ChE 6303 Advanced Process Control

Size: px
Start display at page:

Download "ChE 6303 Advanced Process Control"

Transcription

1 ChE 6303 Advanced Process Control Teacher: Dr. M. A. A. Shoukat Choudhury, Syllabus: 1. SISO control systems: Review of the concepts of process dynamics and control, process models, Laplace transform, transfer functions, Poles and zeros,state-space models, feedback controllers, controller design direct synthesis and IMC rules, controller tuning, Concept of stability, feedforward and ratio control, cascade control, time delay compensation,inferential control, adaptive control, selective control/override systems 2. MIMO control systems: Control loop interactions, RGA analysis,, pairing control loops, decoupler design

2 ChE 6303 Advanced Process Control 3. Process Monitoring: Traditional process monitoring, multivariate statistical monitoring 4. Process Faults: Control valve problems, Valve stiction, data-based methods for detection of valve problems 5. Troubleshooting Plantwide Oscillations Marks Distribution: 1. Assignments 20% 2. Project 30% 3. Final exam 50%

3 Process Dynamics and Control Concepts of Process Dynamics and Control: - Dynamics is concerned with the transient state ( steady state too) behaviour of the process. - Control is concerned with the manipulation of process behaviour - make processes operate closer to the operating conditions - regulate the process well in the presence of disturbances

4 Why study process dynamics and control - Increased emphasis on efficient plant operation - Continued impact of energy conservation measures (Energy integration) - Tighter integration of plant design (Mass integration) - Emphasis on increased plant/human safety - Stringer environmental regulations so on..

5 Process Dynamics where and why? - Refers to unsteady-state or transient behavior. - ChE curriculum emphasizes steady-state or equilibrium situations: Examples: ChE 111, 201, 303, Continuous processes: Examples of transient behavior: i. Start up & shutdown ii. Polymer grade changes iii. Disturbances, especially major disturbances, e.g., refinery during stormy or hurricane conditions, seasonal variation iv. Equipment or instrument failure (e.g., pump failure) v. Process degradation, catalyst poisoning, heat exchanger fouling

6 Process Dynamics (cont d) - Batch processes i. Inherently unsteady-state operation ii. Example: Batch reactor 1. Composition changes with time 2. Other variables such as temperature could be constant.

7 Process Control - Ubiquitous, everywhere in life - starting from very basic household equipments to large chemical processes - Household equipments: Refrigerators, ACs, TVs - Large scale, continuous processes: i. Oil refinery, ethylene plant, pulp mill. Typically, several thousands process variables are measured. Examples: flow rate, T, P, liquid level, composition ii. To control the process variables, one needs Question: manipulated How do variables we control such as feed rate, cooling rate, processes? product flow rate We will consider an illustrative example

8 Process Control Question: How do we control a process or a variable?

9 Illustrative Example A Blending system Notation: w 1, w 2 and w are mass flow rates x 1, x 2 and x are mass fractions of component A

10 A Blending System (cont d) Assumptions: 1. w 1 is constant 2. x 2 = constant = 1 (stream 2 is pure A) 3. Perfect mixing in the tank Control Objective: Keep x at a desired value (or set point ) x sp, despite variations in x 1 (t). Flow rate w 2 can be adjusted for this purpose. Terminology: Controlled variable (or output variable ): x Manipulated variable (or input variable ): w 2 Disturbance variable (or load variable ): x 1

11 A Blending System (cont d) Design Question. What value of w 2 is required to have x = x SP? Overall balance: 0 = w + w w (1-1) Component A balance: 1 2 wx 1 1+ w2x2 wx= 0 (1-2) (The overbars denote nominal steady-state design values.) At the design conditions, x = x SP. Substitute Eq. 1-2, x = xsp and x 2 = 1, then solve Eq. 1-2 for w2 : xsp x1 w2 = w1 (1-3) x 1 SP

12 A Blending System (cont d) Equation 1-3 is the design equation for the blending system. If our assumptions are correct, then this value of w 2 will keep at. But what if conditions change? x SP x Control Question. Suppose that the inlet concentration x 1 changes with time. How can we ensure that x remains at or near the set point x SP? As a specific example, if x x and w = w, then x > x SP. 1 > Some Possible Control Strategies: Method 1. Measure x and adjust w 2. Intuitively, if x is too high, we should reduce w 2 ;

13 A Blending System (cont d) Manual control vs. automatic control Proportional feedback control law, () = - + = () w2 t w2 Kc xsp x t (1-4) 1. where K c is called the controller gain. 2. w 2 (t) and x(t) denote variables that change with time t. 3. The change in the flow rate, w 2 t w 2, is proportional to the deviation from the set point, x SP x(t). ()

14 How to implement the feedback?

15 Method 2 - Feedforward Method 2. Measure x 1 and adjust w 2. Thus, if x 1 is greater than x 1, we would decrease w 2 so that w < w 2 2 ; One approach: Consider Eq. (1-3) and replace x1 and w2 with x 1 (t) and w 2 (t) to get a control law: xsp x t w2() t = w1 (1-5) 1 x 1 () SP

16 Method 2 Feedforward (cont d) Because Eq. (1-3) applies only at steady state, it is not clear how effective the control law in (1-5) will be for transient conditions.

17 Other methods Method 3. Measure x 1 and x, adjust w 2. This approach is a combination of Methods 1 and 2. Method 4. Use a larger tank. If a larger tank is used, fluctuations in x 1 will tend to be damped out due to the larger capacitance of the tank contents. However, a larger tank means an increased capital cost.

18 Control Strategies Table. 1.1 Control Strategies for the Blending System Method Measured Variable Manipulated Variable Category 1 x w 2 FB 2 x 1 w 2 FF 3 x 1 and x w 2 FF/FB Design change

19 Feedback Control Distinguishing feature: measure the controlled variable Advantages: Corrective action is taken regardless of the source of the disturbance. Reduces sensitivity of the controlled variable to disturbances and changes in the process (shown later). Disadvantages: No corrective action occurs until after the disturbance has upset the process, that is, until after x differs from x sp. Very oscillatory responses, or even instability.

20 Feedforward Control Features Distinguishing feature: measure a disturbance variable Advantage: Correct for disturbance before it upsets the process. Disadvantage: Must be able to measure the disturbance. No corrective action for unmeasured disturbances.

21 Hierarchy of process control activities ( days-months ) 5. Planning and Scheduling ( hours-days ) 4. Real-Time Optimization Figure 1.7 Hierarchy of process control activities. ( minutes-hours ) ( seconds-minutes ) 3b. Multivariable and Constraint Control 3a. Regulatory Control (< 1 second ) 2. Safety, Environment and Equipment Protection (< 1 second ) 1. Measurement and Actuation Process

22 Major Steps in control system development Figure 1.9 Major steps in control system development

23 MODELS MODELS

24 What are Models? A model is a mathematical abstraction of a process A model can be formulated on the basis of a physio-chemical or a mechanistic knowledge of the process A model can capture the transient and/or steady state of the process Steady state is a special case of transient states Inputs Process Outputs Mathematically, Input Space U (.) G (. ) Output Space Y (.)

25 Type of Models 1. Unsteady vs. Steady state models 2. First principle vs. empirical models/black-box models 3. Semi-empirical/gray box models Advantages and Disadvantages of these models Example: Model for a simple cylindrical tank - mass balance - linearization (if necessary) - deviation variable - time constant equivalent to residence time - gain of the process

26 General Modeling Principles The model equations are at best an approximation to the real process. Adage: All models are wrong, but some are useful. Modeling inherently involves a compromise between model accuracy and complexity on one hand, and the cost and effort required to develop the model, on the other hand. Process modeling is both an art and a science. Creativity is required to make simplifying assumptions that result in an appropriate model. Dynamic models of chemical processes consist of ordinary differential equations (ODE) and/or partial differential equations (PDE), plus related algebraic equations.

27 Developing Dynamic Models A Systematic Approach for Developing Dynamic Models 1. State the modeling objectives and the end use of the model. They determine the required levels of model detail and model accuracy. 2. Draw a schematic diagram of the process and label all process variables. 3. List all of the assumptions that are involved in developing the model. Try for parsimony; the model should be no more complicated than necessary to meet the modeling objectives. 4. Determine whether spatial variations of process variables are important. If so, a partial differential equation model will be required. 5. Write appropriate conservation equations (mass, component, energy, and so forth).

28 Developing Dynamic Models (cont d) 6. Introduce equilibrium relations and other algebraic equations (from thermodynamics, transport phenomena, chemical kinetics, equipment geometry, etc.). 7. Perform a degrees of freedom analysis (Section 2.3) to ensure that the model equations can be solved. 8. Simplify the model. It is often possible to arrange the equations so that the dependent variables (outputs) appear on the left side and the independent variables (inputs) appear on the right side. This model form is convenient for computer simulation and subsequent analysis. 9. Classify inputs as disturbance variables or as manipulated variables.

29 Degrees of Freedom Analysis 1. List all quantities in the model that are known constants (or parameters that can be specified) on the basis of equipment dimensions, known physical properties, etc. 2. Determine the number of equations N E and the number of process variables, N V. Note that time t is not considered to be a process variable because it is neither a process input nor a process output. 3. Calculate the number of degrees of freedom, N F = N V - N E. 4. Identify the N E output variables that will be obtained by solving the process model. 5. Identify the N F input variables that must be specified as either disturbance variables or manipulated variables, in order to utilize the N F degrees of freedom.

30 Conservation Laws Theoretical models of chemical processes are based on conservation laws. Conservation of Mass rate of mass rate of mass rate of mass = accumulation in out (2-6) Conservation of Component i rate of component i rate of component i = accumulation in rate of component i rate of component i + out produced (2-7)

31 Conservation of Energy The general law of energy conservation is also called the First Law of Thermodynamics. It can be expressed as: rate of energy rate of energy in rate of energy out = accumulation by convection by convection net rate of heat addition + to the system from + the surroundings net rate of work performed on the system (2-8) by the surroundings The total energy of a thermodynamic system, U tot, is the sum of its internal energy, kinetic energy, and potential energy: Utot = Uint + UKE + UPE (2-9)

32 Conservation of Energy For the processes and examples considered in this course, it is appropriate to make two assumptions: 1. Changes in potential energy and kinetic energy can be neglected because they are small in comparison with changes in internal energy. 2. The net rate of work can be neglected because it is small compared to the rates of heat transfer and convection. For these reasonable assumptions, the energy balance in Eq. 2-8 can be written as U int ) H w = Q = the internal energy of the system = enthalpy per unit mass = mass flow rate du ) int = ( wh ) + Q dt (2-10) rate of heat transfer to the system ( ) = denotes the difference between outlet and inlet conditions of the flowing streams; therefore ) - wh = rate of enthalpy of the inlet stream(s) - the enthalpy of the outlet stream(s)

33 Development of Dynamic Models An Example An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out (2-1)

34 Example (cont d) or ( ρ) d V dt = w + w w 1 2 where w 1, w 2, and w are mass flow rates. The unsteady-state component balance is: (2-2) ( ρ ) d V x dt = wx + w x wx (2-3) The corresponding steady-state model was derived in Ch. 1 (cf. Eqs. 1-1 and 1-2). 0 = w + w w (2-4) = wx + w x wx (2-5)

35 Example (cont d) For constant, Eqs. 2-2 and 2-3 become: ρ dv ρ = w1+ w2 w (2-12) dt ρd( Vx) = wx 1 1+ w2x2 wx (2-13) dt Equation 2-13 can be simplified by expanding the accumulation term using the chain rule for differentiation of a product:

36 Example (cont d) ( ) d Vx dx dv ρ = ρv + ρx dt dt dt Substitution of (2-14) into (2-13) gives: (2-14) dx dv ρv + ρx = w1x1+ w2x2 wx (2-15) dt dt Substitution of the mass balance in (2-12) for ρdv/ dt in (2-15) gives: dx ρ V + x( w1+ w2 w) = w1x1+ w2x2 wx (2-16) dt After canceling common terms and rearranging (2-12) and (2-16), a more convenient model form is obtained: dv 1 = ( w1+ w2 w) (2-17) dt ρ dx w1 w = dt V ρ V ρ ( x x) ( x x) (2-18)

37 Continuous Stirred Tank Reactor (CSTR) Fig Schematic diagram of a CSTR.

38 CSTR: Model Development Assumptions: 1. Single, irreversible reaction, A B. 2. Perfect mixing. 3. The liquid volume V is kept constant by an overflow line. 4. The mass densities of the feed and product streams are equal and constant. They are denoted by ρ. 5. Heat losses are negligible. 6. The reaction rate for the disappearance of A, r, is given by, r = kc (2-62) [ ] A where r = moles of A reacted per unit time, per unit volume, ca is the concentration of A (moles per unit volume), and k is the rate constant (units of reciprocal time). 7. The rate constant has an Arrhenius temperature dependence: k=k0 exp(- E/RT ) (2-63) where k is the frequency factor, E is the activation energy, 0 and R is the the gas constant.

39 CSTR: Model Development (cont d)

40 CSTR: Model Development (cont d) Unsteady-state mass balance Because ρ and V are constant,. Thus, the mass balance is not required. Unsteady-state component balance.

41 CSTR Model: Some Extensions How would the dynamic model change for: 1. Multiple reactions (e.g., A B C)? 2. Different kinetics, e.g., 2 nd order reaction? 3. Significant thermal capacity of the coolant liquid? 4. Liquid volume V is not constant (e.g., no overflow line)? 5. Heat losses are not negligible? 6. Perfect mixing cannot be assumed (e.g., for a very viscous liquid)?

42 LAPLACE TRANSOFRM A Review LAPLACE TRANSOFRM - Review

43 Pierre Simon Laplace Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

44 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important process control concepts and techniques. -Examples: Transfer functions Frequency response Control system design Stability analysis

45 Definition The Laplace transform of a function, f(t), is defined as [ ] () Fs () L ft () f te dt (3-1) = = where F(s) is the symbol for the Laplace transform, L is the Laplace transform operator, and f(t) is some function of time, t. 0 st Note: The L operator transforms a time domain function f(t) into an s domain function, F(s). s is a complex variable: s = a + bj, j = 1

46 Inverse Laplace Transform, L -1 By definition, the inverse Laplace transform operator, L -1, converts an s-domain function back to the corresponding time domain function: 1 () L F( s) f t = Important Properties: Both L and L -1 are linear operators. Thus, () + () = () + () = ax ( s) + by ( s) (3-3) L axt byt al xt bl yt

47 LT Properties where: - x(t) and y(t) are arbitrary functions - a and b are constants - X ( s) = L x( t) and Y( s) = L y( t) Similarly, L ( ) + ( ) = ( ) + ( ) 1 ax s by s ax t b y t

48 Laplace Transforms of Common Functions 1. Constant Function Let f(t) = a (a constant). Then from the definition of the Laplace transform in (3-1), L st a st a a a = ae dt = e = 0 = (3-4) s s s ( ) 0 0

49 Step Function 2. Step Function The unit step function is widely used in the analysis of process control problems. It is defined as: () S t = 0 fort < 0 1 fort 0 (3-5) Because the step function is a special case of a constant, it follows from (3-4) that () L S t = 1 s (3-6)

50 Derivatives 3. Derivatives This is a very important transform because derivatives appear in the ODEs we wish to solve. In the text (p.53), it is shown that df L = sf s dt ( ) f ( ) Similarly, for higher order derivatives: L ( n ) ( ) ( n ) ( ) 0 (3-9) initial condition at t = 0 n d f n n 1 n 2 ( ) ( ) () 1 s F s s f 0 s f ( 0) n = dt sf 0 f 0 (3-14)

51 Derivatives (cont d) where: - n is an arbitrary positive integer - ( k f ) ( 0) = d k f k dt = Special Case: All Initial Conditions are Zero t 0 Suppose ( ) () ( ) 1 1 ( n ) ( ) f 0 = f 0 =... = f 0. Then n d f n L ( ) n = s F s dt In process control problems, we usually assume zero initial conditions.

52 Exponential and Pulse Functions 4. Exponential Functions Consider bt () = e f t where b > 0. Then, L bt bt st ( b s) t e + = e e dt = e dt ( b+ s) t 1 = e = b+ s 0 s+ b (3-16) 5. Rectangular Pulse Function It is defined by: 0 for t < 0 f () t = h for 0 t < tw (3-20) 0 for t tw

53 h f () t t w Time, t The Laplace transform of the rectangular pulse is given by h s ( ) ( ts = e ) F s w 1 (3-22)

54 Impulse function 6. Impulse Function (or Dirac Delta Function) The impulse function is obtained by taking the limit of the rectangular pulse as its width, t w, goes to zero but holding 1 the area under the pulse constant at one. (i.e., let h = ) t Let, = impulse function w δ () t Then, () t 1 L δ =

55 Laplace Table

56 Solution of ODEs by Laplace Transforms Procedure: 1. Take the L of both sides of the ODE. 2. Rearrange the resulting algebraic equation in the s domain to solve for the L of the output variable, e.g., Y(s). 3. Perform a partial fraction expansion. 4. Use the L -1 to find y(t) from the expression for Y(s).

57 Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: () ( ) xt X s () ( ) yt system Y s The following terminology is used: x input forcing function cause y output response effect

58 Definition of TF Let G(s) denote the transfer function between an input, x, and an output, y. Then, by definition where: ( ) G s = ( ) ( ) Y s X s ( ) = L y( t) Y s ( ) = L x( t) X s Example: Model for a simple cylindrical tank - mass balance - linearization (if necessary) - deviation variable - time constant equivalent to residence time - gain of the process

59 First Order System Chapter 5 The standard form for a first-order TF is: where: τ ( ) ( ) Y s U s K = (5-16) τs+ 1 K = steady-state gain = time constant Consider the response of this system to a step of magnitude, M: () for 0 ( ) U t = M t U s = M s Substitute into (5-16) and rearrange, ( ) Y s = s KM ( τs+ 1) (5-17)

60 First Order System Take L -1 (cf. Table 3.1), () ( / τ = ) yt KM1 e t (5-18) Chapter 5 y y Let y = steady-state value of y(t). From (5-18), t τ t y y 0 0 τ τ τ 4τ 5τ Note: Large means a slow response. τ y = KM.

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

بسمه تعالي کنترل صنعتي 2 دکتر سید مجید اسما عیل زاده گروه کنترل دانشکده مهندسي برق دانشگاه علم و صنعت ایران پاییس 90

بسمه تعالي کنترل صنعتي 2 دکتر سید مجید اسما عیل زاده گروه کنترل دانشکده مهندسي برق دانشگاه علم و صنعت ایران پاییس 90 بسمه تعالي کنترل صنعتي 2 دکتر سید مجید اسما عیل زاده گروه کنترل دانشکده مهندسي برق دانشگاه علم و صنعت ایران پاییس 90 Techniques of Model-Based Control By Coleman Brosilow, Babu Joseph Publisher : Prentice

More information

Theoretical Models of Chemical Processes

Theoretical Models of Chemical Processes Theoretical Models of Chemical Processes Dr. M. A. A. Shoukat Choudhury 1 Rationale for Dynamic Models 1. Improve understanding of the process 2. Train Plant operating personnel 3. Develop control strategy

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

Mathematical Modeling of Chemical Processes. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Mathematical Modeling of Chemical Processes. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Mathematical Modeling of Chemical Processes Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Chapter Objectives End of this chapter, you should be

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Subject: Introduction to Process Control. Week 01, Lectures 01 02, Spring Content

Subject: Introduction to Process Control. Week 01, Lectures 01 02, Spring Content v CHEG 461 : Process Dynamics and Control Subject: Introduction to Process Control Week 01, Lectures 01 02, Spring 2014 Dr. Costas Kiparissides Content 1. Introduction to Process Dynamics and Control 2.

More information

Process Control, 3P4 Assignment 6

Process Control, 3P4 Assignment 6 Process Control, 3P4 Assignment 6 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 28 March 204 This assignment gives you practice with cascade control and feedforward control. Question [0 = 6 + 4] The outlet

More information

Index. INDEX_p /15/02 3:08 PM Page 765

Index. INDEX_p /15/02 3:08 PM Page 765 INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

More information

BITS-Pilani Dubai, International Academic City, Dubai Second Semester. Academic Year

BITS-Pilani Dubai, International Academic City, Dubai Second Semester. Academic Year BITS-Pilani Dubai, International Academic City, Dubai Second Semester. Academic Year 2007-2008 Evaluation Com anent: Com rehensive Examination Closed Book CHE UC441/11NSTR UC 45'1 PROCESS CONTROL Date:

More information

Model Predictive Control Design for Nonlinear Process Control Reactor Case Study: CSTR (Continuous Stirred Tank Reactor)

Model Predictive Control Design for Nonlinear Process Control Reactor Case Study: CSTR (Continuous Stirred Tank Reactor) IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 1 (Jul. - Aug. 2013), PP 88-94 Model Predictive Control Design for Nonlinear Process

More information

Class 27: Block Diagrams

Class 27: Block Diagrams Class 7: Block Diagrams Dynamic Behavior and Stability of Closed-Loop Control Systems We no ant to consider the dynamic behavior of processes that are operated using feedback control. The combination of

More information

Dynamic modelling J.P. CORRIOU. Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 2016

Dynamic modelling J.P. CORRIOU. Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 2016 Dynamic modelling J.P. CORRIOU Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 216 J.P. Corriou (LRGP) Dynamic modelling Zhejiang University

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design General Requirements 1. Safety. It is imperative that industrial plants operate safely so as to promote the well-being of people and equipment within the plant and in

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Dynamic Behavior. Chapter 5

Dynamic Behavior. Chapter 5 1 Dynamic Behavior In analyzing process dynamic and process control systems, it is important to know how the process responds to changes in the process inputs. A number of standard types of input changes

More information

Modelling and linearization. Mathematical Modeling of Chemical Processes

Modelling and linearization. Mathematical Modeling of Chemical Processes Modelling and linearization Seborg: Chapter 2 + 3.4 (lin.) Skogestad: Ch. 11 Mathematical Modeling of Chemical Processes Chapter 2 Mathematical Model (Eykhoff, 1974) a representation of the essential aspects

More information

Solutions for Tutorial 3 Modelling of Dynamic Systems

Solutions for Tutorial 3 Modelling of Dynamic Systems Solutions for Tutorial 3 Modelling of Dynamic Systems 3.1 Mixer: Dynamic model of a CSTR is derived in textbook Example 3.1. From the model, we know that the outlet concentration of, C, can be affected

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 5-1 Road Map of the Lecture V Laplace Transform and Transfer

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Process Dynamics, Operations, and Control Lecture Notes 2

Process Dynamics, Operations, and Control Lecture Notes 2 Chapter. Dynamic system.45 Process Dynamics, Operations, and Control. Context In this chapter, we define the term 'system' and how it relates to 'process' and 'control'. We will also show how a simple

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design Introduction Degrees of Freedom for Process Control Selection of Controlled, Manipulated, and Measured Variables Process Safety and Process Control 1 General Requirements

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

Solutions for Tutorial 10 Stability Analysis

Solutions for Tutorial 10 Stability Analysis Solutions for Tutorial 1 Stability Analysis 1.1 In this question, you will analyze the series of three isothermal CSTR s show in Figure 1.1. The model for each reactor is the same at presented in Textbook

More information

( ) ( = ) = ( ) ( ) ( )

( ) ( = ) = ( ) ( ) ( ) ( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note

More information

CONTROL OF MULTIVARIABLE PROCESSES

CONTROL OF MULTIVARIABLE PROCESSES Process plants ( or complex experiments) have many variables that must be controlled. The engineer must. Provide the needed sensors 2. Provide adequate manipulated variables 3. Decide how the CVs and MVs

More information

3.1 Overview 3.2 Process and control-loop interactions

3.1 Overview 3.2 Process and control-loop interactions 3. Multivariable 3.1 Overview 3.2 and control-loop interactions 3.2.1 Interaction analysis 3.2.2 Closed-loop stability 3.3 Decoupling control 3.3.1 Basic design principle 3.3.2 Complete decoupling 3.3.3

More information

Solutions for Tutorial 4 Modelling of Non-Linear Systems

Solutions for Tutorial 4 Modelling of Non-Linear Systems Solutions for Tutorial 4 Modelling of Non-Linear Systems 4.1 Isothermal CSTR: The chemical reactor shown in textbook igure 3.1 and repeated in the following is considered in this question. The reaction

More information

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709,

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, Accumulation, 53 Accuracy: numerical integration, 83-84 sensor, 383, 772-773 Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, 715 input conversion, 519 reasons for, 512-517 relay auto-tuning,

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Process Control Hardware Fundamentals

Process Control Hardware Fundamentals Unit-1: Process Control Process Control Hardware Fundamentals In order to analyse a control system, the individual components that make up the system must be understood. Only with this understanding can

More information

CM 3310 Process Control, Spring Lecture 21

CM 3310 Process Control, Spring Lecture 21 CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic Single-Input/Single-Output (SISO) Feedback Figure

More information

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I)

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Prof. Gabriele Pannocchia Department of Civil and Industrial Engineering (DICI) University

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

Introduction to Process Control

Introduction to Process Control Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design Chapter 10 General Requirements 1. Safety. It is imperative that industrial plants operate safely so as to promote the well-being of people and equipment within the plant

More information

Pre GATE Pre-GATE 2018

Pre GATE Pre-GATE 2018 Pre GATE-018 Chemical Engineering CH 1 Pre-GATE 018 Duration : 180 minutes Total Marks : 100 CODE: GATE18-1B Classroom Postal Course Test Series (Add : 61C, Kalusarai Near HauzKhas Metro, Delhi 9990657855)

More information

Process Unit Control System Design

Process Unit Control System Design Process Unit Control System Design 1. Introduction 2. Influence of process design 3. Control degrees of freedom 4. Selection of control system variables 5. Process safety Introduction Control system requirements»

More information

Queen s University at Kingston. CHEE Winter Process Dynamics and Control. M. Guay. Quiz 1

Queen s University at Kingston. CHEE Winter Process Dynamics and Control. M. Guay. Quiz 1 Queen s University at Kingston CHEE 319 - Winter 2011 Process Dynamics and Control M. Guay Quiz 1 Instructions: 1. This is a 50 minute examination. 2. Please write your student number instead of your name

More information

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes Control of MIMO processes Control of Multiple-Input, Multiple Output (MIMO) Processes Statistical Process Control Feedforward and ratio control Cascade control Split range and selective control Control

More information

Principles and Practice of Automatic Process Control

Principles and Practice of Automatic Process Control Principles and Practice of Automatic Process Control Third Edition Carlos A. Smith, Ph.D., P.E. Department of Chemical Engineering University of South Florida Armando B. Corripio, Ph.D., P.E. Gordon A.

More information

Introduction to Process Control. Lecture 1, 2016/2017 Control & System Eng. Dept., 4 th year Subject: Process Control. Dr. Safanah M.

Introduction to Process Control. Lecture 1, 2016/2017 Control & System Eng. Dept., 4 th year Subject: Process Control. Dr. Safanah M. Introduction to Process Control Lecture 1, 2016/2017 Control & System Eng. Dept., 4 th year Subject: Process Control. Dr. Safanah M. Raafat REPRESENTATIVE PROCESS CONTROL PROBLEMS Process: The conversion

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY

CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY S. Lakshminarayanan, 1 Rao Raghuraj K 1 and S. Balaji 1 1 Department of Chemical and Biomolecular Engineering, 4 Engineering

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

Guide to Selected Process Examples :ili3g eil;]iil

Guide to Selected Process Examples :ili3g eil;]iil Guide to Selected Process Examples :ili3g eil;]iil Because of the strong interplay between process dynamics and control perfor mance, examples should begin with process equipment and operating conditions.

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Chapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirred-tank blending system.

Chapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirred-tank blending system. Feedback Controllers Figure 8.1 Schematic diagram for a stirred-tank blending system. 1 Basic Control Modes Next we consider the three basic control modes starting with the simplest mode, proportional

More information

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 11 CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 2.1 INTRODUCTION This chapter deals with the process description and analysis of CSTR. The process inputs, states and outputs are identified

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Enhanced Single-Loop Control Strategies Chapter 16

Enhanced Single-Loop Control Strategies Chapter 16 Enhanced Single-Loop Control Strategies Chapter 16 1. Cascade control 2. Time-delay compensation 3. Inferential control 4. Selective and override control 5. Nonlinear control 6. Adaptive control 1 Chapter

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

PROPORTIONAL-Integral-Derivative (PID) controllers

PROPORTIONAL-Integral-Derivative (PID) controllers Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process R.Vinodha S. Abraham Lincoln and J. Prakash Abstract Multi-loop (De-centralized) Proportional-Integral- Derivative

More information

Use of Differential Equations In Modeling and Simulation of CSTR

Use of Differential Equations In Modeling and Simulation of CSTR Use of Differential Equations In Modeling and Simulation of CSTR JIRI VOJTESEK, PETR DOSTAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nám. T. G. Masaryka

More information

Solution to exam in PEF3006 Process Control at Telemark University College

Solution to exam in PEF3006 Process Control at Telemark University College Solution to exam in PEF3006 Process Control at Telemark University College Exam date: 7. December 2015. Duration: 4 hours. Weight in final grade of the course: 100%. Teacher: Finn Aakre Haugen (finn.haugen@hit.no).

More information

CHAPTER 15: FEEDFORWARD CONTROL

CHAPTER 15: FEEDFORWARD CONTROL CHAPER 5: EEDORWARD CONROL When I complete this chapter, I want to be able to do the following. Identify situations for which feedforward is a good control enhancement Design feedforward control using

More information

Plantwide Control of Chemical Processes Prof. Nitin Kaistha Department of Chemical Engineering Indian Institute of Technology, Kanpur

Plantwide Control of Chemical Processes Prof. Nitin Kaistha Department of Chemical Engineering Indian Institute of Technology, Kanpur Plantwide Control of Chemical Processes Prof. Nitin Kaistha Department of Chemical Engineering Indian Institute of Technology, Kanpur Lecture - 41 Cumene Process Plantwide Control (Refer Slide Time: 00:18)

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number of moles

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES When I complete this chapter, I want to be able to do the following. Formulate dynamic models based on fundamental balances Solve simple first-order linear

More information

Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang

Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

Process Modelling, Identification, and Control

Process Modelling, Identification, and Control Jan Mikles Miroslav Fikar Process Modelling, Identification, and Control With 187 Figures and 13 Tables 4u Springer Contents 1 Introduction 1 1.1 Topics in Process Control 1 1.2 An Example of Process Control

More information

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control 1 Cascade Control A disadvantage of conventional feedback

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

Design of de-coupler for an interacting tanks system

Design of de-coupler for an interacting tanks system IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 3-3331, Volume 7, Issue 4 (Sep. - Oct. 13), PP 48-53 Design of de-coupler for an interacting tanks system Parag

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

Distributed Parameter Systems

Distributed Parameter Systems Distributed Parameter Systems Introduction All the apparatus dynamic experiments in the laboratory exhibit the effect known as "minimum phase dynamics". Process control loops are often based on simulations

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Process Control, 3P4 Assignment 5

Process Control, 3P4 Assignment 5 Process Control, 3P4 Assignment 5 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 12 March 2014 This assignment is due on Wednesday, 12 March 2014. Late hand-ins are not allowed. Since it is posted mainly

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre Chemical Reaction Engineering Multiple Reactions Dr.-Eng. Zayed Al-Hamamre 1 Content Types of Reactions Selectivity Reaction Yield Parallel Reactions Series Reactions Net Rates of Reaction Complex Reactions

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 5: Operability of Processes

Spring 2006 Process Dynamics, Operations, and Control Lesson 5: Operability of Processes 5.0 context and direction In esson 4, we encountered instability. We think of stability as a mathematical property of our linear system models. Now we will embed this mathematical notion within the practical

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

B1-1. Closed-loop control. Chapter 1. Fundamentals of closed-loop control technology. Festo Didactic Process Control System

B1-1. Closed-loop control. Chapter 1. Fundamentals of closed-loop control technology. Festo Didactic Process Control System B1-1 Chapter 1 Fundamentals of closed-loop control technology B1-2 This chapter outlines the differences between closed-loop and openloop control and gives an introduction to closed-loop control technology.

More information

Multi-Loop Control. Department of Chemical Engineering,

Multi-Loop Control. Department of Chemical Engineering, Interaction ti Analysis and Multi-Loop Control Sachin C. Patawardhan Department of Chemical Engineering, I.I.T. Bombay Outline Motivation Interactions in Multi-loop control Loop pairing using Relative

More information

Plug flow Steady-state flow. Mixed flow

Plug flow Steady-state flow. Mixed flow 1 IDEAL REACTOR TYPES Batch Plug flow Steady-state flow Mixed flow Ideal Batch Reactor It has neither inflow nor outflow of reactants or products when the reaction is being carried out. Uniform composition

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

Evolutionary Optimization Scheme for Exothermic Process Control System

Evolutionary Optimization Scheme for Exothermic Process Control System (76 -- 97 Proceedings of the 3rd ( CUTSE International Conference Miri, Sarawak, Malaysia, 8-9 Nov, Evolutionary Optimization Scheme for Exothermic Process Control System M.K. Tan Y.K. Chin H.J. Tham K.T.K.

More information

Real-Time Optimization (RTO)

Real-Time Optimization (RTO) Real-Time Optimization (RTO) In previous chapters we have emphasized control system performance for disturbance and set-point changes. Now we will be concerned with how the set points are specified. In

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

5. Coupling of Chemical Kinetics & Thermodynamics

5. Coupling of Chemical Kinetics & Thermodynamics 5. Coupling of Chemical Kinetics & Thermodynamics Objectives of this section: Thermodynamics: Initial and final states are considered: - Adiabatic flame temperature - Equilibrium composition of products

More information

Chapter 4 Copolymerization

Chapter 4 Copolymerization Chapter 4 Copolymerization 4.1 Kinetics of Copolymerization 4.1.1 Involved Chemical Reactions Initiation I 2 + M 2R 1 r = 2 fk d I 2 R I Propagation Chain Transfer Termination m,n + k p m+1,n m,n + B k

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 2-3 Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 28, 2018 J. Tani, E.

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

The simplified model now consists only of Eq. 5. Degrees of freedom for the simplified model: 2-1

The simplified model now consists only of Eq. 5. Degrees of freedom for the simplified model: 2-1 . a) Overall mass balance: d( ρv ) Energy balance: = w + w w () d V T Tref C = wc ( T Tref ) + wc( T Tref ) w C T Because ρ = constant and ( Tref ) V = V = constant, Eq. becomes: () w = + () w w b) From

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR CONTROL Alex D. Kalafatis Liuping Wang William R. Cluett AspenTech, Toronto, Canada School of Electrical & Computer Engineering, RMIT University, Melbourne,

More information