Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Size: px
Start display at page:

Download "Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:"

Transcription

1 Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction device, the transistor contains two junctions. This leads to two possibilities: i) arrow indicates direction of current flow ii) B-C, B-E have diode drops. But transistors are NOT equivalent to two back-to-back diodes. (B-C, B-E junctions are also asymmetric, larger drop across B-C junction) Notation: i) V B, V C, V E = voltage at base, collector, emitter w.r.t. ground ii) V BE = voltage at base w.r.t emitter iii)v CE = voltage at collector w.r.t emitter iv)v CC - usually the positive power supply voltage v) V EE - usually the negative power supply voltage If V CE > V BE B-E junction is forward biased therefore current should flow... C-E junction is reversed biased. If C-E formed a normal diode, no current would flow through the collector. The difference is that the base region is very thin and a strong E field exists at the C-B junction which collects any electrons that come nearby. ) Electrons are injected into base from emitter (from the diode equation I E ~I 0 exp qv BE /kt ) 2) e's arriving at the base have two possibilities i) recombine with holes and flow out of the base ii) if an electron drifts near the C-B junction it will be sucked across the junction due to the large E field If I E is large enough (ii) usually dominates. A 'logjam' of electrons looking for holes in the thin base material make the electrons likely to jump into the collector. In this case I C ~ I E where

2 Early transistors had ~0.9 today typical transistors have values ~0.99 More convenient notation uses the parameter to distinguish transistors. I C = I B And typical values of range from ~ I C I B is the current gain of the transistor at (DC). A small base current cause a much larger current to flow through the collector/emitter. = note: =00=.99 =50=.98 is a much more sensitive measure of transistor properties Common Emitter Configuration There are 4 variables of interest: V BE, I B,V CE, I C The most useful relationships among these are: Input characterisic V BE = f I B,V CE Output characteristic I C = f 2 I B,V CE So long as V CE >~ 0.6V, V BE and I C depend only weakly on V CE i.e. V BE ~ f ' I B ~fairly constant I C ~ f 2 ' I B 2

3 Three regions of operation ) Active Region V BE ~0.6V V CE >~V BE (I C > 0) defined as: I C /I B is large ~ 00 This mode is used in linear amplifiers 2) Saturation V BE ~0.8V V CE < V BE Still have I C > 0, but is small ~ 0 Transistor is used as a switch in this mode 3) Cutoff V BE <~0.5V therefore I E,I C = 0 Transistor does not conduct Comments: for pnp reverse the above signs and inequalities I C is never < 0 in normal operation (large reverse voltages can cause breakdown and frequently ruin a transistor) Simple model of transistor in active region V CE >V BE (or for pnp type V CE <V BE ) ) 'current gain' picture I C / I B =~00 since I E = I B +I C, I C = I E ~I E 2) Assume simple V-I diode characteristics for B-E junction I E 0 V BE ~0.6V I E =0if V BE 0.6V or for pnp I E 0 V BE ~ 0.6V I E =0if V BE 0.6V 3

4 Emitter follower (aka common collector) Used to buffer a higher output impedance source to drive a lower input impedance load. V L =V S R L R L R S V S if R L R S Black Box emitter follower R in = V S L R in R R L R L R S V S~V S if R in R S and R out R L Constructing an emitter follower V KVL: in V BE =V out V out =V in 0.6V V in V BE I E =V EE The output simply follows the input when the transistor is in the active region. RB, C are optional (they spoil Q of resonant circuits formed by stray L,C in circuit. (greater importance at high frequencies) Emitter follower in cutoff region at cutoff V in < V EE -0.6V The transistor can do no more that shut off current flow, allowing the base to sit at V EE (very large negative biases can cause breakdown and damage to transistor) 4

5 Emitter follower at saturation If V in > V C, then the V CB junction is forward biased I in ~ V in V CC 0.6V V B ~V CC 0.6V V sat CE typically ~0.2V Analysis of input and output impedance of the emitter follower V in I B V BE =V out V in I B V BE I E =V EE nonlinear relationship for I E,V BE I E e qv BE /kt makes it difficult to define impedance by using V/I Instead we use small signal analysis to define the impedances for time varying signals. Express V,I as a time invariant part + a time varying part then define Z = V I = (for AC signals) V V DC V t V DC I I DC I t I DC In the simple transistor model V BE =0 and V EE =V CC =0 (they are power supplies!) therefore for the small signal analysis we can write in b = out in b e =0 Note: we now adopt a notation where lower case letters will generally refer to small signal equivalents in a circuit analysis 5

6 Small signal equivalent analysis of the emitter follower power supplies are replaced by AC shorts to ground Small signal current gain h FE c / b h FE need not equal, but in practice they tend to agree w/in ~ 20% and are both large (>>). We'll generally assume ~h FE Input impedance Z in = in b = out b b then use e = b Z in = (usually << ) This is the input impedance looking into the base note: Z in To find the output impedance, we replace the circuit by its small signal Thevenin equivalent. O.C. thev = out Z thev = O.C. out S.C. out finding the open circuit output: O.C. out = in b = in / Z in = in in finding the short circuit current: S.C. out = S.C. b = in / Z out = O.C. out = S.C. out = R E if ~ note: Z out What is in this case? 6

7 Limitations of the emitter follower Consider a typical application: driving a 50 Ohm terminated coaxial cable. Assume t RC so that we are in the DC blocking regime for the high pass filter. For the transistor to remain in the active region we need I E >0 positive input increases I E, no problems as long as V in < V CC negative input pulses will decrease I E and may cause cutoff KVL: V in V BE I S =V SS V in V BE V cap I L R L =0 assume V BE =0 and the capacitor is a short for our signal frequencies small signal form of KVL: in in s =0 in L R L =0 then using e= s cap e = R L The transistor cutsoff when e = I E D.C. or (equivalently) when in I E D.C. R L Note: The cutoff voltage depends strongly on the load if R L <~ Circuit simulation illustrating cutoff effect 7

8 The problem of reproducing negative pulses can solved by using a pnp transistor In this case a negative pulse increase I E, keeping the transistor active (but a positive pulse can cause it to cutoff in the same way illustrated above) The general solution for bidirectional pulses is to use a complementary follower This simple approach has an unfortunate drawback. It does not work for small signals in 0.6V Large cross over distortion, output only follows input if in 0.6V, otherwise V out = 0 A better design that compensates much of the cross over distortion In this design: D, D 2 keep V BE ~ ±0.6V (the downside is that Z in ~ R/2!) 8

9 Strategy for biasing an emitter follower ) choose quiescent current I Q, where I Q is the current drawn by the largest pulse which would tend to shut off the transistor. I Q max in max in (if is symmetric) in R L R L 2) choose (assuming AC coupled load otherwise load would affect I Q ) V B 0.6V I Q =VEE = V B 0.6V I Q I Q For maximum symmetric voltage swing at output, V B is set to ~midpoint between the two power supplies V B ~ 2 V CCV EE = 2 V CC V EE.2V I Q 3) Choose the appropriate resistor divider to set the base voltage V B ~ 2 V CC V EE for our example R R 2 and V CC V EE R R 2 ~0. I Q this is the current through the divider Solving for R: R V CC V EE I Q Note: ~00 therefore above relation guarantees that I divider ~0 I B so the base voltage is roughly independent of the base current 4) Finally choose the appropriate AC coupling capacitors for the input signal Z in = R R 2 R L R in choose C in, C out by the necessary low frequency signal cutoff C in ~ 3dB R in C out ~ 3dB R L 9

10 Building a simple current source I in = I E~I E I E = V BB 0.6 V EE for negligible I B This circuit is a good constant current source a long as V C > V BB (small rise of I C w/ V BB ) Otherwise, decreases as we approach saturation. Compliance A current source can only provide constant current for a limited range of voltage at the collector. This output voltage range is called the output compliance of the current source. The compliance is set by the requirement that the transistor stay in the active region. A current source such at the one to the right has limited compliance related to : Compliance ~ V CC V sat I E V EE 0

11 Inverting amplifier (aka common emitter amplifier) Assume the transistor is in the active region, then the analysis of this circuit is identical to the emitter follower e = e = in using c ~ e out = c R C = R C in GainG= R C Z in is identical to the emitter follower Z out is different The collector looks like a very large resistance Z out =R C R C cross checking with the Thevenin equivalent O.C. out = R C R in E S.C. out = c = in here we have use the small signal short: This circuit cannot maintain a large gain while driving a low impedance load G RL = R C R L R C The solution to allow driving a heavier load is to add an emitter follower G= R C R L ~ R C

12 Hybrid Parameters Part 2 In our simple analysis of transistor circuits thus far we have assumed the applicability of a simple model V BE ~0.6V,V BE = BE =0 in the active region. These assumptions lead to unphysical results in some cases ) G= R C implies infinite gain of inverting amplifier 2) Z out = 0 implies zero (or at least arbitrarily small) output impedance We can refine the simple model for small signal analysis by making a Taylor expansion of the input and output characteristics that we saw earlier. Using V=IR V BE = f I B,V CE BE = f I B V CE b f V CE I B ce h ie is a resistance h re is unit less =h ie b h re ce h fe is unit less h oe is /resistance I C = f 2 I B,V CE C = f 2 I B V CE b f 2 V CE I B ce =h fe b h oe ce 2

13 The transistor model circuit described by these equations is shown in the figure below: Equivalent circuit for a transistor In practice V BE, I C depend only weakly on V CE, in this limit h re and h eo ~ 0 With this approximation we get be =h ie b c =h fe b this should look somewhat familiar, recalling that h fe ~ The transistor model the simplifies to An alternate and more convenient model commonly used is here r e h ie This is called the T equivalent circuit 3

14 Ebers-Moll Approximation Above we have abandoned simple assumptions V BE ~0.6V,V BE = BE =0 to fully describe a transistor in the active region. More precisely I E and V BE are related by (the diode equation): I E ~I 0 e V /V BE T ~I C where V T kt /q 25 mv at room temperature then I E = I E D.C. V V BE T e =g m BE and BE = e r e where r e = = V T g m I = 25 D.C. in ma at E I room temperature Small signal T equivalent circuit of the transistor looks like: - a current source controlled by b voltage drop across B-E junction depends on current flowing through the device Ebers-Moll illustrated. Logarithmic increase in V BE with increasing I E while in active region. The lower plot zooms in on the effect of I B on the saturation voltage. 4

15 Small signal analysis of the inverting amplifier Assume: R 3 C 2, R R 2 C 2 time intervals of interest i.e. DC blocking (refer to Lab manual pp. 5-6 for a review of methods to establish proper DC biasing) Equivalent circuit (for small signal analysis): in e r e ' =0 Gain: out = c R C Gain= out = R C R C ' in r e r e R 3 if R 3 c ~ e ) Gain < infinity even when R 3 = 0 2) When R 3 = 0, G = R C /r e Since r e =V T / I E =V T / I E DC e the gain will depend on the amplitude of the signal. One can get a well defined G by setting R 3 >> r e for the entire signal range. But then the maximum gain is limited by the R C constraint namely, V CC I DC C R C /2V CC (for max. symmetric voltage swings at output) 5

16 Grounded emitter amplifier consider the following circuit G= R C /r e Z in =R R 2 r e Z out R C We obtain a large gain but pay the cost with: small Z in large Z out But the more serious problem with this design is in the stability of the DC operating point. Consider the effect of temperature variations: At constant I E ~I C V BE = 2.mV / o C (see text) 2 I At constant V C BE I 0T 2 T /30 o C C As a consequence, a G.E. Initially biased so that V C = 2 V cc will saturate (i.e. V C ~0.6V ) when T =8 o C Also V BE necessary to give a specific I C will vary ~ 00mV for different transistors of the same type The above circuit is a lousy design for these reasons! A stable operating point can be obtained by adding an Choose R, R 2 so I E ~V i.e. V BE C E so r e C e f 3dB The DC bias is now stable and the large gain for AC signals is unaffected. But we may experience significant signal distortion due to variations in r e with emitter current. 6

17 Analysis of grounded CE amplifier with a triangle waveform as input. Output distortions are obvious for changing currents in the transistor. The bottom plot shows how the gain of the circuit changes as the input wave form varies G= out R C R C ma. The gain varies a in r e 25/ I E factor of two over the input signal shape from ~ -300 to almost

18 Simple current source I in = I E~I E I E = V BB 0.6 V EE for negligible I B This circuit is a good current source a long as V C > V BB (small rise I C w/ V CE ) Otherwise, decreases as we approach saturation. of A current source such at the one to the right has very limited compliance due to : Compliance ~ V CC V sat I E V EE A current mirror can increase compliance range to within a few 0ths of a volt of the power supply and also improve Z out. A simple current mirror No to limit compliance of output transistor in this design. V 2 BE =V BE I,2 I 0,2 e qv BE /kt,2 (V BE < 0 for pnp transistor in active region) substituting V BE =kt ln I I 0 I 2 =I 2 I /T 2 0 T I 2 0 I 0 I 0 I { T in the expression for I_2 T 2 ln I I } 0 I 2 'mirrors' or is 'programmed by' I 8

19 Comments on the current mirror: i) I =V CC 0.6/ R P (nearly constant in the active region) then 2 ii) if T =T 2 I 2 = I 0 I I (area scaling current is 'mirrored') 0 iii)thermal dependence: if T 2 T I 2 0 Saturation current grows w/ temp, leading to a I 0 net INCREASE in I C with temperature (for fixed V BE ), net DECREASE in V BE with temperature of ~ -2.mV/ o C for fixed I C. That's not obvious from looking at Ebers-Moll/diode equation. Ideally Z out should be ~ infinity for a current source. I =0= V R This is not the case. Use the Early Effect to understand the finite Z out. The Early Effect The Early Effect describes I C dependence on V CE It is parameterized as I C =I 0 e V BE /V T V BC V A (for V CB > 0) ~% effect / volt In the mirror above V BE will break the symmetry due to the Early Effect. Z out =[ r o I C V CE] [ I C V BC 2 remains constant with changes in V CB ] =[ I C V A] is related to the hybrid parameter r o Recall: in our T equivalent model we took h oe ~00 ma,2, but differences in V CE I C V CE goes as h oe ~0 as one of our simplifying assumptions. 9 r o

20 The two following methods can be used to increase Z out for the current source, however the cost is a slight reduction in compliance. ()Emitter resistors (neglecting base currents) V CC I C V BE =V B =I C R P I C I P V CC 0.6V R P To find Z out V BE =V B V CC I T C subs. I C =I 0 e V BE/V V BC V A find changes in V BE so be = be I c r e I C V BE be I C V BC bc V A bc E= R be r e r o bc noting that be = c (V B2 is fixed by Q) = r bc Z out = bc =r o o R E c r e c r e The increase above r o seems plausible since any increase in I C would increase V BE thereby decreasing I C. The emitter resistors work as a negative feedback system to help keep the current stable. But compliance is reduced somewhat by addition of to the output transistor. 20

21 (2) Wilson Mirror Both V CE(2) and V CE(3) are fixed (to fight Early effect) Say I C wants to increase due to an increase in V CE(). This will also increase V BE(2) thus increasing I P thus increasing V BE() thus decreasing I C I C is held stable against Early Effect For this circuit Z out =r 0 R P r e Compliance is reduced somewhat by addition of a second diode drop. 2

22 Differential Amplifier Part 3 i) basis of most op amps and comparators ii) good for sensing low level signals in a noisy environment DC analysis of a basic differential amplifier Assume: I C = I E V BE = 0.6V (operate in active region: I C >0, V CB >=0) To find V out in terms of V,V 2 it is sufficient to find I,I 2 KVL (from base to base 2): V V BE I I 2 V BE V 2 =0 I 2 = V V I T where I T =I I 2 V out =V CC I 2 R C To find I T use KVL from base (base2) to V EE V V BE I I T R T =V EE V 2 V BE I 2 I T R T =V EE V I T = V therefore I V 2 2 V V 2 0.6V V EE V 2.2V 2V 2,= EE 2 2 R T 2 R T differential mode common mode define V Dif =V V 2 V CM = 2 V V 2 so I,2 = V dif 2 V CM 0.6V V EE 2 R T large V Dif = large I 2 small V Dif current suppressed by 2 R T Therefore if << R T, Gain is much larger for differential voltages than for common voltages at the two inputs. 22

23 Small signal analysis of a differential amplifier Assumptions: V DC DC =V 2 I DC DC =I 2 V T r e =r e2 = /2 I T Using KVL from base to base 2 b r e b2 r e 2 =0 use b c and 2 = T 2 = 2 2r e 2 T therefore o = 2 R C = 2 Dif R C 2r e Differential Gain G Dif 2 2 CM R C r e 2 R T Common Mode Gain G CM Common Mode Rejection Ratio: CMRR= G Dif = 2 R T r e G CM 2R e r e r e CMRR is large in a good differential amplifier. R T is often replaced by a current source to give maximum common mode rejection. R T 23

24 The CMMR of the differential amplifier may be significantly improved by adding a current source to the tail. Assuming a perfect current source, we again solve for I,2 as a function of V,2 KVL: V V BE I I 2 V BE2 V 2 =0 use I I 2 =I T and I I S e V BE/V T to write: V V 2 I T 2 I 2 I T V T ln I T I 2 =0 this relates I 2 to V dif for the perfect current source (constant I T ), the output ( I 2 ) only depends on V dif. Consider two limiting cases: i) if I T V T (25 mv at room temperature) then the current reduces to: I 2 = V V I Differential gain is similar to above case. T ii) if =0 then = I T e V V 2 /V T I 2 =I T for small V -V 2 I 2 Amplifier quickly saturates to one of two states I 2 =0 or 24

25 The Miller Effect Consider a high gain CE amplifier. o b and o 0 (Large dv/dt across C BC) b An intrinsic capacitance connects the base to the collector. At high frequencies current can be diverted from the base to the collector via this capacitive coupling. (This current flow is not related to the DC case of forward biasing the BC junction.) The effects of this are two fold: i) Z in looking into the base is reduced at large frequencies ii) The gain is reduced because of the voltage divider effect of R S and Z in Millers Theorem Consider a 3-terminal network: In the equivalent circuit: Z = Z K Z 2 = ZK K K 2 proof: = 2 = Z K Z = Z 2 = 2 = Z 2 / K Z = 2 Z 2 How much current flows through C BC? dv I =C Cap BC =C dt BC b o C CB G b C CB looks like a capacitor that is -G times larger (remember G is negative...) 25

26 Analysis of the Miller effect in an amplifier circuit Assume we have an ideal inverting amplifier (Z in =, Z out =0, Gain = -A) Applying Miller's theorem, we can redraw the circuit as: K = 2 = A Z C = Z C A = = j C j C A C =C A The negative gain effectively increases the input capacitance. Note: we can ignore C 2 in this analysis, because it's tied to the low Z output of the amplifier and thus has no effect on the signal. Next we compute the overall gain of the amplifier circuit which is the product of the attenuation due to the voltage divider (R S C ) and the gain of the ideal amplifier (-A). 2 = A = A s j R S C = s A Gain= j R S C A A A j R S C A j R S C i) In the limit of low source impedance, the gain is simply -A as per the design of the amplifier sub-circuit. ii) For finite source impedance, the device becomes a perfect integrator as the gain approaches infinity. i.e. for in =e j t out j e j t 26

27 Miller Effect in the Grounded CE Amplifier This is more complex that the ideal case above,because of finite input and output impedances. However, we can simplify matters for not-too-large values of the input frequency. Begin by calculating K: (KCL) c = L f (Trans. Eqn.) c e = /r e where: L = 2 / R C f = 2 j C CB Then (KCL) becomes r e = 2 R C 2 j C CB K 2 = R C r e j R C C CB j R C C CB K R C r e K K for R C C CB and r e R C i.e. current flow through C CB is small Z C CB R C =Z out output not loaded Therefore the equivalent circuit can be modeled as below (using C =C CB R C /r e C 2 =C CB ) 27

28 Since the impedance looking into the base of the transistor is r e the input signal sees Z in at the base to be Z C r e Z = in Z C S = r e r Z in R S = e S Z C r e R S S R S r e[ j C R S r e ] R 2 = C from our assumption that r e R C C CB Solving for the circuit's gain G= 2 = R C e[ S R S r j R C r e ] C R r CB S e This has the form of a low pass filter with 3dB = R C r C R r CB S e e Notice that for large R S r e 3dB 2 R R C C C C CB CB then (and above derivations are still valid) This means that the Miller Effect becomes the dominant cause of gain loss at high frequencies. Summary: The Miller Effect arises when the following conditions are present: ) large inverting gain 2) non-negligible output impedance of signal source 3) capacitance between input and output of amplifier circuit 28

29 Designs that avoid the Miller Effect Differential amp w/ one input grounded Cascode connection Input and output have the same phase At base of Q2 Z out =0 (grounded) preventing local Miller effect at Q2 collector resistor for Q is r e2, thus G () ~ - (not large) Z out =0 at the base of Q2 29

30 The Bootstrap Technique On the flipside, the Miller Technique may also be used to raise the input impedance of a circuit. In order to provide a stiff DC bias voltage at the base of the transistor in an emitter follower, we required R R 2 0 for a single supply follower like the one show above. From the small signal equiv. circuit we calculated Z in =R Div R Div where R Div 20 This is much less that what is possible for an emitter follower, namely Z in The circuit below has a much larger input impedance Z in ~. Almost no (A.C.) current flows through because both ends are at nearly the same (A.C.) voltage. R L = R div R' B = R L R' ' B = R L r e K 2 = R L R L r e K = r e R L R e r e R L K K = R L r e (large and negative) ' ' = R L r e and R L ' ' R L therefore Z in r e R L 30

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Chapter 2 - DC Biasing - BJTs

Chapter 2 - DC Biasing - BJTs Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

Junction Bipolar Transistor. Characteristics Models Datasheet

Junction Bipolar Transistor. Characteristics Models Datasheet Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

OPAMPs I: The Ideal Case

OPAMPs I: The Ideal Case I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

Engineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties

Engineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties Engineering 60 Spring 0 Answers to Homework # 4 Biasing and Small Signal Properties.).) The in-band Thevenin equivalent source impedance is the parallel combination of R, R, and R3. ( In-band implies the

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline Lecture 17 The Bipolar Junction Transistor (II) Regimes of Operation Outline Regimes of operation Large-signal equivalent circuit model Output characteristics Reading Assignment: Howe and Sodini; Chapter

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

A two-port network is an electrical network with two separate ports

A two-port network is an electrical network with two separate ports 5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

More information

Switching circuits: basics and switching speed

Switching circuits: basics and switching speed ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V

More information

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller

More information

(Refer Slide Time: 1:41)

(Refer Slide Time: 1:41) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 13 Module no 01 Midband Analysis of CB and CC Amplifiers We are

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Forward-Active Terminal Currents

Forward-Active Terminal Currents Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo olantonio a.a. 2011 12 The D bias point is affected by thermal issue due to the active device parameter variations with temperature I 1 I I 0 I [ma] V R } I 5 } I 4 } I 3 Q 2 } I 2 Q 1 } I

More information

The BJT Differential Amplifier. Basic Circuit. DC Solution

The BJT Differential Amplifier. Basic Circuit. DC Solution c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

More information

13. Bipolar transistors

13. Bipolar transistors Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector

More information

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution . (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

0 t < 0 1 t 1. u(t) =

0 t < 0 1 t 1. u(t) = A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.) 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 35-1 Lecture 35 - Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Current-voltage characteristics of ideal BJT (cont.)

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Bipolar Junction Transistors Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of Precedent Class Explain the Operation of the Zener Diode Explain Applications

More information

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and Self-Heating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi

Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Module No. 07 Differential and Operational Amplifiers Lecture No. 39 Summing, Scaling and Averaging Amplifiers (Refer

More information

CHAPTER 7 - CD COMPANION

CHAPTER 7 - CD COMPANION Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 5a Bipolar Transistor Dep. Region Neutral Base n(0) b B C n b0 P C0 P e0 P C xn 0 xp 0 x n(w) b W B Adib Abrishamifar EE Department IUST Contents Bipolar Transistor

More information

Small-Signal Midfrequency BJT Amplifiers

Small-Signal Midfrequency BJT Amplifiers Small-Signal Midfrequency JT Amplifiers 6.. INTRODUTION For sufficiently small emitter-collector voltage and current excursions about the quiescent point (small signals), the JT is considered linear; it

More information

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through

More information

Chapter 9 Bipolar Junction Transistor

Chapter 9 Bipolar Junction Transistor hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

More information

(e V BC/V T. α F I SE = α R I SC = I S (3)

(e V BC/V T. α F I SE = α R I SC = I S (3) Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

E2.2 Analogue Electronics

E2.2 Analogue Electronics E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

(Refer Slide Time: 03:41)

(Refer Slide Time: 03:41) Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 25 PN Junction (Contd ) This is the 25th lecture of this course

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

L03: pn Junctions, Diodes

L03: pn Junctions, Diodes 8/30/2012 Page 1 of 5 Reference:C:\Users\Bernhard Boser\Documents\Files\Lib\MathCAD\Default\defaults.mcd L03: pn Junctions, Diodes Intrinsic Si Q: What are n, p? Q: Is the Si charged? Q: How could we make

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

Transistors - a primer

Transistors - a primer ransistors - a primer What is a transistor? Solid-state triode - three-terminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday Physics 364, Fall 2012, reading due 2012-09-20. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This

More information

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information