MTH_256: Differential Equations Examination II Part 1 of 2 Technology Allowed Examination. Student Name:

Size: px
Start display at page:

Download "MTH_256: Differential Equations Examination II Part 1 of 2 Technology Allowed Examination. Student Name:"

Transcription

1 01 March 2018 Technology Allowed Examination Kidoguchi\m256_x2.1soln.docx MTH_256: Differential Equations Examination II Part 1 of 2 Technology Allowed Examination Student Name: STUDNAME Instructions: Read all instructions before beginning. The student s name shall be written where indicated on this examination cover page. This is part 1 of a two-part in-class examination. Part 1 of this examination consists of examination problems 1 through 4. Each solved problem carries up to 10 marks. This examination carries a total of 80 examination marks. The total time allowed for completion of both parts of this examination is 90 minutes. The total examination score will be the sum of marks from this examination and marks from the mock examination student group presentation. Part 2 of this examination may be collected after submission of Part 1. The student may choose to return to Part 1 of this examination upon completion and submission of Part 2. One 8½" 11" 6 mil sheet of notes may be used during both parts of this examination. Calculators and/or computers may be used during this part of the examination. Textbooks and student's personal lecture notes sind verboten! Analysis may be done on the back of examination sheet pages or on separate worksheets. If separate worksheets are used, the student s name and the problem being worked must be clearly identified in order to be considered during marking. Students should keep in mind that: Illegible work will remain unmarked. Undefined symbols have no meaning. Improper notation and/or incomplete mathematical sentences will be rejected. Graphs with unlabelled axes have no meaning. Ambiguous conclusions will be misinterpreted. Approximations must be so indicated. Solutions with incorrect units (dimensions) are incorrect solutions. Partial credit will be awarded for solutions that are coherent and logically presented. Marks will be deducted for scattered, disjointed analysis presentations. No credit will be awarded for ambiguous conclusions. Caveat: Any hint of cheating during the examination will result in an examination mark of zero. - 1 of 5 -

2 01 March 2018 Technology Allowed Examination Kidoguchi\m256_x2.1soln.docx 1. Forced Oscillations - Qualitative Analysis in the t-domain Given the IVP: m x cx kx F() t, where the system parameters m, c, k, forcing function, F(t), and initial conditions (ICs) are as listed in Table 1, complete this table by matching each IVP to the system response depicted in Figures 1, 2, 3, or 4. System m c k IC [x(0), v(0)] Table 1 Forcing Function t-domain Figure [1/3, 0] F(t) = cos(3t) [1/3, 0] F(t) = cos(t) [1/3, 0] F(t) = cos(3t) [1/3, 0] F(t) = cos(t) 3 Figure 1: x & dx/dt vs t Figure 2: x & dx/dt vs t Figure 3: x & dx/dt vs t Figure 4: x & dx/dt vs t - 2 of 5 -

3 01 March 2018 Technology Allowed Examination Kidoguchi\m256_x2.1soln.docx 2. Forced Oscillations - Qualitative Analysis in the Phase Plane Given the IVP: m x cx kx F() t, where the system parameters m, c, k, forcing function, F(t), and initial conditions (ICs) are as listed in Table 2, complete this table by matching each IVP to the system response depicted in Phase Trajectories A, B, C, or D. System m c k IC [x(0), v(0)] Table 2 Forcing Function Phase Trajectory [1/3, 0] F(t) = cos(3t) D [1/3, 0] F(t) = cos(t) A [1/3, 0] F(t) = cos(3t) B [1/3, 0] F(t) = cos(t) C Phase Trajectory A Phase Trajectory B Phase Trajectory C Phase Trajectory D - 3 of 5 -

4 01 March 2018 Technology Allowed Examination Kidoguchi\m256_x2.1soln.docx 3. Particle Motion and Uncle Heaviside s Unit Step Function A particle travels along the x-axis with velocity v(t). Its acceleration, a(t) = dv/dt is as shown in Figure 3. If the particle's initial velocity is v(0) = 2, find expressions for a(t) and v(t) in terms of the unit step function. Figure 3: Particle Acceleration a(t) - 4 of 5 -

5 01 March 2018 Technology Allowed Examination Kidoguchi\m256_x2.1soln.docx 4. Archimedes Buoy A frictionless floating cylindrical buoy has a radius r = e -ln(256) blands (where 1 bland = 40 rods), height h = 245 cm, and uniform mass density ρ B = 1/4 gram/cm 3. Let the surface of the water be at x = 0 and x(t) be the depth of the bottom of the buoy at time t in minutes. Assume that the mass density of water is ρ W gram/cm 3 and the acceleration due to gravity, g = 980 cm/s 2. At t = 0 the bottom of the buoy is at x(0) = 0 cm and moving at speed x (0) = v(0) = 0 cm/s. a) Write initial value problem (IVP) that describes the buoy motion in terms of x(t) and its derivatives. b) Solve the IVP. c) Sketch a properly labelled graph of x(t) on the interval 0 < t < where t is in seconds. - 5 of 5 -

6 01 March 2018 Traditional Non-Technology Examination Kidoguchi\m256_x2.2soln.docx MTH_256: Differential Equations Examination II Part 2 of 2 Traditional Non-Technology Examination Student Name: Instructions: Read all instructions before beginning. The student s name shall be written where indicated on this examination cover page. This is part 2 of a two-part in-class examination. Part 2 of this examination consists of examination problems 5 through 8. Each solved problem carries up to 10 marks. This examination carries a total of 80 examination marks. The total time allowed for completion of both parts of this examination is 90 minutes. The total examination score will be the sum of marks from this examination and marks from the mock examination student group presentation. Calculators and/or computers shall not be used to work problems in part 2 of this examination. The student may choose to return to Part 1 of this examination upon completion and submission of Part 2. Textbooks and student's personal lecture notes sind verboten! One 8½" 11" 6 mil sheet of notes may be used during both parts of this examination. Analysis may be done on the back of examination sheet pages or on separate worksheets. If separate worksheets are used, the student s name and the problem being worked must be clearly identified in order to be considered during marking. Students should keep in mind that: Illegible work will remain unmarked. Undefined symbols have no meaning. Improper notation and/or incomplete mathematical sentences will be rejected. Graphs with unlabelled axes have no meaning. Ambiguous conclusions will be misinterpreted. Approximations must be so indicated. Solutions with incorrect units (dimensions) are incorrect solutions. Partial credit will be awarded for solutions that are coherent and logically presented. Marks will be deducted for scattered, disjointed analysis presentations. No credit will be awarded for ambiguous conclusions. Caveat: Any hint of cheating during the examination will result in an examination mark of zero. - 1 of 5 -

7 01 March 2018 Traditional Non-Technology Examination Kidoguchi\m256_x2.2soln.docx 5. Plug-n-Chug Present the analysis to find a general solution in simplified form to each of the following ODEs. a) i x 6x 8 x 1 e b) x 6x 8x cos t 2 sin t / 2 c) d) x 6x 8x 85 cos( t / 2) it it e e x 6x 8x i2 e) x 6x 8 x 85sin t N.B.: In all cases i 1 and the dot notation indicates that x is a function of t. - 2 of 5 -

8 01 March 2018 Traditional Non-Technology Examination Kidoguchi\m256_x2.2soln.docx 6. A Mass-Spring System A mass-spring system is described by the ODE m x cx kx F() t, where x is the position of the mass about its natural rest position in centimetres and dx/dt = v is the speed of the mass in cm/s. The mass, m = 1 gram, damping coefficient, c = 6 gram/s, and spring constant, k = 8 dynes/cm are constants. The forcing function is F(t) =85sin(t). Given initial condition x(0) = 6 and v(0) = present the analysis to: a) Find x(t), the solution to this initial value problem. b) Sketch a properly labelled phase trajectory of the system s steady state response in the phase plane (i.e., with x as the horizontal axis and v as the vertical axis. - 3 of 5 -

9 01 March 2018 Traditional Non-Technology Examination Kidoguchi\m256_x2.2soln.docx 7. Another Oscillating Pendulum The motion of an ideal pendulum is modelled by the ODE: ml cl mg F() t, where t is the angular position of the pendulum bob in radians about its natural rest position and is the rate of change of the angular t position with respect to t, time in seconds. Given: m = kg is the mass of the pendulum bob g = 2 m/s 2 is the acceleration due to gravity i c = 1 e kg/s is the damping coefficient L = ( /6) 2 metres is the length of the pendulum F(t) = 2 cos (4 t) is the forcing function in Newtons. With initial conditions: (0) = 0 and (0) = 0, present the analysis to: a) find (t), the solution to this initial value problem, and b) sketch a properly labelled graph of (t) in the t-domain on the interval 0 < t < 2 ensuring that all key points are clearly identified. - 4 of 5 -

10 01 March 2018 Traditional Non-Technology Examination Kidoguchi\m256_x2.2soln.docx 8. An Acceleration and Velocity Model A bullet passes through the mud wall of a rondavel. The acceleration of the bullet in terms of its velocity v while in the wall is described by the differential equation: dv kv dt 2 where k =ln(2). If the bullet enters the wall with a speed of 512 metres per second and exits the wall at a speed of 256 metres per second, present the analysis to find the distance travelled by the bullet while it is within the mud wall. Recall the Mock Exam II hint: dv dv dx. dt dx dt - 5 of 5 -

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

AP PHYSICS 2012 SCORING GUIDELINES

AP PHYSICS 2012 SCORING GUIDELINES AP PHYSICS 2012 SCORING GUIDELINES General Notes About 2012 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of points

More information

Spring 2017 Midterm 1 04/26/2017

Spring 2017 Midterm 1 04/26/2017 Math 2B Spring 2017 Midterm 1 04/26/2017 Time Limit: 50 Minutes Name (Print): Student ID This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter

More information

Problem Out of Score Problem Out of Score Total 45

Problem Out of Score Problem Out of Score Total 45 Midterm Exam #1 Math 11, Section 5 January 3, 15 Duration: 5 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 8 pages, including this cover sheet. No

More information

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit. MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

More information

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):...

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):... CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM Name (Print last name first):............................................. Student ID Number (last four digits):........................

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2015

AAPT UNITED STATES PHYSICS TEAM AIP 2015 215 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 215 215 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Analytical Mechanics - Extra Problems

Analytical Mechanics - Extra Problems Analytical Mechanics - Extra Problems Physics 105, F17 (R) are review problems. Review problems are those that have already been covered in prior courses, mostly Intro to Physics I and II. Some are math

More information

Score on each problem:

Score on each problem: 95.141 Exam 1 Spring 2013 Section Number Section Instructor Name (last name first) Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1.

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1. Page 1 Name: ID: Section: This exam has 16 questions: 14 multiple choice questions worth 5 points each. hand graded questions worth 15 points each. Important: No graphing calculators! Any non-graphing

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives.

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Lexicon Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Ordinary Differential Equation (ODE): A differential equation that contains only ordinary

More information

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 1. AP Physics C Summer Homework NAME: Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 2. Fill in the radian conversion of each angle and the trigonometric

More information

Math 215/255 Final Exam, December 2013

Math 215/255 Final Exam, December 2013 Math 215/255 Final Exam, December 2013 Last Name: Student Number: First Name: Signature: Instructions. The exam lasts 2.5 hours. No calculators or electronic devices of any kind are permitted. A formula

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1.

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1. Page 1 Name: ID: Section: This exam has 16 questions: 14 multiple choice questions worth 5 points each. hand graded questions worth 15 points each. Important: No graphing calculators! Any non-graphing

More information

Exam 2 Spring 2014

Exam 2 Spring 2014 95.141 Exam 2 Spring 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

AP* Physics B: Newton s Laws YOU MAY USE YOUR CALCULATOR

AP* Physics B: Newton s Laws YOU MAY USE YOUR CALCULATOR AP* Physics B: Newton s Laws Name: Period: YOU MAY USE YOUR CALCULATOR CLEARLY SHOW THE METHOD YOU USED AND STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, because you may

More information

Student s Printed Name:

Student s Printed Name: Student s Printed Name: Instructor: XID: C Section: No questions will be answered during this exam. If you consider a question to be ambiguous, state your assumptions in the margin and do the best you

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink) Write your name here Surname Other names Pearson Edexcel GCE Centre Number Mechanics M5 Advanced/Advanced Subsidiary Candidate Number Tuesday 20 June 2017 Afternoon Paper Reference Time: 1 hour 30 minutes

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Final Exam May, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

Math Makeup Exam - 3/14/2018

Math Makeup Exam - 3/14/2018 Math 22 - Makeup Exam - 3/4/28 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all work.

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

AP PHYSICS C: MECHANICS 2013 SCORING GUIDELINES

AP PHYSICS C: MECHANICS 2013 SCORING GUIDELINES AP PHYSICS C: MECHANICS 2013 SCORING GUIDELINES Question 1 15 points total Distribution of points (a) 3 points For labeling the axes with appropriate values For a smooth curve that begins with increasing

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring system. A mass is attached to one end of a spring. The other end of the spring is attached to

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

EF 151 Exam #4 - Spring, 2016 Page 1 Copy 205

EF 151 Exam #4 - Spring, 2016 Page 1 Copy 205 EF 151 Exam #4 - Spring, 016 Page 1 Copy 05 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

Math 112 (Calculus I) Final Exam

Math 112 (Calculus I) Final Exam Name: Student ID: Section: Instructor: Math 112 (Calculus I) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 11 to 19, show all your work in the space

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

Solution Derivations for Capa #12

Solution Derivations for Capa #12 Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

More information

Simple Harmonic Motion Practice Problems PSI AP Physics 1

Simple Harmonic Motion Practice Problems PSI AP Physics 1 Simple Harmonic Motion Practice Problems PSI AP Physics 1 Name Multiple Choice Questions 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the

More information

Basic Theory of Differential Equations

Basic Theory of Differential Equations page 104 104 CHAPTER 1 First-Order Differential Equations 16. The following initial-value problem arises in the analysis of a cable suspended between two fixed points y = 1 a 1 + (y ) 2, y(0) = a, y (0)

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

Physics Final Exam Formulas

Physics Final Exam Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

Give your answers in exact form, except as noted in particular problems.

Give your answers in exact form, except as noted in particular problems. Math 125 Final Examination Spring 2010 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam is closed book. You may use one 8 2 1 11 sheet of handwritten notes (both

More information

Name: 4 sin(2u) 4 sin(1.4)

Name: 4 sin(2u) 4 sin(1.4) Common Exam 1 Math 170, Fall, 2014 Name: Instructions For Part I. The first six (6) pages are short answer. You don t need to show work. Partial credit will be rare. 1. (10 pts.) Compute the derivatives.

More information

Lecture for Week 6 (Secs ) Derivative Miscellany I

Lecture for Week 6 (Secs ) Derivative Miscellany I Lecture for Week 6 (Secs. 3.6 9) Derivative Miscellany I 1 Implicit differentiation We want to answer questions like this: 1. What is the derivative of tan 1 x? 2. What is dy dx if x 3 + y 3 + xy 2 + x

More information

V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv

V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv v = v i + at x = x i + v i t + 1 2 at2 v 2 = v 2 i + 2a x F = ma F = dp dt P = mv R = v2 sin(2θ) g v dx dt a dv dt = d2 x dt 2 x = r cos(θ) V sphere = 4 3 πr3 a c = v2 r = rω2 F f = µf n F c = m v2 r =

More information

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled? Slide 1 / 52 1 A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its velocity is a maximum in magnitude? A 0 B + or - A C

More information

Physics 121, Midterm Exam #3 Tuesday April 20, am 9.30 am. Do not turn the pages of the exam until you are instructed to do so.

Physics 121, Midterm Exam #3 Tuesday April 20, am 9.30 am. Do not turn the pages of the exam until you are instructed to do so. Exam April, 8. am - 9. am, Midterm Exam # Tuesday April, 8. am 9. am Do not turn the pages of the exam until you are instructed to do so. You are responsible for reading the following rules carefully before

More information

Do not write in this space. Problem Possible Score Number Points Total 48

Do not write in this space. Problem Possible Score Number Points Total 48 MTH 337. Name MTH 337. Differential Equations Exam II March 15, 2019 T. Judson Do not write in this space. Problem Possible Score Number Points 1 8 2 10 3 15 4 15 Total 48 Directions Please Read Carefully!

More information

Math 307 A - Spring 2015 Final Exam June 10, 2015

Math 307 A - Spring 2015 Final Exam June 10, 2015 Name: Math 307 A - Spring 2015 Final Exam June 10, 2015 Student ID Number: There are 8 pages of questions. In addition, the last page is the basic Laplace transform table. Make sure your exam contains

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 3 Solutions

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 3 Solutions University of Alabama Department of Physics and Astronomy PH 105 LeClair Summer 2012 Instructions: Problem Set 3 Solutions 1. Answer all questions below. All questions have equal weight. 2. Show your work

More information

PHY 141 Midterm 1 Oct 2, 2014 Version A

PHY 141 Midterm 1 Oct 2, 2014 Version A PHY 141 Midterm 1 Oct 2, 2014 Version A Put FULL NAME, ID#, and EXAM VERSION on the front cover of the BLUE BOOKLET! To avoid problems in grading: do all problems in order, write legibly, and show all

More information

You may wish to closely review the following figures, examples, and the text sections that discuss them:

You may wish to closely review the following figures, examples, and the text sections that discuss them: Physics 1061 Fall 007, Temple University C. J. Martoff, Instructor Midterm Review Sheet The midterm has 7 or 8 questions on it. Each is a "problem" as opposed to definitions, etc. Each problem has several

More information

MTH 132 Solutions to Exam 2 Apr. 13th 2015

MTH 132 Solutions to Exam 2 Apr. 13th 2015 MTH 13 Solutions to Exam Apr. 13th 015 Name: Section: Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices

More information

Homework #4 Solutions

Homework #4 Solutions MAT 303 Spring 03 Problems Section.: 0,, Section.:, 6,, Section.3:,, 0,, 30 Homework # Solutions..0. Suppose that the fish population P(t) in a lake is attacked by a disease at time t = 0, with the result

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

Clicker Quiz. a) 25.4 b) 37.9 c) 45.0 d) 57.1 e) 65.2

Clicker Quiz. a) 25.4 b) 37.9 c) 45.0 d) 57.1 e) 65.2 Clicker Quiz Assume that the rock is launched with an angle of θ = 45. With what angle with respect to the horizontal does the rock strike the ground in front of the castle? v 0 = 14.2 m/s v f = 18.5 m/s

More information

Physics S Exam 1 March 11th, Last Name: First Name: Discussion Section:

Physics S Exam 1 March 11th, Last Name: First Name: Discussion Section: Physics 7 5S Exam 1 March 11th, 5 Last Name: First Name: Discussion Section: Instructions- This is a closed book exam. No memory aids of any kind, electronic or otherwise, may be used. You have fifty (5)

More information

Preliminary Examination: Classical Mechanics Department of Physics and Astronomy University of New Mexico Spring 2010

Preliminary Examination: Classical Mechanics Department of Physics and Astronomy University of New Mexico Spring 2010 Preliminary Examination: Classical Mechanics Department of Physics and Astronomy University of New Mexico Spring 2010 Instructions: The exam consists of 10 problems (10 points each). Where possible, show

More information

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 25 B and C Midterm 2 Palmieri, Autumn 26 Your Name Your Signature Student ID # TA s Name and quiz section (circle): Cady Cruz Jacobs BA CB BB BC CA CC Turn off all cell phones, pagers, radios, mp3

More information

ES201 - Examination III Richards, North, Berry Fall November 2000 NAME BOX NUMBER

ES201 - Examination III Richards, North, Berry Fall November 2000 NAME BOX NUMBER ES201 - Examination III Richards, North, Berry Fall 2000-2001 2 November 2000 NAME BOX NUMBER Problem 1 Problem 2 ( 30 ) ( 30 ) Problem 3 ( 40 ) Total ( 100 ) INSTRUCTIONS Closed book/notes exam. (Unit

More information

PHYSICS B SAMPLE EXAM I Time - 90 minutes 70 Questions

PHYSICS B SAMPLE EXAM I Time - 90 minutes 70 Questions Page 1 of 7 PHYSCS B SAMPLE EXAM Time - 90 minutes 70 Questions Directions:Each of the questions or incomplete statements below is followed by five suggested Solutions or completions. Select the one that

More information

MA 126 CALCULUS II Wednesday, December 14, 2016 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I

MA 126 CALCULUS II Wednesday, December 14, 2016 FINAL EXAM. Closed book - Calculators and One Index Card are allowed! PART I CALCULUS II, FINAL EXAM 1 MA 126 CALCULUS II Wednesday, December 14, 2016 Name (Print last name first):................................................ Student Signature:.........................................................

More information

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER ES201 - Examination 2 Fall 2003-2004 Instructor: Class Period NAME BOX NUMBER Problem 1 ( 22 ) Problem 2 ( 26 ) Problem 3 ( 26 ) Problem 4 ( 26 ) Total (100) INSTRUCTIONS Closed book/notes exam. (Unit

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

Physics 157 Homework 8: due Wed, Nov 21 th by 5pm. Your Homework: Do the three written questions below and hand them in to the homework box.

Physics 157 Homework 8: due Wed, Nov 21 th by 5pm. Your Homework: Do the three written questions below and hand them in to the homework box. Physics 157 Homework 8: due Wed, Nov 21 th by 5pm In this homework set, you ll get more practice analyzing systems in simple harmonic motion (SHM). Here are the skills that we d like you to develop in

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

By providing my signature below I acknowledge that this is my work, and I did not get any help from anyone else:

By providing my signature below I acknowledge that this is my work, and I did not get any help from anyone else: University of Georgia Department of Mathematics Math 2250 Final Exam Spring 2016 By providing my signature below I acknowledge that this is my work, and I did not get any help from anyone else: Name (sign):

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

More information

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson.

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson. in a : Exam Question 6/8 (HL/OL): Circular and February 1, 2017 in a This lecture pertains to material relevant to question 6 of the paper, and question 8 of the Ordinary Level paper, commonly referred

More information

Differential Equations (Math 217) Practice Midterm 1

Differential Equations (Math 217) Practice Midterm 1 Differential Equations (Math 217) Practice Midterm 1 September 20, 2016 No calculators, notes, or other resources are allowed. There are 14 multiple-choice questions, worth 5 points each, and two hand-graded

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate simple harmonic motion. We will determine the elastic spring constant of a spring first and then study small vertical oscillations

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

MTH 132 Solutions to Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11.

MTH 132 Solutions to Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

Beauchamp College Year 11/12 - A- Level Transition Work. Physics.

Beauchamp College Year 11/12 - A- Level Transition Work. Physics. Beauchamp College Year 11/1 - A- Level Transition Work Physics Gareth.butcher@beauchamp.org.uk Using S.I. units Specification references.1. a) b) c) d) M0.1 Recognise and make use of appropriate units

More information

MAT 132 Midterm 1 Spring 2017

MAT 132 Midterm 1 Spring 2017 MAT Midterm Spring 7 Name: ID: Problem 5 6 7 8 Total ( pts) ( pts) ( pts) ( pts) ( pts) ( pts) (5 pts) (5 pts) ( pts) Score Instructions: () Fill in your name and Stony Brook ID number at the top of this

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2008

AAPT UNITED STATES PHYSICS TEAM AIP 2008 8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may

More information

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes Resisted Motion 34.3 Introduction This Section returns to the simple models of projectiles considered in Section 34.1. It explores the magnitude of air resistance effects and the effects of including simple

More information

Student s Printed Name: KEY_&_Grading Guidelines_CUID:

Student s Printed Name: KEY_&_Grading Guidelines_CUID: Student s Printed Name: KEY_&_Grading Guidelines_CUID: Instructor: Section # : You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Hour Exam #2 Math 3 Oct. 31, 2012

Hour Exam #2 Math 3 Oct. 31, 2012 Hour Exam #2 Math 3 Oct. 31, 2012 Name (Print): Last First On this, the second of the two Math 3 hour-long exams in Fall 2012, and on the final examination I will work individually, neither giving nor

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2018

AAPT UNITED STATES PHYSICS TEAM AIP 2018 218 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 218 218 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday April

EN40: Dynamics and Vibrations. Midterm Examination Thursday April EN40: Dynamics and Vibrations Mierm Examination Thursday April 015 School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information