. Inroducion MAC5-College Algera Chaper -Inverse, Eponenial & Logarihmic Funcions To refresh our undersnading of "Composiion of a funcion" or "Composie funcion" which refers o he comining

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

APPM 2360 Homework Solutions, Due June 10

APPM 2360 Homework Solutions, Due June 10 2.2.2: Find general soluions for he equaion APPM 2360 Homework Soluions, Due June 10 Soluion: Finding he inegraing facor, dy + 2y = 3e µ) = e 2) = e 2 Muliplying he differenial equaion by he inegraing

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions Mah b. Calculus, Series, and Differenial Equaions. Final Exam Soluions Spring 6. (9 poins) Evaluae he following inegrals. 5x + 7 (a) (x + )(x + ) dx. (b) (c) x arcan x dx x(ln x) dx Soluion. (a) Using

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 59 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18 A Firs ourse on Kineics and Reacion Engineering lass 19 on Uni 18 Par I - hemical Reacions Par II - hemical Reacion Kineics Where We re Going Par III - hemical Reacion Engineering A. Ideal Reacors B. Perfecly

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

A. Using Newton s second law in one dimension, F net. , write down the differential equation that governs the motion of the block.

A. Using Newton s second law in one dimension, F net. , write down the differential equation that governs the motion of the block. Simple SIMPLE harmonic HARMONIC moion MOTION I. Differenial equaion of moion A block is conneced o a spring, one end of which is aached o a wall. (Neglec he mass of he spring, and assume he surface is

More information

F.LE.A.4: Exponential Growth

F.LE.A.4: Exponential Growth Regens Exam Quesions F.LE.A.4: Exponenial Growh www.jmap.org Name: F.LE.A.4: Exponenial Growh 1 A populaion of rabbis doubles every days according o he formula P = 10(2), where P is he populaion of rabbis

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

Answers to 1 Homework

Answers to 1 Homework Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

Morning Time: 1 hour 30 minutes Additional materials (enclosed):

Morning Time: 1 hour 30 minutes Additional materials (enclosed): ADVANCED GCE 78/0 MATHEMATICS (MEI) Differenial Equaions THURSDAY JANUARY 008 Morning Time: hour 30 minues Addiional maerials (enclosed): None Addiional maerials (required): Answer Bookle (8 pages) Graph

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chaper 5 Eponenial and Logarihmic Funcions Chaper 5 Prerequisie Skills Chaper 5 Prerequisie Skills Quesion 1 Page 50 a) b) c) Answers may vary. For eample: The equaion of he inverse is y = log since log

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

6. 6 v ; degree = 7; leading coefficient = 6; 7. The expression has 3 terms; t p no; subtracting x from 3x ( 3x x 2x)

6. 6 v ; degree = 7; leading coefficient = 6; 7. The expression has 3 terms; t p no; subtracting x from 3x ( 3x x 2x) 70. a =, r = 0%, = 0. 7. a = 000, r = 0.%, = 00 7. a =, r = 00%, = 7. ( ) = 0,000 0., where = ears 7. ( ) = + 0.0, where = weeks 7 ( ) =,000,000 0., where = das 7 = 77. = 9 7 = 7 geomeric 0. geomeric arihmeic,

More information

Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0?

Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0? ddiional Eercises for Caper 5 bou Lines, Slopes, and Tangen Lines 39. Find an equaion for e line roug e wo poins (, 7) and (5, ). 4. Wa is e slope-inercep form of e equaion of e line given by 3 + 5y +

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC his documen was generaed a 1:4 PM, 9/1/13 Copyrigh 213 Richard. Woodward 4. End poins and ransversaliy condiions AGEC 637-213 F z d Recall from Lecure 3 ha a ypical opimal conrol problem is o maimize (,,

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

Explore 2 Proving the Vertical Angles Theorem

Explore 2 Proving the Vertical Angles Theorem Explore 2 Proving he Verical Angles Theorem The conjecure from he Explore abou verical angles can be proven so i can be saed as a heorem. The Verical Angles Theorem If wo angles are verical angles, hen

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

copper ring magnetic field

copper ring magnetic field IB PHYSICS: Magneic Fields, lecromagneic Inducion, Alernaing Curren 1. This quesion is abou elecromagneic inducion. In 1831 Michael Faraday demonsraed hree ways of inducing an elecric curren in a ring

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Integration Over Manifolds with Variable Coordinate Density

Integration Over Manifolds with Variable Coordinate Density Inegraion Over Manifolds wih Variable Coordinae Densiy Absrac Chrisopher A. Lafore clafore@gmail.com In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Precalculus An Investigation of Functions

Precalculus An Investigation of Functions Precalculus An Invesigaion of Funcions David Lippman Melonie Rasmussen Ediion.3 This book is also available o read free online a hp://www.openexbooksore.com/precalc/ If you wan a prined copy, buying from

More information

Lesson 3.1 Recursive Sequences

Lesson 3.1 Recursive Sequences Lesson 3.1 Recursive Sequences 1) 1. Evaluae he epression 2(3 for each value of. a. 9 b. 2 c. 1 d. 1 2. Consider he sequence of figures made from riangles. Figure 1 Figure 2 Figure 3 Figure a. Complee

More information

Math 10C: Relations and Functions PRACTICE EXAM

Math 10C: Relations and Functions PRACTICE EXAM Mah C: Relaions and Funcions PRACTICE EXAM. Cailin rides her bike o school every day. The able of values shows her disance from home as ime passes. An equaion ha describes he daa is: ime (minues) disance

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information