Linear algebra and differential equations (Math 54): Lecture 8

Size: px
Start display at page:

Download "Linear algebra and differential equations (Math 54): Lecture 8"

Transcription

1 Linear algebra and differential equations (Math 54): Lecture 8 Vivek Shende February 11, 2016

2 Hello and welcome to class! Last time We studied the formal properties of determinants, and how to compute them by row reduction. Today We ll see some more formulas involving the determinant minor expansion and Cramer s rule and discuss the interpretation of the determinant as a signed volume.

3 There is a midterm next time The only tools allowed for the midterm are pen or pencil. I will post a practice midterm later today. On the course website, you can also find a link to many midterms and practice midterms from this class in previous semesters. The midterm will be very similar to those, and very similar to the practice midterm.

4 There is a midterm next time I very strongly suggest that you try solving the practice midterms and previous midterms without first looking at the answers. It is very easy to trick yourself about how well you understand things if you just read the solutions.

5 Review: computing determinants by row reduction To compute the determinant of a matrix, row reduce it, and keep track of any row switches or rescalings of rows. At the end, multiply together: the inverses of the row rescaling factors the diagonal entries of the final echelon matrix ( 1) #rowswaps That s the determinant of the original matrix. This method is much much faster than summing all the terms.

6 Example Let s compute the determinant of this matrix First, we row reduce, keeping track of rescalings and row switches

7 Example / So the determinant is ( 1) 2 ( 7) ( ) = 7.

8 Try it yourself! Compute the determinant of this matrix: Row reduce, keeping track of rescalings and row switches:

9 Try it yourself! The determinant is

10 Review: terms in the determinant In the 2x2 case: ] ] c [ a b d c [ a b d +ad bc

11 Review: terms in the determinant In the 3x3 case: a b c d e f g h i a b c d e f g h i a b c d e f g h i +aei +bfg +cdh a b c d e f g h i a b c d e f g h i a b c d e f g h i afh bdi ceg

12 Another perspective a b c d e f g h i a b c d e f g h i a b c d e f g h i +aei afh bdi + bfg +cdh ceg +a e h f i b d g f i +c d g e h no orange-green inversions one orange-green inversions two orange-green inversions

13 Minor expansion For a matrix A, I ll write A i j for the matrix formed by omitting row i and column j. For example, if A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 We have: A = a 11 a 22 a 23 a 32 a 33 a 12 a 21 a 23 a 31 a 33 + a 13 a 21 a 22 a 31 a 32 = a 11 A 1 1 a 12 A a 13 A 1 3

14 Minor expansion More generally, by the same argument, for a square n n matrix A with entry a i,j in row i and column j, for any k in 1,..., n, there is a minor expansion along the k th row A = n ( 1) j+k a kj A k j j=1 and a minor expansion along the k th column A = n ( 1) j+k a jk A j k j=1

15 The sign ( 1) row+column

16 Example Compute by minor expansion along the second row:

17 Example =

18 Example Now we minor-expand each of these 3 3 determinants. We ll use the second row for each (to catch the zero).

19 Example = ( 1) = = = = = = = = 0 ( 1)

20 Example ( 2 5) + (0?) + ( 3 1) + (1 0) = 7 That s the same as we got doing this the other way. Which was easier?

21 Try it yourself! Compute by minor expansion the determinant of the matrix

22 A formula for the inverse A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Adj(A) = A 1 1 A 2 1 A 3 1 A 1 2 A 2 2 A 3 2 A 1 3 A 2 3 A 3 3 A Adj(A) = a 11 A 1 1 a 12 A a 13 A 1 3 a 11 A a 12 A 2 2 a 13 A 2 3 a 11 A 3 1 a 12 A a 13 A 3 3 a 21 A 1 1 a 22 A a 23 A 1 3 a 21 A a 22 A 2 2 a 23 A 2 3 a 21 A 3 1 a 22 A a 23 A 3 3 a 31 A 1 1 a 32 A a 33 A 1 3 a 31 A a 32 A 2 2 a 33 A 2 3 a 31 A 3 1 a 32 A a 33 A 3 3 The diagonal terms, e.g., a 11 A 1 1 a 12 A a 13 A 1 3, are minor expansions of det(a).

23 A formula for the inverse A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Adj(A) = A 1 1 A 2 1 A 3 1 A 1 2 A 2 2 A 3 2 A 1 3 A 2 3 A 3 3 Let s look at an off-diagonal term of A Adj(A), say a 21 A 1 1 a 22 A a 23 A 1 3 Expanding this out from the definition, a a 22 a a 32 a 33 a 22 a 21 a 23 a 31 a 33 + a 23 a 22 a 23 a 32 a 33

24 A formula for the inverse The quantity a 21 a 22 a 23 a 32 a 33 a 22 a 21 a 23 a 31 a 33 + a 23 a 22 a 23 a 32 a 33 is the minor expansion of the determinant a 21 a 22 a 23 a 21 a 22 a 23 a 31 a 32 a 33 The matrix has a repeated row, so the determinant is zero! The same is true for all the off diagonal terms.

25 A formula for the inverse A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Adj(A) = A 1 1 A 2 1 A 3 1 A 1 2 A 2 2 A 3 2 A 1 3 A 2 3 A 3 3 A Adj(A) = det(a) I = Adj(A) A This holds for any square matrix A, where Adj(A) ij = ( 1) i+j A j i The entry in row i, column j of Adj(A) is the determinant of the matrix formed by removing column i and row j of A, times ( 1) i+j.

26 Try it yourself! [ a b For the 2 2 matrix c d ], determine Adj(A), and verify A Adj(A) = det(a) I = Adj(A) A [ d b Adj(A) = c a ] [ a b c d ] [ d b c a ] [ ad bc ab + ba = cd dc cb + da ] [ 1 0 = (ad bc) 0 1 ]

27 Cramer s rule Consider a matrix equation Ax = b where A is square. Then det(a) x = (Adj(A) A)x = Adj(A) b Take the i th row of the column vector on both sides: det(a) x i = j Adj(A) ij b j = j ( 1) i+j A j i b j I.e., the minor expansion along the i th column of the determinant of the matrix formed by replacing the i th column of A by b.

28 Cramer s rule Consider a matrix equation Ax = b where A is square. Then if det(a) 0, x i = det(replace column i of A by b) det(a)

29 Never use these formulas to compute As we saw, taking the determinant of a 4 4 matrix by minor expansion was more difficult than by row reduction. It only gets worse as the size of the matrix grows. Likewise, row reduction beats computing Adj for inverting matrices, and beats Cramer s rule for solving systems.

30 Why learn these formulas at all? It s conceptually satisfying to know that, not only is there a procedure for solving systems or inverting matrices, there s in fact a closed form formula. The properties of the formula reveal facts about the solutions.

31 Integer inverses and solutions Say you have an invertible matrix M with integer entries. Does its inverse also have integer entries? It does, if and only det(m) = ±1. Observe det(m) det(m 1 ) = det(mm 1 ) = 1. The determinant of an integer matrix is always an integer it s made by additions and multiplications. If M 1 has integer entries, then det(m) and det(m 1 ) are two integers which multiply to 1, hence both ±1. Similarly, the Adj of an integer matrix is an integer: it s made by additions and multiplications. So, if det M = ±1, then M 1 = Adj(M)/ det M is an integer matrix as well.

32 Integer inverses and solutions Similarly, consider the equation Ax = b. Assume A is square and has integer entries b has integer entries det(a) = ±1 We saw that A 1 has integer entries, so the (unique) solution x = A 1 b also has integer entries.

33 Volumes You probably have an intuitive notion of what volume means: the amount of stuff that can fit inside something. For our purposes, the stuff is going to be cubes of a fixed side length: Volume(S) number of cubes that fit inside S To be more precise, Volume(S) = lim ɛ dim ɛ 0 number of cubes of side length ɛ that fit inside S By this we mean: for S R n, we overlay the ɛ-mesh grid on S, and count the number of cubes which fall completely inside.

34 Linear transformations and volumes Let T : R n R n be a linear transformation. Given a set X, we want to think about how the volumes of X and T (X ) compare. The key observation is that the number of cubes in X is the same as the number of T -transformed such cubes in T (X ).

35 Linear transformations and volumes Filling the transformed cubes with yet smaller regular cubes, and observing that the failure of these to pack correctly at the boundary is washed out as ɛ 0, we conclude: Volume(X ) Volume(T (X )) = Volume(cube) Volume(T (cube)) Rearranging, Volume(T (X )) = Volume(T (cube)) Volume(X ) But what s Volume(T (cube))?

36 Linear transformations and volumes Suppose now given two linear transformations, T, S : R n R n. We apply the formula Volume(T (X )) = Volume(T (cube)) Volume(X ) to the set X = S(cube): Volume(T (S(cube))) = Volume(T (cube)) Volume(S(cube))

37 Linear transformations and volumes In other words, the function V : linear transformations R T Volume(T (unit cube)) respects multiplication in the sense that V (T S) = V (T )V (S) Note also that V (Identity) = 1, and V (non invertible matrix) = 0.

38 Linear transformations and volumes Now consider any linear transformation T. If it s not invertible, V (T ) = 0. If it is invertible, then by row reduction we can expand it as a product of elementary matrices, T = E n E 1 Since volume scaling is multiplicative, V (T ) = V (E n ) V (E 1 )

39 Linear transformations and volumes It remains to understand volume scaling of elementary matrices. Rescaling a row stretching a coordinate rescales volume by the same factor: the volume of a box is the product of its side lengths, and we rescaled one of them. Switching two rows doesn t change volume at all we re just renaming the sides of the box. Adding a multiple of one row to another takes a box to a parallelopiped with the same base and the same height, so again doesn t change volume.

40 Determinants and volumes So for an elementary linear transformation, Volume(T (unit cube)) = det(t ) Volume scaling is multiplicative, so this holds for any linear transformation. Collecting these observations, for any linear transformation T : R n R n and any set X R n, Volume(T (X )) = det(t ) Volume(X )

Linear algebra and differential equations (Math 54): Lecture 7

Linear algebra and differential equations (Math 54): Lecture 7 Linear algebra and differential equations (Math 54): Lecture 7 Vivek Shende February 9, 2016 Hello and welcome to class! Last time We introduced linear subspaces and bases. Today We study the determinant

More information

Determinants: Uniqueness and more

Determinants: Uniqueness and more Math 5327 Spring 2018 Determinants: Uniqueness and more Uniqueness The main theorem we are after: Theorem 1 The determinant of and n n matrix A is the unique n-linear, alternating function from F n n to

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information

det(ka) = k n det A.

det(ka) = k n det A. Properties of determinants Theorem. If A is n n, then for any k, det(ka) = k n det A. Multiplying one row of A by k multiplies the determinant by k. But ka has every row multiplied by k, so the determinant

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 2030: EIGENVALUES AND EIGENVECTORS Determinants Although we are introducing determinants in the context of matrices, the theory of determinants predates matrices by at least two hundred years Their

More information

REVIEW FOR EXAM II. The exam covers sections , the part of 3.7 on Markov chains, and

REVIEW FOR EXAM II. The exam covers sections , the part of 3.7 on Markov chains, and REVIEW FOR EXAM II The exam covers sections 3.4 3.6, the part of 3.7 on Markov chains, and 4.1 4.3. 1. The LU factorization: An n n matrix A has an LU factorization if A = LU, where L is lower triangular

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Math Camp Notes: Linear Algebra I

Math Camp Notes: Linear Algebra I Math Camp Notes: Linear Algebra I Basic Matrix Operations and Properties Consider two n m matrices: a a m A = a n a nm Then the basic matrix operations are as follows: a + b a m + b m A + B = a n + b n

More information

Chapter 2. Square matrices

Chapter 2. Square matrices Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a

More information

MH1200 Final 2014/2015

MH1200 Final 2014/2015 MH200 Final 204/205 November 22, 204 QUESTION. (20 marks) Let where a R. A = 2 3 4, B = 2 3 4, 3 6 a 3 6 0. For what values of a is A singular? 2. What is the minimum value of the rank of A over all a

More information

MATH 1210 Assignment 4 Solutions 16R-T1

MATH 1210 Assignment 4 Solutions 16R-T1 MATH 1210 Assignment 4 Solutions 16R-T1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

Determinants - Uniqueness and Properties

Determinants - Uniqueness and Properties Determinants - Uniqueness and Properties 2-2-2008 In order to show that there s only one determinant function on M(n, R), I m going to derive another formula for the determinant It involves permutations

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes. Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes Matrices and linear equations A matrix is an m-by-n array of numbers A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Math 18.6, Spring 213 Problem Set #6 April 5, 213 Problem 1 ( 5.2, 4). Identify all the nonzero terms in the big formula for the determinants of the following matrices: 1 1 1 2 A = 1 1 1 1 1 1, B = 3 4

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262 Determinants Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. Determinants Differential equations

More information

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Linear equations The first case of a linear equation you learn is in one variable, for instance:

Linear equations The first case of a linear equation you learn is in one variable, for instance: Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Linear equations The first case of a linear equation you learn is in one variable, for instance: 2x = 5. We learned in school that this

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Linear algebra and differential equations (Math 54): Lecture 10

Linear algebra and differential equations (Math 54): Lecture 10 Linear algebra and differential equations (Math 54): Lecture 10 Vivek Shende February 24, 2016 Hello and welcome to class! As you may have observed, your usual professor isn t here today. He ll be back

More information

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8. Linear Algebra M1 - FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:

More information

ECON 186 Class Notes: Linear Algebra

ECON 186 Class Notes: Linear Algebra ECON 86 Class Notes: Linear Algebra Jijian Fan Jijian Fan ECON 86 / 27 Singularity and Rank As discussed previously, squareness is a necessary condition for a matrix to be nonsingular (have an inverse).

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

Calculus (Math 1A) Lecture 4

Calculus (Math 1A) Lecture 4 Calculus (Math 1A) Lecture 4 Vivek Shende August 31, 2017 Hello and welcome to class! Last time We discussed shifting, stretching, and composition. Today We finish discussing composition, then discuss

More information

Calculus (Math 1A) Lecture 4

Calculus (Math 1A) Lecture 4 Calculus (Math 1A) Lecture 4 Vivek Shende August 30, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We discussed shifting, stretching, and

More information

Linear algebra and differential equations (Math 54): Lecture 13

Linear algebra and differential equations (Math 54): Lecture 13 Linear algebra and differential equations (Math 54): Lecture 13 Vivek Shende March 3, 016 Hello and welcome to class! Last time We discussed change of basis. This time We will introduce the notions of

More information

22m:033 Notes: 3.1 Introduction to Determinants

22m:033 Notes: 3.1 Introduction to Determinants 22m:033 Notes: 3. Introduction to Determinants Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman October 27, 2009 When does a 2 2 matrix have an inverse? ( ) a a If A =

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Announcements Wednesday, October 25

Announcements Wednesday, October 25 Announcements Wednesday, October 25 The midterm will be returned in recitation on Friday. The grade breakdown is posted on Piazza. You can pick it up from me in office hours before then. Keep tabs on your

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0 4 Determinants The determinant of a square matrix is a scalar (i.e. an element of the field from which the matrix entries are drawn which can be associated to it, and which contains a surprisingly large

More information

Here are some additional properties of the determinant function.

Here are some additional properties of the determinant function. List of properties Here are some additional properties of the determinant function. Prop Throughout let A, B M nn. 1 If A = (a ij ) is upper triangular then det(a) = a 11 a 22... a nn. 2 If a row or column

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic Unit II - Matrix arithmetic matrix multiplication matrix inverses elementary matrices finding the inverse of a matrix determinants Unit II - Matrix arithmetic 1 Things we can already do with matrices equality

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 10 Row expansion of the determinant Our next goal is

More information

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018)

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018) MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018) COURSEWORK 3 SOLUTIONS Exercise ( ) 1. (a) Write A = (a ij ) n n and B = (b ij ) n n. Since A and B are diagonal, we have a ij = 0 and

More information

MIDTERM 1 - SOLUTIONS

MIDTERM 1 - SOLUTIONS MIDTERM - SOLUTIONS MATH 254 - SUMMER 2002 - KUNIYUKI CHAPTERS, 2, GRADED OUT OF 75 POINTS 2 50 POINTS TOTAL ) Use either Gaussian elimination with back-substitution or Gauss-Jordan elimination to solve

More information

Matrix Factorization Reading: Lay 2.5

Matrix Factorization Reading: Lay 2.5 Matrix Factorization Reading: Lay 2.5 October, 20 You have seen that if we know the inverse A of a matrix A, we can easily solve the equation Ax = b. Solving a large number of equations Ax = b, Ax 2 =

More information

A Primer on Solving Systems of Linear Equations

A Primer on Solving Systems of Linear Equations A Primer on Solving Systems of Linear Equations In Signals and Systems, as well as other subjects in Unified, it will often be necessary to solve systems of linear equations, such as x + 2y + z = 2x +

More information

Ex 3: 5.01,5.08,6.04,6.05,6.06,6.07,6.12

Ex 3: 5.01,5.08,6.04,6.05,6.06,6.07,6.12 Advanced Math: Linear Algebra Overview Ex 3: 5.01,5.08,6.04,6.05,6.06,6.07,6.12 Exeter 3 We will do selected problems, relatively few and spread out, primarily as matrices relate to transformations. Haese

More information

Introduction to Determinants

Introduction to Determinants Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Determinants and Scalar Multiplication

Determinants and Scalar Multiplication Properties of Determinants In the last section, we saw how determinants interact with the elementary row operations. There are other operations on matrices, though, such as scalar multiplication, matrix

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

Linear Algebra: Linear Systems and Matrices - Quadratic Forms and Deniteness - Eigenvalues and Markov Chains

Linear Algebra: Linear Systems and Matrices - Quadratic Forms and Deniteness - Eigenvalues and Markov Chains Linear Algebra: Linear Systems and Matrices - Quadratic Forms and Deniteness - Eigenvalues and Markov Chains Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 3, 3 Systems

More information

Properties of the Determinant Function

Properties of the Determinant Function Properties of the Determinant Function MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Overview Today s discussion will illuminate some of the properties of the determinant:

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

= 1 and 2 1. T =, and so det A b d

= 1 and 2 1. T =, and so det A b d Chapter 8 Determinants The founder of the theory of determinants is usually taken to be Gottfried Wilhelm Leibniz (1646 1716, who also shares the credit for inventing calculus with Sir Isaac Newton (1643

More information

TOPIC III LINEAR ALGEBRA

TOPIC III LINEAR ALGEBRA [1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

3 Fields, Elementary Matrices and Calculating Inverses

3 Fields, Elementary Matrices and Calculating Inverses 3 Fields, Elementary Matrices and Calculating Inverses 3. Fields So far we have worked with matrices whose entries are real numbers (and systems of equations whose coefficients and solutions are real numbers).

More information

M. Matrices and Linear Algebra

M. Matrices and Linear Algebra M. Matrices and Linear Algebra. Matrix algebra. In section D we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices.

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS i i EXAM Exam #1 Math 2360, Second Summer Session, 2002 April 24, 2001 ANSWERS i 50 pts. Problem 1. In each part you are given the augmented matrix of a system of linear equations, with the coefficent

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Lecture 8: Determinants I

Lecture 8: Determinants I 8-1 MATH 1B03/1ZC3 Winter 2019 Lecture 8: Determinants I Instructor: Dr Rushworth January 29th Determinants via cofactor expansion (from Chapter 2.1 of Anton-Rorres) Matrices encode information. Often

More information

5.3 Determinants and Cramer s Rule

5.3 Determinants and Cramer s Rule 304 53 Determinants and Cramer s Rule Unique Solution of a 2 2 System The 2 2 system (1) ax + by = e, cx + dy = f, has a unique solution provided = ad bc is nonzero, in which case the solution is given

More information

Calculus (Math 1A) Lecture 5

Calculus (Math 1A) Lecture 5 Calculus (Math 1A) Lecture 5 Vivek Shende September 5, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We discussed composition, inverses, exponentials,

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

Daily Update. Math 290: Elementary Linear Algebra Fall 2018

Daily Update. Math 290: Elementary Linear Algebra Fall 2018 Daily Update Math 90: Elementary Linear Algebra Fall 08 Lecture 7: Tuesday, December 4 After reviewing the definitions of a linear transformation, and the kernel and range of a linear transformation, we

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8.1 Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Solutions to Final Exam 2011 (Total: 100 pts)

Solutions to Final Exam 2011 (Total: 100 pts) Page of 5 Introduction to Linear Algebra November 7, Solutions to Final Exam (Total: pts). Let T : R 3 R 3 be a linear transformation defined by: (5 pts) T (x, x, x 3 ) = (x + 3x + x 3, x x x 3, x + 3x

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 - Linear algebra, Spring Semester 22-23 Dan Abramovich Review We saw: an algorithm - row reduction, bringing to reduced echelon form - answers the questions: - consistency (no pivot on right) -

More information

Matrices. Ellen Kulinsky

Matrices. Ellen Kulinsky Matrices Ellen Kulinsky To learn the most (AKA become the smartest): Take notes. This is very important! I will sometimes tell you what to write down, but usually you will need to do it on your own. I

More information

Notes on Determinants and Matrix Inverse

Notes on Determinants and Matrix Inverse Notes on Determinants and Matrix Inverse University of British Columbia, Vancouver Yue-Xian Li March 17, 2015 1 1 Definition of determinant Determinant is a scalar that measures the magnitude or size of

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information