Le Noyau de l'atome. Master 2 - NPAC 2009/10 Noyaux Particules Astroparticules Cosmologie. Marcella Grasso IPN-Orsay

Size: px
Start display at page:

Download "Le Noyau de l'atome. Master 2 - NPAC 2009/10 Noyaux Particules Astroparticules Cosmologie. Marcella Grasso IPN-Orsay"

Transcription

1 Master 2 - PAC 2009/10 oyaux Particules Astroparticules Cosmologie Le oyau de l'atome Marcella Grasso IP-Orsay grasso@ipno.in2p3.fr Miguel Marqu es LPC-Caen marques@lpccaen.in2p3.fr

2 Master 2 - PAC 2009/10 oyaux Particules Astroparticules Cosmologie Le oyau de l'atome ITRODUCTIO FORC UCLAIR LABORATOIR SYSTMS A CORPS CHAMP MOY RACTIOS LIMITS D STABILIT SUPRFLUIDIT ASTROPHYSIQU SYMTRIS

3 TH STRUCTUR OF MATTR 10,000, cm 3 Iron 10,000 atoms atom : e(-) & nucleus (+)? 1 cm 3 Iron = 7.9 g 85,000,000,000,000,000,000,000 atoms! % of matter is empty! 1 cm 3 of nuclei = 300 million tons! nucleus : p(+) & n(0) PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (1) L P C C A

4 TOO MAY \LMTS" PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (2) L P C C A

5 HIRARCHY I ATOMIC STRUCTUR Smaller constituents have proved to be composite systems: end of XIX, matter composed of atoms but 100 elements showing periodical properties... beginning of XX, electron and nucleus 1932, discovery of the neutron! The building blocks : e p + n 0 (+ν) 1950/60s, accelerators produce 100 hadrons! the \hadronic zoo" can be classied in groups... All known hadrons are combinations of 2 or 3 quarks! leptons+quarks : < m, no excited states uclear physics has not profited much from analogy. The reason seems to be that the nucleus is the domain of new and unfamiliar forces, for which men have not yet developed an intuitive feeling.. [Scientific American (1962)] PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (3) L P C C A

6 TH BUILDIG BLOCKS LCTRO In 1897, Thomson produces beams of particles in discharge tubes : by deecting them (υ, M/Q) a universal constituent of matter! then measures Q M = 511 kev/c 2 PROTO In 1911, Rutherford nds a central Coulomb eld in the atom caused by a massive, positively charged nucleus... Bombarding nuclei with α's : He 17 O + p he observes positively charged particles with a very long range! Hydrogen nuclei? elementary constituent of nuclei! UTRO A \neutral radiation" had been observed but not understood... In 1932, Chadwick irradiates Beryllium with α's from Polonium source : radiation collides with several nuclei that recoil in ionisation chamber : mass similar to that of the proton new constituent, the \neutron"! BIDIG Once the constituents known, the forces holding them could be investigated... stronger than atomic forces : need energetic α's to break up mass defect of the order of 1% : experimental proof of = Mc 2! PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (4) L P C C A

7 PROTOS + UTROS = UCLI The atomic number : Z protons in the nucleus Q = Ze, with e p + e e < e Moseley's law : K α -line (Z 1) 2 The mass number : A = Z + nucleons form nuclei A Z X same A, isobars same, isotones same Z, isotopes (of element X) Binding from atomic masses? B(, Z) = ZM1 H + M n M(, Z) r r M υ 2 = M Q = M υ Q B Reference mass : 1u = M12 C/12 = MeV/c 2 uclear reactions : 1 H(n, γ) 2 H B = M n + M1 H M2 H where M1 H = M p +m e... ( 13.6 ev) = γ + 2 γ 2M2 H = MeV PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (5) L P C C A

8 MASSS I TH SOLAR SYSTM Relative abundance in terrestrial, lunar and meteoritic probes : Local deviations, for example : 2 H, He right after Big Bang up to Fe by fusion in stars heavier nuclei in supernovae Xe isotopes in drill core found at 10 km depth (top) and in the arth's atmosphere (bottom)... Xe isotopes in the core from. spontaneous ssion of Uranium! PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (6) L P C C A

9 BIDIG RGY PR UCLO For most nuclei it is about 8 MeV : short range force, about d saturation, ρ /fm 3 about 1% of nuclear mass Slow decrease toward Uranium : spontaneous/induced ssion? nuclear power plants \atomic" bomb Strong rise toward Iron : fusion in stars fusion on arth? ITR H-bomb Liquid Drop analogy : overall very good description! pairing and shells? PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (7) L P C C A

10 TH LIQUID DROP MODL Semi-empirical mass formula : M(, Z) = M n + ZM p B(, Z) a v A VOLUM a s A 2/3 SURFAC a c Z 2 /A 1/3 COULOMB a a ( Z) 2 /A ASYMMTRY 11.2 ± δ/a 1/2 PAIRIG [MeV] volume : strong force dominates binding energy A, not to A(A 1) A 2 surface : fewer neighbors nuclear surface R 2 Coulomb : electrical repulsion calculated as 3 Z(Z 1)α c/r 5 asymmetry : compensate repulsion surplus of neutrons asymmetry increases with A pairing : nucleon coupling pp and nn pairs smaller overlap in larger nuclei PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (8) L P C C A

11 UCLAR STABILITY Particle stability } M(, Z) < min{ M(ni, z i ) p n : β decay excited states : γ decay Particle instability M(, Z) > M( n, Z z) + M(n, z) n = z = 2 : α decay (n+z) A/2 : spontaneous ssion PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (9) L P C C A

12 BTA DCAY M(A, Z) = αa βz + γz 2 ± δ/a 1/2 β decay n p + e + ν e M(A, Z) > M(A, Z + 1) β + decay p n + e + + ν e M(A, Z) > M(A, Z 1) + 2m e e capture p + e n + ν e M(A, Z) > M(A, Z 1) + ε. ( of daughter atomic shell) PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (10) L P C C A

13 TH DCAY OF K40 Radioactive decay : 40 K : all 3 β-decays! probability per unit time λ lifetime τ, half-life t 1/2 activity A (decays per unit time) τ = 1/λ t 1/2 = ln 2/λ A(t) = λ (t) = λ 0 e λt 1 Bq = 1 decay/s β decay : τ : few ms to years! 1/τ 5 decay of free neutron : = 780 kev, τ = ± 1.9 s no 2 neighboring isobars β-stable... C more energy (2m e ε) available 40 K is 0.01% of natural K : K + signal transmitter in nervous system 16% of human radiation exposure! 70 kg human = 4,400 decays/s! K-Ar dating method for rocks PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (11) L P C C A

14 ALPHA DCAY α tunnelling : T r e 2 2m V r T = e 2 G the Gamow factor : G = 1 r1 R 2m V dr π 2(Z 2) α/β Z/ τ : few ns to years! λ = w(α) υ 0 2R e 2G PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (12) L P C C A

15 UCLAR FISSIO Potential during spontaneous ssion : s = a s A [1 2/3 + 2 ] 5 ε2 + Z 2 [ c = a c 1 1 ] 5 ε2 + A 1/3 small deformation ε changes by : ε2 ] [2a s A 2/3 a c Z 2 A 1/3 5 Deform sphere into ellipsoid : ssion barrier disappears for : Z 2 A 2a s a c 48 about Z > 114 and A > a = R (1+ε) b = R (1 ε/2) } ab 2 R 3 Induced ssion : Z 92 : barrier 6 MeV n capture by odd nuclei +δ! 235 U (not 238 U), 233 Th, 239 Pu... PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (13) L P C C A

16 TH FRMI GAS MODL : UCLI ach nucleon feels the superposition of the potentials of all other nucleons : Heavier nuclei have surplus of neutrons : equal Fermi levels V C (Z 1)/R binding energy for Z? kin = pf 0 kin p 2 dp pf 0 p2 dp = 3/5 p2 F 2M 20 MeV states available to a nucleon: dn = 4πp2 dp (2π ) 3 V pf 0 dn = V p3 F 6π 2 3 = Z = V p F 3 3π 2 3 V = 4/3 πr 3 = 4/3 πr 3 0 A } R n = R p p n,p Z = = A/2 F 250 MeV/c kin (, Z) = n + Z p = 3 [ (p n F 10M )2 + Z(p p F )2] [ ]2 = 3 2 9π 3 5/3 + Z 5/3 10Mr0 2 4 A 2/3 = Mr 2 0 [ 9π 8 ]2 3 [ A + 5 ( Z) 2 9 A volume and asymmetry terms! ] + PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (14) L P C C A

17 TH FRMI GAS MODL : STARS A huge liquid, neutral drop : B/A (a v a a ) G m2 n r 0 A 2/3 (A min ) B>0 depends on a a!!! a a [MeV] A min R [km] M/M A 1/ roughly a neutron star... Supernova explosion (M = 1.5 M ) : 56 Fe + 26 e 56 n + 26 ν e cold neutron gas ( = ) : Fermi pressure vs gravity! [ ]1 9π 3 p F = 4 R 3 2 [ 9π kin / = 10M n R 2 4 pot / = 3 5 G M2 n R the star is in equilibrium if : d dr / = 0 R = 12 km R = 2 (9π/4) 2/3 GM 3 n 1/3 ρ = 0.25 n/fm 3 = 1.5 ρ 0 ρ can be higher : Λ, quarks... ]2 3 PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (15) L P C C A

18 \MARKD" UCLOS : HYPRUCLI The system of nucleons in nuclei is small enough to posses discrete energy levels with l = 0, 1, 2,... : at T = 0 all states are occupied can only swap places (unobservable) : looks like each is in (, l) state! if only we could \mark" nucleons... Introduce hyperon as a probe! Λ [uds] : τ = s strangeness exchange reactions : K + A Λ A + π ( ) K [ūs] + n [udd] Λ [uds] + π [ūd] p K 500 MeV/c + θ π = 0 : no momentum transfer to Λ A PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (16) L P C C A

19 HYPROS I UCLI Systematic research in heavier nuclei : π + + A Λ A + K + If Λ remains inside nucleus ( 12 Λ C) : B Λ B n + ( π K ) + (M Λ M n ) with neutron at Fermi level : B n S n peaks in B Λ spectrum ( π ) : B Λ = 0 : Λ stays in 1p B Λ 11 MeV : Λ may go to 1s! B Λ < 0 : for deeper lying n Λ hyperons occupy discrete levels lines : V 0 = 30 MeV and R = r 0 A 1/3! Λ moves as a free particle in A... PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (17) L P C C A

20 TH SHLL MODL Λ A nucleons occupy energy levels : like electrons in the nucleus' eld! but nucleons move in \their" eld... lectrons are ordered in \shells", groups of nearby energy levels : compact nuclei with certain /Z 2, 8, 20, 28, 50, 82, 126 magic numbers a lot of energy needed in order to : extract a neutron/proton (S n/p ) or excite them (like noble gases) exceptionally stable doubly magic nuclei : 4 2 He O Ca Ca Pb 126 numbers explained by SHLL MODL R nl (r) Y m l (θ, φ) { n = 1, 2, 3, 4,... l = s, p, d, f, g,... short-range force V follows ρ(r) : Gaussian (HO) for light nuclei Fermi (WS) for heavy nuclei... PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (18) L P C C A

21 XOTIC UCLI ] gs = min[ M(ni, z i ) M(, Z) gs [MeV] 10 5 Z= Z (protons) (neutrons) H 4 (neutrons) 6 9 He B Z (protons) PAC/2009/\Le oyau de l'atome" CHAPTR 1 F.M. Marqu es (19) L P C C A

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

The liquid drop model

The liquid drop model The liquid drop model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 10, 2011 NUCS 342 (Tutorial 0) January 10, 2011 1 / 33 Outline 1 Total binding energy NUCS 342

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

Phys 102 Lecture 27 The strong & weak nuclear forces

Phys 102 Lecture 27 The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

CHAPTER 12 The Atomic Nucleus

CHAPTER 12 The Atomic Nucleus CHAPTER 12 The Atomic Nucleus 12.1 Discovery of the Neutron 12.2 Nuclear Properties 12.3 The Deuteron 12.4 Nuclear Forces 12.5 Nuclear Stability 12.6 Radioactive Decay 12.7 Alpha, Beta, and Gamma Decay

More information

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building. Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information

Fission and Fusion Book pg cgrahamphysics.com 2016

Fission and Fusion Book pg cgrahamphysics.com 2016 Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy

More information

1897 J.J. Thompson discovers the electron

1897 J.J. Thompson discovers the electron CHAPTER 1 BASIC CONCEPTS OF NUCLEAR PHYSICS 1.1 Historical survey: The origin of nuclear physics and the progress after can be understand from the historical review as follow: 1895 The discovery of X-Ray

More information

The strong & weak nuclear forces

The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

THE NUCLEUS: A CHEMIST S VIEW Chapter 20

THE NUCLEUS: A CHEMIST S VIEW Chapter 20 THE NUCLEUS: A CHEMIST S VIEW Chapter 20 "For a long time I have considered even the craziest ideas about [the] atom[ic] nucleus... and suddenly discovered the truth." [shell model of the nucleus]. Maria

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Binding Energy. Bởi: OpenStaxCollege

Binding Energy. Bởi: OpenStaxCollege Binding Energy Bởi: OpenStaxCollege The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it apart. We can therefore learn about

More information

Atoms and Nuclei 1. The radioactivity of a sample is X at a time t 1 and Y at a time t 2. If the mean life time of the specimen isτ, the number of atoms that have disintegrated in the time interval (t

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Little Boy Atomic Bomb. Spring 2010 PHYS 53 Eradat SJSU 2

Little Boy Atomic Bomb. Spring 2010 PHYS 53 Eradat SJSU 2 Chapter 43 Nuclear Physics 1. Properties of nuclei 2. Nuclear binding and nuclear structure 3. Nuclear stability and radioactivity 4. Activities and half lives 5. Biological effects of radiation 6. Nuclear

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4 He Hydrogen burning 3 He Incomplete PP chain (H burning) 2 H, Li, Be, B Non-thermal processes (spallation)

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 6/99 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 29 Outline 1 The decay processes NUCS 342 (Lecture

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg:

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg: Chapter 44 Solutions *44. An iron nucleus (in hemoglobin) has a few more neutrons than protons, but in a typical water molecule there are eight neutrons and ten protons. So protons and neutrons are nearly

More information

Mirror Nuclei: Two nuclei with odd A in which the number of protons in one nucleus is equal to the number of neutrons in the other and vice versa.

Mirror Nuclei: Two nuclei with odd A in which the number of protons in one nucleus is equal to the number of neutrons in the other and vice versa. Chapter 4 The Liquid Drop Model 4.1 Some Nuclear Nomenclature Nucleon: A proton or neutron. Atomic Number, Z: The number of protons in a nucleus. Atomic Mass number, A: The number of nucleons in a nucleus.

More information

Radioactivity, Radiation and the Structure of the atom

Radioactivity, Radiation and the Structure of the atom Radioactivity, Radiation and the Structure of the atom What do you know (or can we deduce) about radioactivity from what you have learned in the course so far? How can we learn about whether radioactive

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8 Nuclei introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8.1 - The nucleus The atomic nucleus consists of protons and neutrons. Protons and neutrons are called nucleons. A nucleus is characterized

More information

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u 5/5 A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u The number of neutrons in the nucleus is given by the symbol N. Clearly, N = A Z. Isotope:

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

9.1 Nuclear Properties

9.1 Nuclear Properties Chapter 9. The Atomic Nucleus Notes: Most of the material in this chapter is taken from Thornton and Rex, Chapters 12 and 13. 9.1 Nuclear Properties Atomic nuclei are composed of protons and neutrons,

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: Neutrons and protons are collectively

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 11 1.) Determination of parameters of the SEMF 2.) α decay 3.) Nuclear energy levels

More information

Nuclear Powe. Bronze Buddha at Hiroshima

Nuclear Powe. Bronze Buddha at Hiroshima Nuclear Powe Bronze Buddha at Hiroshima Nuclear Weapons Nuclear Power Is it Green & Safe? Nuclear Waste 250,000 tons of Spent Fuel 10,000 tons made per year Health Effects of Ionizing Radiation Radiocarbon

More information

NUCLEI 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes.

NUCLEI 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes. UCLEI Important Points: 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes. Ex: 1 H, 2 H, 3 1 1 1H are the isotopes of hydrogen atom. 2. The nuclei having

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Properties of Nuclei

Properties of Nuclei Properties of Nuclei Z protons and N neutrons held together with a short-ranged force gives binding energy m 938. 3 MeV / c m 939. 6 MeV / c p 2 2 n M Zm Nm E Am nucleus p n bind N with A Z N m u 9315.

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Introduction to Nuclei I (The discovery)

Introduction to Nuclei I (The discovery) Introduction to Nuclei I (The discovery) The opposite of a correct statement is a false statement. But the opposite of a profound truth may well be another profound truth - Niels Bohr The Atomic Nucleus

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Symbol: A X Z. Isotopes: A1 X A2 Z X Z Same Z but different A

Symbol: A X Z. Isotopes: A1 X A2 Z X Z Same Z but different A CHAPTER 13 NUCLEAR STRUCTURE NUCLEAR FORCE The nucleus is help firmly together by the nuclear or strong force. We can estimate the nuclear force by observing that protons residing about 1fm = 10-15 m apart

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

Lecture 2. The Semi Empirical Mass Formula SEMF. 2.0 Overview

Lecture 2. The Semi Empirical Mass Formula SEMF. 2.0 Overview Lecture The Semi Empirical Mass Formula SEMF Nov 6, Lecture Nuclear Physics Lectures, Dr. Armin Reichold 1. Overview.1 The liquid drop model. The Coulomb Term.3 Mirror nuclei, charge asymmetry and independence.4

More information

Introduction to Nuclei I

Introduction to Nuclei I Introduction to Nuclei I (The Discovery) The opposite of a correct statement is a false statement. But the opposite of a profound truth may well be another profound truth - Niels Bohr The Atom (as we know

More information

Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability

Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability 22.101 Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap.2. The

More information

Stellar Nucleosynthesis

Stellar Nucleosynthesis 21 November 2006 by JJG Stellar Nucleosynthesis Figure 1 shows the relative abundances of solar system elements versus atomic number Z, the number of protons in the nucleus. A theory of nucleosynthesis

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics Institute for ET/JRF, GTE, IIT-JM, M.Sc. Entrance, JEST, TIFR and GRE in Physics. asic Properties of uclei. asic uclear Properties n ordinary hydrogen atom has as its nucleus a single proton, whose charge

More information

Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics Introduction to Nuclear Reactor Physics J. Frýbort, L. Heraltová Department of Nuclear Reactors 19 th October 2017 J. Frýbort, L. Heraltová (CTU in Prague) Introduction to Nuclear Reactor Physics 19 th

More information

Nuclear and Particle Physics. 3 lectures: Nuclear Physics Particle Physics 1 Particle Physics 2

Nuclear and Particle Physics. 3 lectures: Nuclear Physics Particle Physics 1 Particle Physics 2 Nuclear and Particle Physics 3 lectures: Nuclear Physics Particle Physics 1 Particle Physics 2 1 Nuclear Physics Topics Composition of Nucleus features of nuclei Nuclear Models nuclear energy Fission Fusion

More information

NUCLEI. Atomic mass unit

NUCLEI. Atomic mass unit 13 NUCLEI Atomic mass unit It is a unit used to express the mass of atoms and particles inside it. One atomic mass unit is the mass of atom. 1u = 1.660539 10. Chadwick discovered neutron. The sum of number

More information

Chapter 42. Nuclear Physics

Chapter 42. Nuclear Physics Chapter 42 Nuclear Physics In the previous chapters we have looked at the quantum behavior of electrons in various potentials (quantum wells, atoms, etc) but have neglected what happens at the center of

More information

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Introductory Nuclear Physics Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number

More information

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity Phys10 Lecture 9, 30, 31 Nuclear Physics and Radioactivity Key Points Structure and Properties of the Nucleus Alpha, Beta and Gamma Decays References 30-1,,3,4,5,6,7. Atomic Structure Nitrogen (N) Atom

More information

Chemistry Points

Chemistry Points Chemistry 485 Spring, 2o1o 100 Points Distributed: Mon., 3 May 2o1o, 12:45 Final Exam Due: Mon., 3 May 2o1o, 2:45 pm The questions in this exam may require information that can be found in the attached

More information

UNIT 15: NUCLEUS SF027 1

UNIT 15: NUCLEUS SF027 1 is defined as the central core of an atom that is positively charged and contains protons and neutrons. UNIT 5: NUCLUS SF07 Neutron lectron 5. Nuclear Structure nucleus of an atom is made up of protons

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics

More information

The Nucleus. PHY 3101 D. Acosta

The Nucleus. PHY 3101 D. Acosta The Nucleus PHY 30 D. Acosta Rutherford Scattering Experiments by Geiger & Marsden in 909 /5/005 PHY 30 -- D. Acosta Rutherford Model of the Atom Conclusion: the atom contains a positive nucleus < 0 fm

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model 3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics 1/3 S.PÉRU The nucleus a complex system? What is the heaviest nucleus? How many nuclei do exist? What about the shapes of the nuclei? I) Some features about the nucleus discovery radius, shape binding

More information

Chapter 28 Lecture. Nuclear Physics Pearson Education, Inc.

Chapter 28 Lecture. Nuclear Physics Pearson Education, Inc. Chapter 28 Lecture Nuclear Physics Nuclear Physics How are new elements created? What are the natural sources of ionizing radiation? How does carbon dating work? Be sure you know how to: Use the right-hand

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

1 Stellar Energy Generation Physics background

1 Stellar Energy Generation Physics background 1 Stellar Energy Generation Physics background 1.1 Relevant relativity synopsis We start with a review of some basic relations from special relativity. The mechanical energy E of a particle of rest mass

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1 The Atomic Nucleus Bloomfield Sections 14.1, 14., and 14. (download) 4/1/04 ISP 09-1A 1 What is matter made of? Physics is a reductionist science. Beneath the surface, nature is simple! All matter is composed

More information

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol Nuclear Chemistry 1 Review Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number Atomic Number A

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

The Nucleus and Radioactivity

The Nucleus and Radioactivity Chapter 0 The Nucleus and Radioactivity Practice Problem Solutions Student Textbook page 904. Conceptualize the Problem - The mass defect is the difference of the mass of the nucleus and the sum of the

More information

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β Nuclear Chemistry Subatomic Particles proton neutron 1n 0 1 H or 1 p 1 1 positron electron 0 e or 0 β +1 +1 0 e or 0 β 1 1 particle 4 α or 4 He 2 2 Nuclear Reactions A balanced nuclear equation has the

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

Atoms, nuclei, particles

Atoms, nuclei, particles Atoms, nuclei, particles Nikolaos Kidonakis Physics for Georgia Academic Decathlon September 2016 Age-old questions What are the fundamental particles of matter? What are the fundamental forces of nature?

More information

Fisika Inti Nuclear Physics 5/14/2010 1

Fisika Inti Nuclear Physics 5/14/2010 1 Fisika Inti Nuclear Physics 5/14/2010 1 Pengertian Modern: Gambar onion Modern understanding: the ``onion picture Atom Let s see what s inside! 5/14/2010 2 Pengertian Modern: Gambar onion Modern understanding:

More information

Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas

Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas 22.101 Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information