# Lecture 7: Transistors and Amplifiers

Size: px
Start display at page:

Transcription

1 Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many features of three common forms of transistor amplifiers (common emitter etc.) e.g. could not calculate the output impedance of the common emitter amp. ery often in electronics we describe complex circuits in terms of an equivalent circuit or model. need a model that relates the input currents and voltages to the output currents and voltages. the model needs to be linear in the currents and voltages. For a transistor this condition of linearity is true for small signals. The most general linear model of the transistor is a 4-terminal "black box. In this model we assume the transistor is biased on properly and do not show the biasing circuit. Since a transistor has only 3 legs, one of the terminals is common between the input and output. There are 4 variables in the problem, I i, i, I o, and o. The subscript i refer to the input side while the subscript o refers to the output side. We assume that we know I i and o. 1

2 Kirchhoff's laws relate all the currents and voltages: ( ) ( ) i = i I i, o I o = I o I i, o For a linear model of the transistor with a small changes in I i and o : d i = i di i + i d o I i o o I i di o = I o di i + I o d o I i o o I i The partial derivatives are called the hybrid (or h) parameters: d i = h ii di i + h io d o di o = h oi di i + h oo d o h oi and h io are unitless h oo has units 1/Ω (mhos) h ii has units Ω The four h parameters are easily measured. e.g. to measure h ii hold o (the output voltage) constant and measure in /I in. Unfortunately the h parameters are not constant. e.g. Figs of the 2N3904 spec sheet show the variation of the parameters with I C. 2

3 There are 3 sets of the 4 hybrid parameters. One for each type of amp: common emitter, common base, common collector In order to differentiate one set of parameters from another the following notation is used: First subscript Second subscript i = input impedance e = common emitter o = output admittance b = common base r = reverse voltage ratio c = common collector f = forward current ratio For a common emitter amplifier we would write: d i = h ie di i + h re d o di o = h fe di i + h oe d o Typical values for the h parameters for a 2N3904 transistor in the common emitter configuration: h fe = 120, h oe = 8.7x10-6 Ω -1, h ie = 3700 Ω, h re = 1.3x10-4 for I C = 1 ma The equivalent circuit for a transistor in the common emitter configuration looks like: Circle: voltage source the voltage across this element is always equal to h re o independent of the current through it. Triangle: current source the current through this element is always h fe I in independent of the voltage across the device. 3

5 Input Impedance: Z i = in /I in Z i = (Δ load + h ie )/(1+ h oe load ) This reduces to a familiar form for most cases where Δ load << h ie and h oe load << 1 Z i = h ie = h fe r BE Output Impedance: Z o = o /I o Z o = ( s + h ie )/(Δ + h oe s ) Z o does not reduce to a simple expression. As the denominator is small, Z o is as advertised large. Feedback and Amplifiers Consider the common emitter amplifier shown. This amp differs slightly from the CE amp we saw before: bias resistor 2 is connected to collector resistor 1 instead of directly to cc. How does this effect out? If out decreases (moves away from cc ) I 2 increases cc B decreases (gets closer to ground) out will increase since Δ out = -Δ B 1 / E If out increases (moves towards cc ) I 2 decreases B increases (moves away from ground). out will decrease since Δ out = -Δ B 1 / E This is an example of NEGATIE FEEDBACK B 1 2 Q 1 3 E out 5

6 Negative Feedback is good: Stabilizes amplifier against oscillation Increases the input impedance of the amplifier Decreases the output impedance of the amplifier Positive Feedback is bad: Causes amplifiers to oscillate Oscillation is a large fluctuation of output signal with no input Feedback Fundamentals: general feedback circuit Without feedback the output and input are related by: out = A in The feedback (box B) returns a portion of the output voltage to the amplifier through the "mixer. The feedback network on the AM radio is the collector to base resistors ( 3, 5 ) The input to the amplifier is: x = in + B out A: open loop gain The gain with feedback is: AB: loop gain out = A x = A( in + B out ) G: closed loop gain G = out / in = A /(1 AB) 6

7 Positive and negative feedback: Lets define A > 0 (positive) G = out / in = A /(1 AB) Positive feedback, AB > 0: As AB 1, G. circuit is unstable oscillates if AB = 1 Negative feedback, AB < 0: As A, an amazing thing happens: For large amplifier gain (A) the circuit properties AB are determined by the feedback loop. G 1/B Example: A = 10 5 and B = then G = 100. The stability of the gain is determined by the feedback loop (B) and not the amplifier (A). Example: B is held fixed at 0.01 and A varies: A Gain 5x x x circuits can be made stable with respect to variations in the transistor characteristics as long as B is stable. B can be made from precision components such as resistors. 7

8 Operational Amplifiers (Op Amps) Op amps are very high gain (A = 10 5 ) differential amplifiers. Differential amp has two inputs ( 1, 2 ) and output out = A ( 1-2 ) where A is the amplifier gain. non inverting input inverting input + - out (power connections not shown) If an op amp is used without feedback and 1 2 out saturates at the power supply voltage (either positive or negative supply). Example: Assume the maximum output swing for an op amp is ±15. If there is no feedback in the circuit: out = 15 if non-invert > invert out = -15 if non-invert < invert Op amps are almost always used with negative feedback. The output is connected to the (inverting) input. Op amps come in chip form. They are made up of complex circuits with transistors. Ideal Op Amp eal Op Amp µa741 oltage gain (open loop) 10 5 Input impedance 2 MΩ Output impedance 0 75 Ω Slew rate 0.5 /µsec Slew rate is how fast output can change Power consumption 0 50 mw out with in = m (unity gain) Price 0\$ \$0.25 8

9 When working with op amps using negative feedback two simple rules (almost) always apply: No current goes into the op amp. This reflects the high input impedance of the op amp. Both input terminals of the op amp have the same voltage. This has to do with the actual circuitry making up the op amp. Some examples of op amp circuits with negative feedback: oltage Follower: in + - out= in (power connections not shown) The feedback network is just a wire connecting the output to the input. By rule #2, the inverting (-) input is also at in. out = in. What good is this circuit? Mainly as a buffer as it has high input impedance (MΩ) and low output impedance (100 Ω). 9

10 Inverting Amplifier: in 1 A By rule #2, point A is at ground. By ule #1, no current is going into the op amp. We can redraw the circuit as: + - f out (power connections not shown) in / 1 + out / f = 0 out / in = f / 1 The closed loop gain is f / 1. The minus sign in the gain means that the output has the opposite polarity as the input. 10

11

12 Non-Inverting Amplifier: in 1 A + - out (power connections not shown) By rule #2, point A is in. By ule #1, no current is going into the op amp. We can redraw the circuit as: f in / 1 + ( in out )/ f = 0 out / in = ( 1 + f )/ 1 The closed loop gain is ( 1 + f ) / 1. The output has the same polarity as the input. 12

13 Integrating Amplifier: in 1 + A - C (power connections not shown) Again, using the two rules for op amp circuits we redraw the circuit as: out in 1 + dq dt = 0 in +C d out 1 dt = 0 out = 1 in dt C 1 The output voltage is related to the integral of the input voltage. The negative sign in the gain means that in and out have opposite polarity. 13

14 Op Amps and Analog Calculations: Op amps were invented before transistors to perform analog calculations. Their main function was to solve differential equations in real time. Example: Suppose we wanted to solve the following: d 2 x dt = g 2 This describes a body under constant acceleration (gravity if g = 9.8 m/s 2 ). The following circuit gives an output which is the solution to the differential equation: in + - The input voltage is a constant (= g). For convenience we pick C = 1. At point A: A = in dt = d 2 x dt = dx dt 2 dt The output voltage ( out ) is the integral of A : dx out = A dt = dt = x(t) dt C A + - If we want non-zero boundary conditions (e.g. (t = 0) = 1 m/s) we add a DC voltage at point A. C out 14

### Operational Amplifiers

Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

### KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

### CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

### Mod. Sim. Dyn. Sys. Amplifiers page 1

AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

### Mod. Sim. Dyn. Sys. Amplifiers page 1

AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

### ESE319 Introduction to Microelectronics. Output Stages

Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

### PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

### Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

### ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

### Biasing the CE Amplifier

Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

### DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

### A two-port network is an electrical network with two separate ports

5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

### Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

### At point G V = = = = = = RB B B. IN RB f

Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

### Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

### CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

### Chapter 5. BJT AC Analysis

Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

### Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

### EE105 Fall 2014 Microelectronic Devices and Circuits

EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

### Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

### Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

### Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 14 Oscillators Let us consider sinusoidal oscillators.

### VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

### Electronic Circuits Summary

Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

### ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

### Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

### Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

### Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS \$ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

### Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

### DC CIRCUIT ANALYSIS. Loop Equations

All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

### Homework Assignment 08

Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

### BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

### 55:041 Electronic Circuits The University of Iowa Fall Final Exam

Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

### Chapter 2 - DC Biasing - BJTs

Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

### Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

(Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

### DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

### Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

### Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

### Active Circuits: Life gets interesting

Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

### Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

### The Common-Emitter Amplifier

c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The Common-Emitter Amplifier Basic Circuit Fig. shows the circuit diagram

### Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

### ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

### (e V BC/V T. α F I SE = α R I SC = I S (3)

Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also

### BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply

### Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

### (Refer Slide Time: 1:41)

Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 13 Module no 01 Midband Analysis of CB and CC Amplifiers We are

### Chapter 10 Feedback. PART C: Stability and Compensation

1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

### Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

lectronic ircuits Transistor Bias ircuits Manar Mohaisen Office: F208 mail: manar.subhi@kut.ac.kr Department of Review of the Precedent Lecture Bipolar Junction Transistor (BJT) BJT haracteristics and

### ECE2210 Final given: Spring 08

ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that

### CHAPTER 7 - CD COMPANION

Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

### EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

### CS 436 HCI Technology Basic Electricity/Electronics Review

CS 436 HCI Technology Basic Electricity/Electronics Review *Copyright 1997-2008, Perry R. Cook, Princeton University August 27, 2008 1 Basic Quantities and Units 1.1 Charge Number of electrons or units

### Fig. 1-1 Current Flow in a Resistive load

1 Electric Circuits: Current flow in a resistive load flows either from (-) to () which is labeled below as Electron flow or the Conventional flow from () to (-). We will use conventional flow in this

### Device Physics: The Bipolar Transistor

Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

### CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

### (Refer Slide Time: 1:49)

Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

### Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

### E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

### Chapter 9 Bipolar Junction Transistor

hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

### Tutorial #4: Bias Point Analysis in Multisim

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

### Electronics II. Final Examination

The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

### TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought.

C H A P T E R TWO-PORT NETWORKS 8 Research is to see what everybody else has seen, and think what nobody has thought. Albert Szent-Gyorgyi Enhancing Your Career Career in Education While two thirds of

### Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff

### Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

### Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

. (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority

### Circle the one best answer for each question. Five points per question.

ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

### ESE319 Introduction to Microelectronics. BJT Biasing Cont.

BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

### ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

### ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January

### ECEN 325 Electronics

ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non

### Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

### Active Circuits: Life gets interesting

Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Notes for today: 1) Chapter 26 this week (DC, C circuits) 2) Assignment 6 (Mastering Physics) online and separate, written

### The current source. The Active Current Source

V ref + - The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy

### E40M Review - Part 1

E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

### CHAPTER 13. Solutions for Exercises

HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln

### ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

### ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

### D is the voltage difference = (V + - V - ).

1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

### Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

### Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

### Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

### Homework Assignment 09

Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

### (Refer Slide Time: 1:22)

Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 19 Module no 01 Problem Session 5 on Frequency Response of Small

### mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

### As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

### Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

### Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

### Electronics II Physics 3620 / 6620

Electronics II Physics 3620 / 6620 Jan 28, 2009 Part 1 Operational Amplifiers 2/3/2009 1 Some History Fairchild 0.60 Inches 1964: The First Linear IC The µa702 Op-Amp 12 Transistors Designer: Bob Widlar

### Lecture 6: Time-Dependent Behaviour of Digital Circuits

Lecture 6: Time-Dependent Behaviour of Digital Circuits Two rather different quasi-physical models of an inverter gate were discussed in the previous lecture. The first one was a simple delay model. This

### Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS OBJECTIVES 1) To introduce the Source Transformation 2) To consider the concepts of Linearity and Superposition

### 16.1 Electrical Current

16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

### Lecture 37: Frequency response. Context

EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

### Physics for Scientists & Engineers 2

Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

### Active Circuits: Life gets interesting

Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

### Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

### Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage