Augmented Lattice Reduction for MIMO decoding

Size: px
Start display at page:

Download "Augmented Lattice Reduction for MIMO decoding"

Transcription

1 Augmented Lattice Reduction for MIMO decoding LAURA LUZZI joint work with G. Rekaya-Ben Othman and J.-C. Belfiore at Télécom-ParisTech NANYANG TECHNOLOGICAL UNIVERSITY SEPTEMBER 15, 2010 Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 1

2 Motivation Multiple antenna systems allow to improve data rates and reliability. In order to increase data rates, both the number of antennas and the size of the signal set can be increased. This entails a high decoding complexity which is a real challenge for practical implementation. Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 2

3 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 3

4 MIMO systems bits modulation coding X H Y decoding demodulation channel multiplexing gain - send independent data on each antenna - improve the rate diversity gain - send independent copies of the same data - improve reliability Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 4

5 System model: spatial multiplexing y n 1 = H n m x m 1 + w n 1 received signal channel codeword noise m transmit antennas, n receive antennas H, w are random matrices with i.i.d. complex Gaussian entries x i S Z[i] is the signal transmitted by antenna i Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 5

6 System model: Space-Time Coding Y n t = H n m X m t + W n t received signal channel codeword noise m transmit antennas, n receive antennas, t frame length codewords are represented by matrices or space-time blocks the matrix element x i,j C represents the signal sent by antenna i at time j Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 6

7 Diversity order of a coding scheme d = lim SNR log(p e ) log(snr), where P e is the error probability, and SNR is the signal-to-noise ratio. Maximum diversity order For spatial multiplexing: d max = n (receive diversity) For space-time coding: d max = mn (transmit and receive diversity) Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 7

8 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 8

9 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 9

10 Lattice point representation and decoding Spatial multiplexing case y = Hx + w The received vector is the translated version of a point in the lattice generated by H. Coded case Y = HX + W Equivalent lattice formulation after vectorizing matrices: y = H l Φs + w H l linear map corresponding to left multiplication by H Φ generator matrix of the code s vector of information signals Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 10

11 Decoding Optimal decoding amounts to solving the Closest Vector Problem (CVP) in the lattice generated by H: ˆx = argmin y Hx 2 x S ML solution ML decoders Sphere Decoder, Schnorr-Euchner algorithm... optimal performance but exponential complexity Suboptimal decoders zero forcing (ZF), successive interference cancellation (SIC)... polynomial complexity, but they don t attain maximal diversity Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 11

12 Channel preprocessing Example: ZF decoding y = Hx + w ˆx ZF = H 1 y = x + H 1 w if H is orthogonal, ZF decoding is optimal if H is ill-conditioned, the noise H 1 w is amplified Solution: channel preprocessing by lattice reduction improves the performance of suboptimal decoders Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 12

13 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 13

14 Lattice reduction Two matrices H and H generate the same lattice if H = HT with T unimodular. Lattice reduction: find a lattice basis formed by short and nearly orthogonal vectors the most popular lattice reduction algorithm is the LLL algorithm, thanks to its polynomial complexity Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 14

15 The LLL algorithm Gram-Schmidt Orthogonalization (GSO) h 1 h 1 for i = 2,..., m do for j = 1,..., i 1 do µ i,j hi,h j h j 2 end h i h i i 1 j=1 µ i,jh j end LLL-reduced basis H is LLL-reduced if its GSO satisfies the following properties: Size reduction: µ k,l 1 2, 1 l < k m, Lovasz condition: h k + µ k,k 1h 2 k h 2 k 1, 1 < k m Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 15

16 The LLL algorithm Compute GSO k 2 while k m do Size reduction RED(k,k-1) if Lovasz(k,k-1) is not satisfied then swap h k and h k 1 update GSO k max(k 1, 2) end else for l = k 2,..., 1 do Size reduction RED(k,l) end k k + 1 end end Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 16

17 Preprocessing using LLL reduction m transmit antennas, n receive antennas y n 1 = H n m x m 1 + w n 1 received signal channel codeword noise H red = HU LLL-reduced form Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 17

18 Preprocessing using LLL reduction m transmit antennas, n receive antennas y n 1 = H n m x m 1 + w n 1 received signal channel codeword noise H red = HU LLL-reduced form LLL-ZF decoder compute the pseudoinverse H red ) ˆx LLL ZF = U ( H red y Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 17

19 Preprocessing using LLL reduction m transmit antennas, n receive antennas y n 1 = H n m x m 1 + w n 1 received signal channel codeword noise H red = HU LLL-reduced form LLL-ZF decoder compute the pseudoinverse H red ) ˆx LLL ZF = U ( H red y LLL-SIC decoder QR decomposition of H red ỹ = Q H y = Rx + Q H w recursively compute x m = ỹm, r mm ỹi m x i = j=i+1 r ij x j, i = m 1,..., 1 r ii ˆx LLL SIC = U x Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 17

20 Performance of LLL-aided decoding Proposition [Taherzadeh, Mobasher, Khandani 2007] LLL-ZF and LLL-SIC decoders attain the maximal receive diversity n. the average complexity of LLL-aided decoding is polynomial, which makes it an attractive technique however, LLL becomes less effective for high-dimensional lattices as a consequence, the performance gap with respect to ML decoding increases greatly when the number of antennas is large Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 18

21 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 19

22 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 20

23 Augmented lattice reduction - principle new technique which combines preprocessing and detection: lattice reduction is used directly to decode MIMO decoding amounts to solving the closest vector problem (CVP) in the lattice generated by the channel matrix reduce the CVP to the SVP (shortest vector problem) use LLL reduction to solve the SVP in polynomial time Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 21

24 Embedding method to reduce the CVP to the SVP Follow Kannan s approach (1987): embed the m-dimensional lattice generated by H into a suitable (m + 1)-dimensional lattice H = H y 0 t augmented matrix v = Hx y = w = H x t t 1 Strategy: if w and t are very small, v is the shortest vector in the augmented lattice. By finding v, we recover x. Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 22

25 Using LLL reduction to find the shortest lattice vector LLL-reduce H: Hred = HŨ Problem: in general, there s no guarantee that the shortest vector belongs to the reduced basis. However, the first column of H red satisfies h red 1 2 m 2 d H v shortest vector in L is called α-unique if u L, u α v u, v linearly dependent Exponential gap technique v is 2 m 2 -unique ±v is the first column of H red Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 23

26 LLL reduction finds the shortest lattice vector a(h) min 1 i m h i d H 2 m 1 2 Lemma a(h red ) d H Let t = a(hred) 2, and suppose that w d m+1 H 2. m+1 Then v = Hx y is a 2 m 2 -unique shortest vector in L( H). t Sketch of the proof: Suppose u = Hx qy such that u 2 m 2 v, and u, v linearly independent qt u q t q 2 m 2 v t H(x qx) Hx qy + q y Hx 2 m 2 v + 2 m 2 v w t ( ) 2 m 2 w 2 + t w < d t H contradiction. Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 24

27 Augmented lattice reduction- Decoding Choose t = a(h red) 2 m+1 the augmented lattice has an exponential gap LLL-reduce H: Hred = HŨ If w d H, v = H x is the first column of H 2 m+1 red 1 find the transmitted message x on the first column of Ũ : ˆx = 1 ũ m+1,1 (ũ 1,1,..., ũ m,1 ) T Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 25

28 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 26

29 Performance analysis Diversity gain d = lim SNR log(p e ) log(snr) Proposition If t = a(h red) 2 m+1, then augmented lattice reduction achieves the maximum receive diversity n. { P e (H) P w > Sketch of the proof. d } H 2 m+1 C(log(SNR))n+1 SNR n Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 27

30 6 6 MIMO system, spatial multiplexing 10 0 MIMO 6x6, spatial multiplexing, 16 QAM SER ML MMSE GDFE+LLL+ZF MMSE GDFE+LLL SIC MMSE GDFE+ALR MMSE GDFE+ILR SNR Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 28

31 8 8 MIMO system, spatial multiplexing 10 0 MIMO 8x8, spatial multiplexing, 16 QAM SER ML MMSE GDFE+LLL ZF MMSE GDFE+LLL SIC MMSE GDFE+ALR SNR Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 29

32 Coded case: 2 2 system, Golden Code 10 0 Golden Code 16 QAM ML MMSE GDFE + ALR MMSE GDFE + LLL + SIC 10 1 FER SNR Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 30

33 Comparison with Kim and Park s Method [N. Kim, H. Park, Improved lattice reduction aided detections for MIMO systems, Vehicular Technology Conference 2006] Same form of the augmented matrix H No exponential gap technique: - the parameter t is big (t > max r ii, where H red = QR) - the solution is found on the last column of Ũ no guarantee that LLL reduction will find the right vector. In fact, one can prove that the performance is the same as LLL-SIC. Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 31

34 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 32

35 Complexity analysis (for n = m) average number of iterations of the LLL algorithm: E[K(H)] O ( n 2 log n ) [Jalden et al. 2008] each iteration requires O(n 2 ) operations, which can be reduced to O(n) for LLL-SIC [Ling, Howgrave-Graham 2007] the total complexity of LLL-SIC is bounded by O(n 3 log n) Complexity bound for augmented lattice reduction E[K( H)] O(n 3 ) the total complexity is bounded by O(n 4 ). Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 33

36 Complexity: numerical simulations LLL ZF LLL SIC (using effective LLL) ALR ALR using effective LLL Sphere Decoder Average number of flops, SNR= N Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 34

37 Outline 1 MIMO systems 2 Decoding Lattice decoding Lattice reduction-aided decoding 3 Augmented lattice reduction Method Performance Complexity 4 Open problems Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 35

38 Open problems explain why the performance of augmented lattice reduction is better than LLL-SIC find more realistic bounds on the complexity for high-dimensional space-time codes, the gap between ML decoding and augmented lattice reduction is still huge. How can we bridge this gap? Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 36

39 Thank you for listening!! Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 37

On the diversity of the Naive Lattice Decoder

On the diversity of the Naive Lattice Decoder On the diversity of the Naive Lattice Decoder Asma Mejri, Laura Luzzi, Ghaya Rekaya-Ben Othman To cite this version: Asma Mejri, Laura Luzzi, Ghaya Rekaya-Ben Othman. On the diversity of the Naive Lattice

More information

The Diagonal Reduction Algorithm Using Fast Givens

The Diagonal Reduction Algorithm Using Fast Givens The Diagonal Reduction Algorithm Using Fast Givens Wen Zhang, Sanzheng Qiao, and Yimin Wei Abstract Recently, a new lattice basis reduction notion, called diagonal reduction, was proposed for lattice-reduction-aided

More information

Applications of Lattices in Telecommunications

Applications of Lattices in Telecommunications Applications of Lattices in Telecommunications Dept of Electrical and Computer Systems Engineering Monash University amin.sakzad@monash.edu Oct. 2013 1 Sphere Decoder Algorithm Rotated Signal Constellations

More information

Partial LLL Reduction

Partial LLL Reduction Partial Reduction Xiaohu Xie School of Computer Science McGill University Montreal, Quebec, Canada H3A A7 Email: xiaohu.xie@mail.mcgill.ca Xiao-Wen Chang School of Computer Science McGill University Montreal,

More information

HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO Detection

HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO Detection IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012 5963 HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO Detection Wen Zhang, Sanzheng Qiao, and Yimin Wei Abstract

More information

Algebraic reduction for the Golden Code

Algebraic reduction for the Golden Code Algebraic reduction for the Golden Code Ghaya Rekaya-Ben Othman, Laura Luzzi and Jean-Claude Belfiore TELECOM ParisTech, 46 rue Barrault, 753 Paris, France E-mail: {rekaya, luzzi, belfiore}@telecom paristech.fr

More information

An Efficient Optimal Algorithm for Integer-Forcing Linear MIMO Receivers Design

An Efficient Optimal Algorithm for Integer-Forcing Linear MIMO Receivers Design An Efficient Optimal Algorithm for Integer-Forcing Linear MIMO Receivers Design Jinming Wen, Lanping Li, Xiaohu Tang, Wai Ho Mow, and Chintha Tellambura Department of Electrical and Computer Engineering,

More information

Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction 1

Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction 1 Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction 1 Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical & Computer

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

Layered Orthogonal Lattice Detector for Two Transmit Antenna Communications

Layered Orthogonal Lattice Detector for Two Transmit Antenna Communications Layered Orthogonal Lattice Detector for Two Transmit Antenna Communications arxiv:cs/0508064v1 [cs.it] 12 Aug 2005 Massimiliano Siti Advanced System Technologies STMicroelectronics 20041 Agrate Brianza

More information

Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding Shuiyin Liu, Cong Ling, and Damien Stehlé Abstract Despite its reduced complexity, lattice reduction-aided decoding exhibits

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

Lattice-Reduction-Aided Sphere-Detector as a Solution for Near-Optimal MIMO Detection in Spatial Multiplexing Systems

Lattice-Reduction-Aided Sphere-Detector as a Solution for Near-Optimal MIMO Detection in Spatial Multiplexing Systems Lattice-Reduction-Aided Sphere-Detector as a Solution for Near-Optimal MIMO Detection in Spatial Multiplexing Systems Sébastien Aubert ST-ERICSSON Sophia & INSA IETR Rennes sebastien.aubert@stericsson.com

More information

On the Robustness of Lattice Reduction Over. Correlated Fading Channels

On the Robustness of Lattice Reduction Over. Correlated Fading Channels On the Robustness of Lattice Reduction Over Correlated Fading Channels Hossein Najafi, Student Member, IEEE, Mohammad Erfan Danesh Jafari, Student Member, IEEE, and Mohamed Oussama Damen, Senior Member,

More information

The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels

The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels Deric W. Waters and John R. Barry School of ECE Georgia Institute of Technology Atlanta, GA 30332-0250 USA {deric, barry}@ece.gatech.edu

More information

Application of the LLL Algorithm in Sphere Decoding

Application of the LLL Algorithm in Sphere Decoding Application of the LLL Algorithm in Sphere Decoding Sanzheng Qiao Department of Computing and Software McMaster University August 20, 2008 Outline 1 Introduction Application Integer Least Squares 2 Sphere

More information

Lattice Reduction-Aided Minimum Mean Square Error K-Best Detection for MIMO Systems

Lattice Reduction-Aided Minimum Mean Square Error K-Best Detection for MIMO Systems Lattice Reduction-Aided Minimum Mean Square Error Detection for MIMO Systems Sébastien Aubert (1,3), Youssef Nasser (2), and Fabienne Nouvel (3) (1) Eurecom, 2229, route des Crêtes, 06560 Sophia-Antipolis,

More information

Adaptive Lattice Reduction in MIMO Systems

Adaptive Lattice Reduction in MIMO Systems Adaptive Lattice Reduction in MIMO Systems by Mohammad Erfan Danesh Jafari A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied

More information

V-BLAST in Lattice Reduction and Integer Forcing

V-BLAST in Lattice Reduction and Integer Forcing V-BLAST in Lattice Reduction and Integer Forcing Sebastian Stern and Robert F.H. Fischer Institute of Communications Engineering, Ulm University, Ulm, Germany Email: {sebastian.stern,robert.fischer}@uni-ulm.de

More information

Decoding by Embedding: Correct Decoding Radius and DMT Optimality

Decoding by Embedding: Correct Decoding Radius and DMT Optimality Decoding by Embedding: Correct Decoding Radius and DMT Optimality Laura Luzzi, Damien Stehlé, Cong Ling To cite this version: Laura Luzzi, Damien Stehlé, Cong Ling. Decoding by Embedding: Correct Decoding

More information

Reduced Complexity Sphere Decoding for Square QAM via a New Lattice Representation

Reduced Complexity Sphere Decoding for Square QAM via a New Lattice Representation Reduced Complexity Sphere Decoding for Square QAM via a New Lattice Representation Luay Azzam and Ender Ayanoglu Department of Electrical Engineering and Computer Science University of California, Irvine

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Optimal Factorization in Lattice-Reduction-Aided and Integer-Forcing Linear Equalization

Optimal Factorization in Lattice-Reduction-Aided and Integer-Forcing Linear Equalization Optimal Factorization in Lattice-Reduction-Aided and Integer-Forcing Linear Equalization Sebastian Stern and Robert F.H. Fischer Institute of Communications Engineering, Ulm University, Ulm, Germany Email:

More information

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Simultaneous SDR Optimality via a Joint Matrix Decomp. Simultaneous SDR Optimality via a Joint Matrix Decomposition Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv Uni. May 26, 2011 Model: Source Multicasting over MIMO Channels z 1 H 1 y 1 Rx1 ŝ 1 s

More information

Complex Lattice Reduction Algorithm for Low-Complexity MIMO Detection

Complex Lattice Reduction Algorithm for Low-Complexity MIMO Detection 1 Complex Lattice Reduction Algorithm for Low-Complexity MIMO Detection Ying Hung Gan, Student Member, IEEE, Cong Ling, Member, IEEE, and Wai Ho Mow, Senior Member, IEEE arxiv:cs/0607078v1 [cs.ds] 17 Jul

More information

Golden Space-Time Block Coded Modulation

Golden Space-Time Block Coded Modulation Golden Space-Time Block Coded Modulation Laura Luzzi Ghaya Rekaya-Ben Othman Jean-Claude Belfiore and Emanuele Viterbo Télécom ParisTech- École Nationale Supérieure des Télécommunications 46 Rue Barrault

More information

A Fast-Decodable, Quasi-Orthogonal Space Time Block Code for 4 2 MIMO

A Fast-Decodable, Quasi-Orthogonal Space Time Block Code for 4 2 MIMO Forty-Fifth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 26-28, 2007 ThC6.4 A Fast-Decodable, Quasi-Orthogonal Space Time Block Code for 4 2 MIMO Ezio Biglieri Universitat Pompeu

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm HongSun An Student Member IEEE he Graduate School of I & Incheon Korea ahs3179@gmail.com Manar Mohaisen Student Member IEEE

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

Decomposing the MIMO Wiretap Channel

Decomposing the MIMO Wiretap Channel Decomposing the MIMO Wiretap Channel Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, Hebrew University Ashish Khisti, University of Toronto ISIT 2014 Honolulu, Hawai i, USA June 30,

More information

On the Performance of. Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels

On the Performance of. Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels On the Performance of 1 Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels arxiv:0711.1295v1 [cs.it] 8 Nov 2007 Emanuele Viterbo and Yi Hong Abstract The Golden space-time trellis

More information

ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS.

ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS. 17th European Signal Processing Conference (EUSIPCO 009) Glasgow, Scotland, August 4-8, 009 ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS. Sandra Roger, Alberto Gonzalez,

More information

The Shortest Vector Problem (Lattice Reduction Algorithms)

The Shortest Vector Problem (Lattice Reduction Algorithms) The Shortest Vector Problem (Lattice Reduction Algorithms) Approximation Algorithms by V. Vazirani, Chapter 27 - Problem statement, general discussion - Lattices: brief introduction - The Gauss algorithm

More information

Demixing Radio Waves in MIMO Spatial Multiplexing: Geometry-based Receivers Francisco A. T. B. N. Monteiro

Demixing Radio Waves in MIMO Spatial Multiplexing: Geometry-based Receivers Francisco A. T. B. N. Monteiro Demixing Radio Waves in MIMO Spatial Multiplexing: Geometry-based Receivers Francisco A. T. B. N. Monteiro 005, it - instituto de telecomunicações. Todos os direitos reservados. Demixing Radio Waves in

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

Improved Multiple Feedback Successive Interference Cancellation Algorithm for Near-Optimal MIMO Detection

Improved Multiple Feedback Successive Interference Cancellation Algorithm for Near-Optimal MIMO Detection Improved Multiple Feedback Successive Interference Cancellation Algorithm for Near-Optimal MIMO Detection Manish Mandloi, Mohammed Azahar Hussain and Vimal Bhatia Discipline of Electrical Engineering,

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap Or Ordentlich Dept EE-Systems, TAU Tel Aviv, Israel Email: ordent@engtauacil Uri Erez Dept EE-Systems, TAU Tel Aviv,

More information

Parallel QR Decomposition in LTE-A Systems

Parallel QR Decomposition in LTE-A Systems Parallel QR Decomposition in LTE-A Systems Sébastien Aubert, Manar Mohaisen, Fabienne Nouvel, and KyungHi Chang ST-ERICSSON, 505, route des lucioles, CP 06560 Sophia-Antipolis, France Inha University,

More information

Finite Lattice-Size Effects in MIMO Detection

Finite Lattice-Size Effects in MIMO Detection 1 Finite Lattice-Size Effects in MIMO Detection C. Studer, D. Seethaler, and H. Bölcskei Integrated Systems Laboratory ETH Zurich, 809 Zurich, Switzerland e-mail: studer@iis.ee.ethz.ch Communication Technology

More information

CSE 206A: Lattice Algorithms and Applications Spring Basis Reduction. Instructor: Daniele Micciancio

CSE 206A: Lattice Algorithms and Applications Spring Basis Reduction. Instructor: Daniele Micciancio CSE 206A: Lattice Algorithms and Applications Spring 2014 Basis Reduction Instructor: Daniele Micciancio UCSD CSE No efficient algorithm is known to find the shortest vector in a lattice (in arbitrary

More information

Integer-Forcing Linear Receivers

Integer-Forcing Linear Receivers IEEE TRANS INFO THEORY, TO APPEAR Integer-Forcing Linear Receivers Jiening Zhan, Bobak Nazer, Member, IEEE, Uri Erez, Member, IEEE, and Michael Gastpar, Member, IEEE arxiv:0035966v4 [csit] 5 Aug 04 Abstract

More information

Integer Least Squares: Sphere Decoding and the LLL Algorithm

Integer Least Squares: Sphere Decoding and the LLL Algorithm Integer Least Squares: Sphere Decoding and the LLL Algorithm Sanzheng Qiao Department of Computing and Software McMaster University 28 Main St. West Hamilton Ontario L8S 4L7 Canada. ABSTRACT This paper

More information

4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER Pranav Dayal, Member, IEEE, and Mahesh K. Varanasi, Senior Member, IEEE

4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER Pranav Dayal, Member, IEEE, and Mahesh K. Varanasi, Senior Member, IEEE 4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 12, DECEMBER 2005 An Algebraic Family of Complex Lattices for Fading Channels With Application to Space Time Codes Pranav Dayal, Member, IEEE,

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Iterative Matrix Inversion Based Low Complexity Detection in Large/Massive MIMO Systems

Iterative Matrix Inversion Based Low Complexity Detection in Large/Massive MIMO Systems Iterative Matrix Inversion Based Low Complexity Detection in Large/Massive MIMO Systems Vipul Gupta, Abhay Kumar Sah and A. K. Chaturvedi Department of Electrical Engineering, Indian Institute of Technology

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Lattice Basis Reduction Part 1: Concepts

Lattice Basis Reduction Part 1: Concepts Lattice Basis Reduction Part 1: Concepts Sanzheng Qiao Department of Computing and Software McMaster University, Canada qiao@mcmaster.ca www.cas.mcmaster.ca/ qiao October 25, 2011, revised February 2012

More information

Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding Shuiyin Liu, Cong Ling, and Damien Stehlé arxiv:003.0064v [cs.it] 8 Dec 0 Abstract Despite its reduced complexity, lattice

More information

CSE 206A: Lattice Algorithms and Applications Spring Basic Algorithms. Instructor: Daniele Micciancio

CSE 206A: Lattice Algorithms and Applications Spring Basic Algorithms. Instructor: Daniele Micciancio CSE 206A: Lattice Algorithms and Applications Spring 2014 Basic Algorithms Instructor: Daniele Micciancio UCSD CSE We have already seen an algorithm to compute the Gram-Schmidt orthogonalization of a lattice

More information

Variants of the LLL Algorithm in Digital Communications: Complexity Analysis and Fixed-Complexity Implementation

Variants of the LLL Algorithm in Digital Communications: Complexity Analysis and Fixed-Complexity Implementation 1 Variants of the LLL Algorithm in Digital Communications: Complexity Analysis and Fixed-Complexity Implementation Cong Ling, Member, IEEE, Wai Ho Mow, Senior Member, IEEE, and Nick Howgrave-Graham arxiv:16.1661v

More information

An improved scheme based on log-likelihood-ratio for lattice reduction-aided MIMO detection

An improved scheme based on log-likelihood-ratio for lattice reduction-aided MIMO detection Song et al. EURASIP Journal on Advances in Signal Processing 206 206:9 DOI 0.86/s3634-06-032-8 RESEARCH Open Access An improved scheme based on log-likelihood-ratio for lattice reduction-aided MIMO detection

More information

Lattice Basis Reduction and the LLL Algorithm

Lattice Basis Reduction and the LLL Algorithm Lattice Basis Reduction and the LLL Algorithm Curtis Bright May 21, 2009 1 2 Point Lattices A point lattice is a discrete additive subgroup of R n. A basis for a lattice L R n is a set of linearly independent

More information

Lattice reduction is a powerful concept for solving diverse problems

Lattice reduction is a powerful concept for solving diverse problems [ Dirk Wübben, Dominik Seethaler, Joakim Jaldén, and Gerald Matz ] [ A survey with applications in wireless communications] Lattice reduction is a powerful concept for solving diverse problems involving

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Lattice Gaussian Sampling with Markov Chain Monte Carlo (MCMC)

Lattice Gaussian Sampling with Markov Chain Monte Carlo (MCMC) Lattice Gaussian Sampling with Markov Chain Monte Carlo (MCMC) Cong Ling Imperial College London aaa joint work with Zheng Wang (Huawei Technologies Shanghai) aaa September 20, 2016 Cong Ling (ICL) MCMC

More information

Improved Methods for Search Radius Estimation in Sphere Detection Based MIMO Receivers

Improved Methods for Search Radius Estimation in Sphere Detection Based MIMO Receivers Improved Methods for Search Radius Estimation in Sphere Detection Based MIMO Receivers Patrick Marsch, Ernesto Zimmermann, Gerhard Fettweis Vodafone Chair Mobile Communications Systems Department of Electrical

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems

Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems ACSTSK Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems Professor Sheng Chen Electronics and Computer Science University of Southampton Southampton SO7 BJ, UK E-mail: sqc@ecs.soton.ac.uk

More information

Lattice Reduction of Modular, Convolution, and NTRU Lattices

Lattice Reduction of Modular, Convolution, and NTRU Lattices Summer School on Computational Number Theory and Applications to Cryptography Laramie, Wyoming, June 19 July 7, 2006 Lattice Reduction of Modular, Convolution, and NTRU Lattices Project suggested by Joe

More information

FULL rate and full diversity codes for the coherent

FULL rate and full diversity codes for the coherent 1432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 The Golden Code: A 2 2 Full-Rate Space Time Code With Nonvanishing Determinants Jean-Claude Belfiore, Member, IEEE, Ghaya Rekaya,

More information

On the Complexity Distribution of Sphere Decoding

On the Complexity Distribution of Sphere Decoding On the Complexity Distribution of Sphere Decoding 1 D Seethaler, J Jaldén, C Studer, and H Bölcskei RobArt, 4020 Linz, Austria e-mail: dominikseethaler@gmailcom Royal Institute of Technology (KTH, 100

More information

A Thesis for the Degree of Master. An Improved LLR Computation Algorithm for QRM-MLD in Coded MIMO Systems

A Thesis for the Degree of Master. An Improved LLR Computation Algorithm for QRM-MLD in Coded MIMO Systems A Thesis for the Degree of Master An Improved LLR Computation Algorithm for QRM-MLD in Coded MIMO Systems Wonjae Shin School of Engineering Information and Communications University 2007 An Improved LLR

More information

Lattice reduction aided with block diagonalization for multiuser MIMO systems

Lattice reduction aided with block diagonalization for multiuser MIMO systems Khan et al. EURASIP Journal on Wireless Communications and Networking (215) 215:254 DOI.1186/s13638-15-476-1 RESEARCH Lattice reduction aided with block diagonalization for multiuser MIMO systems Md Hashem

More information

Linear Programming Detection and Decoding for MIMO Systems

Linear Programming Detection and Decoding for MIMO Systems Linear Programming Detection and Decoding for MIMO Systems Tao Cui, Tracey Ho Department of Electrical Engineering California Institute of Technology Pasadena, CA, USA 91125 Email: {taocui, tho}@caltech.edu

More information

Bounds on fast decodability of space-time block codes, skew-hermitian matrices, and Azumaya algebras

Bounds on fast decodability of space-time block codes, skew-hermitian matrices, and Azumaya algebras Bounds on fast decodability of space-time block codes, skew-hermitian matrices, and Azumaya algebras Grégory Berhuy, Nadya Markin, and B. A. Sethuraman 1 Abstract We study fast lattice decodability of

More information

Constrained Detection for Multiple-Input Multiple-Output Channels

Constrained Detection for Multiple-Input Multiple-Output Channels Constrained Detection for Multiple-Input Multiple-Output Channels Tao Cui, Chintha Tellambura and Yue Wu Department of Electrical and Computer Engineering University of Alberta Edmonton, AB, Canada T6G

More information

Approximate Capacity of Fast Fading Interference Channels with no CSIT

Approximate Capacity of Fast Fading Interference Channels with no CSIT Approximate Capacity of Fast Fading Interference Channels with no CSIT Joyson Sebastian, Can Karakus, Suhas Diggavi Abstract We develop a characterization of fading models, which assigns a number called

More information

A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming

A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming A Near Maximum Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming Amin Mobasher, Mahmoud Taherzadeh, Renata Sotirov, and Amir K. Khandani Electrical and Computer Engineering

More information

Lattices for Communication Engineers

Lattices for Communication Engineers Lattices for Communication Engineers Jean-Claude Belfiore Télécom ParisTech CNRS, LTCI UMR 5141 February, 22 2011 Nanyang Technological University - SPMS Part I Introduction Signal Space The transmission

More information

Augmented Lattice Reduction for MIMO Decoding

Augmented Lattice Reduction for MIMO Decoding IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL 9, NO 9, SEPTEMBER 00 853 Augmened Laice Reducion for MIMO Decoding Laura Luzzi, Ghaya Rekaya-Ben Ohman, Member, IEEE, and Jean-Claude Belfiore, Member,

More information

A Quadratic Programming Relaxation Approach to Compute-and-Forward Network Coding Design

A Quadratic Programming Relaxation Approach to Compute-and-Forward Network Coding Design 1 A Quadratic Programming Relaxation Approach to Compute-and-Forward Network Coding Design Baojian Zhou, Student Member, IEEE, Jinming Wen, arxiv:1607.01864v1 [cs.it] 7 Jul 2016 and Wai Ho Mow, Senior

More information

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Pritam Mukherjee Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 074 pritamm@umd.edu

More information

A Hybrid Method for Lattice Basis Reduction and. Applications

A Hybrid Method for Lattice Basis Reduction and. Applications A Hybrid Method for Lattice Basis Reduction and Applications A HYBRID METHOD FOR LATTICE BASIS REDUCTION AND APPLICATIONS BY ZHAOFEI TIAN, M.Sc. A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTING AND SOFTWARE

More information

The Asymmetric Golden Code for Fast Decoding on Time-Varying Channels

The Asymmetric Golden Code for Fast Decoding on Time-Varying Channels Wireless Personal Communications manuscript No. (will be inserted by the editor) The Asymmetric Golden Code for Fast Decoding on Time-Varying Channels Mohanned O. Sinnokrot John R. Barry Vijay K. Madisetti

More information

Expectation propagation for symbol detection in large-scale MIMO communications

Expectation propagation for symbol detection in large-scale MIMO communications Expectation propagation for symbol detection in large-scale MIMO communications Pablo M. Olmos olmos@tsc.uc3m.es Joint work with Javier Céspedes (UC3M) Matilde Sánchez-Fernández (UC3M) and Fernando Pérez-Cruz

More information

K User Interference Channel with Backhaul

K User Interference Channel with Backhaul 1 K User Interference Channel with Backhaul Cooperation: DoF vs. Backhaul Load Trade Off Borna Kananian,, Mohammad A. Maddah-Ali,, Babak H. Khalaj, Department of Electrical Engineering, Sharif University

More information

Probability Bounds for Two-Dimensional Algebraic Lattice Codes

Probability Bounds for Two-Dimensional Algebraic Lattice Codes Probability Bounds for Two-Dimensional Algebraic Lattice Codes David Karpuk Aalto University April 16, 2013 (Joint work with C. Hollanti and E. Viterbo) David Karpuk (Aalto University) Probability Bounds

More information

EFFICIENT VECTOR PERTURBATION IN MULTI-ANTENNA MULTI-USER SYSTEMS BASED ON APPROXIMATE INTEGER RELATIONS

EFFICIENT VECTOR PERTURBATION IN MULTI-ANTENNA MULTI-USER SYSTEMS BASED ON APPROXIMATE INTEGER RELATIONS in Proc. EUSIPCO 2006, Florence, Italy, Sept. 2006. EFFICIENT VECTOR PERTURBATION IN MULTI-ANTENNA MULTI-USER SYSTEMS BASED ON APPROXIMATE INTEGER RELATIONS Dominik Seethaler and Gerald Matz Institute

More information

Timing errors in distributed space-time communications

Timing errors in distributed space-time communications Timing errors in distributed space-time communications Emanuele Viterbo Dipartimento di Elettronica Politecnico di Torino Torino, Italy viterbo@polito.it Yi Hong Institute for Telecom. Research University

More information

A Lattice-Reduction-Aided Soft Detector for Multiple-Input Multiple-Output Channels

A Lattice-Reduction-Aided Soft Detector for Multiple-Input Multiple-Output Channels A Lattice-Reduction-Aided Soft Detector for Multiple-Input Multiple-Output Channels David L. Milliner and John R. Barry School of ECE, Georgia Institute of Technology Atlanta, GA 30332-0250 USA, {dlm,

More information

Lattice Basis Reduction Part II: Algorithms

Lattice Basis Reduction Part II: Algorithms Lattice Basis Reduction Part II: Algorithms Sanzheng Qiao Department of Computing and Software McMaster University, Canada qiao@mcmaster.ca www.cas.mcmaster.ca/ qiao November 8, 2011, revised February

More information

Appendix B Information theory from first principles

Appendix B Information theory from first principles Appendix B Information theory from first principles This appendix discusses the information theory behind the capacity expressions used in the book. Section 8.3.4 is the only part of the book that supposes

More information

CSE 206A: Lattice Algorithms and Applications Winter The dual lattice. Instructor: Daniele Micciancio

CSE 206A: Lattice Algorithms and Applications Winter The dual lattice. Instructor: Daniele Micciancio CSE 206A: Lattice Algorithms and Applications Winter 2016 The dual lattice Instructor: Daniele Micciancio UCSD CSE 1 Dual Lattice and Dual Basis Definition 1 The dual of a lattice Λ is the set ˆΛ of all

More information

On Complex LLL Algorithm for Integer Forcing Linear Receivers

On Complex LLL Algorithm for Integer Forcing Linear Receivers 2013 Australian Communications Theory Workshop (AusCTW) On Complex LLL Algorithm for Integer Forcing Linear Receivers A. Sakzad, J. Harshan, and E. Viterbo, Department of ECSE, Monash University, Australia

More information

Efficient Joint Maximum-Likelihood Channel. Estimation and Signal Detection

Efficient Joint Maximum-Likelihood Channel. Estimation and Signal Detection Efficient Joint Maximum-Likelihood Channel Estimation and Signal Detection H. Vikalo, B. Hassibi, and P. Stoica Abstract In wireless communication systems, channel state information is often assumed to

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

Lattice Reduction Aided- Zero Forcing MIMO Detection using two Stage QR-Decomposition

Lattice Reduction Aided- Zero Forcing MIMO Detection using two Stage QR-Decomposition Lattice Reduction Aided- Zero Forcing MIMO Detection using two Stage QR-Decomposition Syed Moinuddin Bokhari. B 1 and Bhagyaveni M. A 2 1,2 Department of Electronics and Communication Engineering College

More information

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Hufei Zhu, Ganghua Yang Communications Technology Laboratory Huawei Technologies Co Ltd, P R China

More information

On the Use of Division Algebras for Wireless Communication

On the Use of Division Algebras for Wireless Communication On the Use of Division Algebras for Wireless Communication frederique@systems.caltech.edu California Institute of Technology AMS meeting, Davidson, March 3rd 2007 Outline A few wireless coding problems

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Diversity-Fidelity Tradeoff in Transmission of Analog Sources over MIMO Fading Channels

Diversity-Fidelity Tradeoff in Transmission of Analog Sources over MIMO Fading Channels Diversity-Fidelity Tradeo in Transmission o Analog Sources over MIMO Fading Channels Mahmoud Taherzadeh, Kamyar Moshksar and Amir K. Khandani Coding & Signal Transmission Laboratory www.cst.uwaterloo.ca

More information

Rapid Prototyping of Clarkson s Lattice Reduction for MIMO Detection

Rapid Prototyping of Clarkson s Lattice Reduction for MIMO Detection Rapid Prototyping of Clarkson s Lattice Reduction for MIMO Detection Luis G. Barbero, David L. Milliner, T. Ratnarajah, John R. Barry and Colin Cowan ECIT Institute Queen s University, Belfast, UK Email:

More information

Constellation Precoded Beamforming

Constellation Precoded Beamforming Constellation Precoded Beamforming Hong Ju Park and Ender Ayanoglu Center for Pervasive Communications and Computing Department of Electrical Engineering and Computer Science University of California,

More information

ELEC546 MIMO Channel Capacity

ELEC546 MIMO Channel Capacity ELEC546 MIMO Channel Capacity Vincent Lau Simplified Version.0 //2004 MIMO System Model Transmitter with t antennas & receiver with r antennas. X Transmitted Symbol, received symbol Channel Matrix (Flat

More information

EVERY lattice is represented with its generator matrix G,

EVERY lattice is represented with its generator matrix G, Faster Projection in Sphere Decoding Arash Ghasemmehdi and Erik Agrell arxiv:0906.049v [cs.it] Dec 00 Abstract Most of the calculations in standard sphere decoders are redundant, in the sense that they

More information