UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA

Size: px
Start display at page:

Download "UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA"

Transcription

1 Ecoometric Teory, 24, 2008, Prited i te Uited States of America+ doi: S UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA BRUCE E. HANSEN Uiversity of Wiscosi Tis paper presets a set of rate of uiform cosistecy results for kerel estimators of desity fuctios ad regressios fuctios+ We geeralize te existig literature by allowig for statioary strog mixig multivariate data wit ifiite support, kerels wit ubouded support, ad geeral badwidt sequeces+ Tese results are useful for semiparametric estimatio based o a first-stage oparametric estimator+ 1. INTRODUCTION Tis paper presets a set of rate of uiform cosistecy results for kerel estimators of desity fuctios ad regressios fuctios+ We geeralize te existig literature by allowig for statioary strog mixig multivariate data wit ifiite support, kerels wit ubouded support, ad geeral badwidt sequeces+ Kerel estimators were first itroduced by Roseblatt ~1956! for desity estimatio ad by Nadaraya ~1964! ad Watso ~1964! for regressio estimatio+ Te local liear estimator was itroduced by Stoe ~1977! ad came ito promiece troug te work of Fa ~1992, 1993!+ Uiform covergece for kerel averages as bee previously cosidered i a umber of papers, icludig Peligrad ~1991!, Newey ~1994!, Adrews ~1995!, Liebscer ~1996!, Masry ~1996!, Bosq ~1998!, Fa ad Yao ~2003!, ad Ago Nze ad Douka ~2004!+ I tis paper we provide a geeral set of results wit broad applicability+ Our mai results are te weak ad strog uiform covergece of a sample average fuctioal+ Te coditios imposed o te fuctioal are geeral+ Te data are assumed to be a statioary strog mixig time series+ Te support for te data is allowed to be ifiite, ad our covergece is uiform over compact sets, expadig sets, or urestricted euclidea space+ We do ot require te regressio fuctio or its derivatives to be bouded, ad we allow for kerels wit Tis researc was supported by te Natioal Sciece Foudatio+ I tak tree referees ad Oliver Lito for elpful commets+ Address correspodece to Bruce E+ Hase, Departmet of Ecoomics, Uiversity of Wiscosi, 1180 Observatory Drive, Madiso, WI , USA; base@ssc+wisc+edu Cambridge Uiversity Press $15+00

2 UNIFORM CONVERGENCE RATES 727 ubouded support+ Te rate of decay for te badwidt is flexible ad icludes te optimal covergece rate as a special case+ Our applicatios iclude estimatio of multivariate desities ad teir derivatives, Nadaraya Watso regressio estimates, ad local liear regressio estimates+ We do ot cosider local polyomial regressio, altoug our mai results could be applied to tis applicatio also+ Tese features are useful geeralizatios of te existig literature+ Most papers assume tat te kerel fuctio as trucated support, wic excludes te popular Gaussia kerel+ It is also typical to demostrate uiform covergece oly over fixed compact sets, wic is sufficiet for may estimatio purposes but is isufficiet for may semiparametric applicatios+ Some papers assume tat te regressio fuctio, or certai derivatives of te regressio fuctio, is bouded+ Tis may appear iocet we covergece is limited to fixed compact sets but is usatisfactory we covergece is exteded to expadig or ubouded sets+ Some papers oly preset covergece rates usig optimal badwidt rates+ Tis is iappropriate for may semiparametric applicatios were te badwidt sequeces may ot satisfy tese coditios+ Our paper avoids tese deficiecies+ Our proof metod is a geeralizatio of tose i Liebscer ~1996! ad Bosq ~1998!+ Sectio 2 presets results for a geeral class of fuctios, icludig a variace boud, weak uiform covergece, strog uiform covergece, ad covergece over ubouded sets+ Sectio 3 presets applicatios to desity estimatio, Nadaraya Watso regressio, ad local liear regressio+ Te proofs are i te Appedix+ Regardig otatio, for x ~x 1,+++,x d! R d we set 7x7 max~6 x 1 6, +++,6x d 6!+ 2. GENERAL RESULTS 2.1. Kerel Averages ad a Variace Boud Let $Y i, X i % R R d be a sequece of radom vectors+ Te vector X i may iclude lagged values of Y i, e+g+, X i ~Y i1,+++,y id!+ Cosider averages of te form ZC~x! 1 Y d i K x X i, (1) i1 were o~1! is a badwidt ad K~u! : R d r R is a kerel-like fuctio+ Most kerel-based oparametric estimators ca be writte as fuctios of averages of tis form+ By suitable coice of K~u! ad Y i tis icludes kerel estimators of desity fuctios, Nadaraya Watso estimators of te regressio

3 728 BRUCE E. HANSEN fuctio, local polyomial estimators, ad estimators of derivatives of desity ad regressio fuctios+ We require tat te fuctio K~u! is bouded ad itegrable: Assumptio 1+ 6K~u!6 KP ` ad R d 6K~u!6du m `+ We assume tat $Y i, X i % is weakly depedet+ We require te followig regularity coditios+ Assumptio 2+ Te sequece $Y i, X i % is strictly statioary ad strog mixig wit mixig coefficiets a m tat satisfy a m Am b, (2) were A ` ad for some s 2 E6Y 0 6 s ` (3) ad b 2s 2 s 2 + (4) Furtermore, X i as margial desity f ~x! suc tat ad sup f ~x! B 0 ` (5) x sup E~6Y 0 6 s 6X 0 x! f ~x! B 1 `+ (6) x Also, tere is some j * ` suc tat for all j j * sup E~6Y 0 Y j 66X 0 x 0, X j x j! f j ~x 0, x j! B 2 `, (7) x 0, x j were f j ~x 0, x j! deotes te joit desity of $X 0, X j %+ Assumptio 2 specifies tat te serial depedece i te data is strog mixig, ad equatios ~2! ~4! specify a required decay rate+ Coditio ~5! specifies tat te desity f ~x! is bouded, ad ~6! cotrols te tail beavior of te coditioal expectatio E~6Y 0 6 s 6X 0 x!+ Te latter ca icrease to ifiity i te tails but ot faster ta f ~x! 1 + Coditio ~7! places a similar boud o te joit desity ad coditioal expectatio+ If te data are idepedet or m-depedet, te ~7! is immediately satisfied uder ~6! wit B 2 B I may applicatios ~suc as desity estimatio! Y i is bouded+ I tis case we ca take s `, ~4! simplifies to b 2, ~6! is redudat wit ~5!, ad ~7! is equivalet to f j ~x 0, x j! B 2 for all j j * +

4 UNIFORM CONVERGENCE RATES 729 Te boud ~7! requires tat $X 0, X j % ave a bouded joit desity f j ~x 0, x j! for sufficiet large j, but te joit desity does ot eed to exist for small j+ Tis distictio allows X i to cosist of multiple lags of Y i + For example, if X i ~Y i1,y i2,+++,y id! for d 2 te f j ~x 0, x j! is ubouded for j d because te compoets of X 0 ad X j overlap+ THEOREM 1+ Uder Assumptios 1 ad 2 tere is a Q ` suc tat for sufficietly large Var ~ ZC~x!! Q d. (8) A expressio for Q is give i equatio (A.5) i te Appedix. Altoug Teorem 1 is elemetary for idepedet observatios, it is otrivial for depedet data because of te presece of ozero covariaces+ Our proof builds o te strategy of Fa ad Yao ~2003, pp ! by separately boudig covariaces of sort, medium, ad log lag legts Weak Uiform Covergece Teorem 1 implies tat 6 ZC~x! E ZC~x!6 O p ~~ d! 102! poitwise i x R d + We are ow iterested i uiform rates+ We start by cosiderig uiformity over values of x i expadig sets of te form $x :7x7 c % for sequeces c tat are eiter bouded or divergig slowly to ifiity+ To establis uiform covergece, we eed te fuctio K~u! to be smoot+ We require tat K eiter as trucated support ad is Lipscitz or tat it as a bouded derivative wit a itegrable tail+ Assumptio 3+ For some L 1 ` ad L `, eiter K~u! 0 for 7u7 L ad for all u, u ' R d 6K~u! K~u '!6 L 1 7u u ' 7, (9) or K~u! is differetiable,6~]0]u!k~u!6 L 1, ad for some 1,6~]0]u!K~u!6 L 1 7u7 for 7u7 L+ Assumptio 3 allows for most commoly used kerels, icludig te polyomial kerel class c p ~1 x 2! p, te iger order polyomial kerels of Müller ~1984! ad Graovsky ad Müller ~1991!, te ormal kerel, ad te iger order Gaussia kerels of Wad ad Scucay ~1990! ad Marro ad Wad ~1992!+ Assumptio 3 excludes, owever, te uiform kerel+ It is ulikely tat tis is a ecessary exclusio, as Tra ~1994! establised uiform covergece

5 730 BRUCE E. HANSEN of a istogram desity estimator+ Assumptio 3 also excludes te Diriclet kerel K~x! si~x!0~px!+ THEOREM 2+ Suppose tat Assumptios 1 3 old ad for some q 0 te mixig expoet b satisfies 1 ~s 1!1 d q d b (10) s 2 ad for b 1 d d ~1 b!0~s 1! q u b 3 d ~1 b!0~s 1! (11) te badwidt satisfies l o~1!. u d (12) Te for c O~~l! 10d 102q! (13) ad a l d 102, (14) sup 7x7c 6 ZC~x! E ZC~x!6 O p ~a!. (15) Teorem 2 establises te rate for uiform covergece i probability+ Usig ~10! ad ~11! we ca calculate tat u ~0,1# ad tus ~12! is a stregteig of te covetioal requiremet tat d r `+ Also ote tat ~10! is a strict stregteig of ~4!+ If Y i is bouded, we ca take s `, ad te ~10! ad ~11! simplify to b 1 ~d0q! d ad u ~b 1 d ~d0q!!0~b 3 d!+ If q ` ad d 1 te tis simplifies furter to b 2 ad u ~b 2!0 ~b 2!, wic is weaker ta te coditios of Fa ad Yao ~2003, Lem+ 6+1!+ If te mixig coefficiets ave geometric decay ~b `! te u 1 ad ~15! olds for all q+ It is also costructive to compare Teorem 2 wit Lemma B+1 of Newey ~1994!+ Newey s covergece rate is idetical to ~15!, but is result is restricted to idepedet observatios, kerel fuctios K wit bouded support, ad bouded c +

6 2.3. Almost Sure Uiform Covergece I tis sectio we stregte te result of te previous sectio to almost sure covergece+ THEOREM 3+ Defie f ~l l! 2 l. Suppose tat Assumptios 1 3 old ad for some q 0 te mixig expoet b satisfies 2 s3 d q d b (16) s 2 ad for UNIFORM CONVERGENCE RATES 731 u b1 2 s 2 s 3 d q d b 3 d (17) te badwidt satisfies f 2 O~1!. u d (18) Te for c O~f 10d 102q!, (19) sup 6 ZC~x! E ZC~x!6 O~a! (20) 7x7c almost surely, were a is defied i (14). Te primary differece betwee Teorems 2 ad 3 is te coditio o te strog mixig coefficiets Uiform Covergece over Ubouded Sets Te previous sectios cosidered uiform covergece over bouded or slowly expadig sets+ We ow cosider uiform covergece over urestricted euclidea space+ Tis requires additioal momet bouds o te coditioig variables ad polyomial tail decay for te fuctio K~u!+ THEOREM 4+ Suppose te assumptios of Teorem 2 old wit O~1! ad q d. Furtermore,

7 732 BRUCE E. HANSEN sup7x7 q E~6Y 0 66X 0 x! f ~x! B 3 `, (21) x ad for 7u7 L 6K~u!6 L 2 7u7 q (22) for some L 2 `. Te sup 6 ZC~x! E ZC~x!6 O p ~a!. xr d THEOREM 5+ Suppose te assumptios of Teorem 3 old wit O~1! ad q d. Furtermore, (21), (22), ad E7X 0 7 2q ` old. Te sup 6 ZC~x! E ZC~x!6 O~a! xr d almost surely. Teorems 4 ad 5 sow tat te extesio to uiformity over urestricted euclidea space ca be made wit miimal additioal assumptios+ Equatio ~21! is a mild tail restrictio o te coditioal mea ad desity fuctio+ Te kerel tail restrictio ~22! is satisfied by te kerels discussed i Sectio 2+2 for all q APPLICATIONS 3.1. Desity Estimatio Let X i R d be a strictly statioary time series wit desity f ~x!+ Cosider te estimatio of f ~x! ad its derivatives f ~r! ~x!+ Let k~u! : R d r R deote a multivariate pt-order kerel fuctio for wic k ~r! ~u! satisfies Assumptio 1 ad 6u6 pr 6k~u!6du `+ Te Roseblatt ~1956! estimator of te rt derivative f ~r! ~x! is f Z ~r! ~x! 1 dr i1 ~r! k x X i, were is a badwidt+ We first cosider uiform covergece i probability+ THEOREM 6+ Suppose tat for some q 0, te strog mixig coefficiets satisfy (2) wit b 1 d d, q (23)

8 UNIFORM CONVERGENCE RATES 733 o~1!, ad (12) olds wit b 1 d q d u. b 3 d (24) Suppose tat sup x f ~x! ` ad tere is some j * ` suc tat for all j j *, sup x0, x j f j ~x 0, x j! ` were f j ~x 0, x j! deotes te joit desity of $X 0, X j %. Assume tat te pt derivative of f ~r! ~x! is uiformly cotiuous. Te for ay sequece c satisfyig (13), sup 6 f Z ~r! ~x! f ~r! ~x!6 O 7x7c p l d2r 102 p. (25) Te optimal covergece rate (by selectig te badwidt optimally) ca be obtaied we b 1 d d q ad is d p r2 2q d (26) sup 6 f Z ~r! ~x! f ~r! ~x!6 O 7x7c p l p0~d2p2r!. (27) Furtermore, if i additio sup x 7x7 q f ~x! ` ad 6k ~r! ~u!6 L 2 7u7 q for 7u7 large, te te supremum i (25) or (27) may be take over x R d. Take te simple case of estimatio of te desity ~r 0!, secod-order kerel ~ p 2!, ad bouded c ~q `!+ I tis case te requiremets state tat b 1 d is sufficiet for ~25! ad b 1 2d is sufficiet for te optimal covergece rate ~27!+ Tis is a improvemet upo te work of Fa ad Yao ~2003, Tm+ 5+3!, wo ~for d 1! require b 5 2 _ ad b _ 15 4 for tese two results+ A alterative uiform weak covergece rate as bee provided by Adrews ~1995, Tm+ 1~a!!+ His result is more geeral i allowig for ear-epocdepedet arrays, but e obtais a slower rate of covergece+ We ow cosider uiform almost sure covergece+ THEOREM 7+ Uder te assumptios of Teorem 6, if b 3 ~d0q! d ad (18) ad (19) old wit b 3 d q d u, b 3 d

9 734 BRUCE E. HANSEN te sup 6 f Z ~r! ~x! f ~r! ~x!6 7x7c O l d2r p 102 almost surely. Te optimal covergece rate we b 3 d d q d p r3 2q d is sup 6 f Z ~r! ~x! f ~r! ~x!6 7x7c O l p0~d2p2r! almost surely. (28) Alterative results for strog uiform covergece for kerel desity estimates ave bee provided by Peligrad ~1991!, Liebscer ~1996, Tms+ 4+2 ad 4+3!, Bosq ~1998, Tm+ 2+2 ad Cor+ 2+2!, ad Ago Nze ad Douka ~2004!+ Teorem 6 cotais Liebscer s result as te special case r 0 ad q `, ad e restricts attetio to kerels wit bouded support+ Peligrad imposes r-mixig ad bouded c + Bosq restricts attetio to geometric strog mixig Nadaraya Watso Regressio Cosider te estimatio of te coditioal mea m~x! E~Y i 6X i x!+ Let k~u! : R d r R deote a multivariate symmetric kerel fuctio tat satisfies Assumptios 1 ad 3 ad let 6u6 2 6k~u!6du `+ Te Nadaraya Watso estimator of m~x! is m~x! [ i1 i1 Y i k x X i k x X i, were is a badwidt+ THEOREM 8+ Suppose tat Assumptio 2 ad equatios (10) (13) old ad te secod derivatives of f ~x! ad f ~x!m~x! are uiformly cotiuous ad bouded. If

10 UNIFORM CONVERGENCE RATES 735 d if 6x6c f ~x! 0, o~1!, ad d 1 a * r 0 were a * log 102 2, (29) d te sup 6 m~x! [ m~x!6 O p ~d 1 a *!. (30) 6x6c Te optimal covergece rate we b is sufficietly large is sup 6 m~x! [ m~x!6 O pd 6x6c 1 l 20~d4!. (31) THEOREM 9+ Suppose tat te assumptios of Teorem 8 old ad equatios (16) (19) old istead of (10) (13). Te (30) ad (31) ca be stregteed to almost sure covergece. If c is a costat te te covergece rate is a, ad te optimal rate is ~ 1 l! 20~d4!, wic is te Stoe ~1982! optimal rate for idepedet ad idetically distributed ~i+i+d+! data+ Teorems 8 ad 9 sow tat te uiform covergece rate is ot pealized for depedet data uder te strog mixig assumptio+ For semiparametric applicatios, it is frequetly useful to require c r ` so tat te etire fuctio m~x! is cosistetly estimated+ From ~30! we see tat tis iduces te additioal pealty term d 1 + Alterative results for te uiform rate of covergece for te Nadaraya Watso estimator ave bee provided by Adrews ~1995, Tm+ 1~b!! ad Bosq ~1998, Tms+ 3+2 ad 3+3!+ Adrews allows for ear-epoc-depedet arrays but obtais a slower rate of covergece+ Bosq requires geometric strog mixig, a muc stroger momet boud, ad a specific coice for te badwidt parameter Local Liear Regressio Te local liear estimator of m~x! E~Y i 6X i x! ad its derivative m ~1! ~x! are obtaied from a weigted regressio of Y i o X i x i + Lettig k i k~~x X i!0! ad j i X i x, te local liear estimator ca be writte as m~x! K m K ~x! ~1! k i i1 i1 j i k i i1 i1 j ' i k i j i j ' i k i1 i1 i1 k i Y i j i k i Y i+

11 736 BRUCE E. HANSEN Let k~u! be a multivariate symmetric kerel fuctio for wic 6u6 4 6k~u!6du ` ad te fuctios k~u!, uk~u!, ad uu ' k~u! satisfy Assumptios 1 ad 3+ THEOREM 10+ Uder te coditios of Teorem 8 ad d 2 a * r 0 were a * is defied i (29) te sup 6m~x! K m~x!6 O p ~d 2 a *!. 6x6c THEOREM 11+ Uder te coditios of Teorem 9 ad d 2 a * r 0 were a * is defied i (29) te sup 6m~x! K m~x!6 O~d 2 a *! 6x6c almost surely. Tese are te same rates as for te Nadaraya Watso estimator, except te pealty term for expadig c as bee stregteed to d 2 + We c is fixed te covergece rate is Stoe s optimal rate+ Alterative uiform covergece results for pt-order local polyomial estimators wit fixed c ave bee provided by Masry ~1996! ad Fa ad Yao ~2003, Tm+ 6+5!+ Fa ad Yao restrict attetio to d 1+ Masry allows d 1 but assumes tat ~ p 1! derivatives of m~x! are uiformly bouded ~secod derivatives i te case of local liear estimatio!+ Istead, we assume tat te secod derivatives of te product f ~x!m~x! are uiformly bouded, wic is less restrictive for te case of local liear estimatio+ REFERENCES Adrews, D+W+K+ ~1995! Noparametric kerel estimatio for semiparametric models+ Ecoometric Teory 11, Ago Nze, P+ &P+ Douka ~2004! Weak depedece: Models ad applicatios to ecoometrics+ Ecoometric Teory 20, Bosq, D+ ~1998! Noparametric Statistics for Stocastic Processes: Estimatio ad Predictio, 2d ed+ Lecture Notes i Statistics 110+ Spriger-Verlag+ Fa, J+ ~1992! Desig-adaptive oparametric regressio+ Joural of te America Statistical Associatio 87, Fa, J+ ~1993! Local liear regressio smooters ad teir miimax efficiecy+ Aals of Statistics 21, Fa, J+ & Q+ Yao ~2003! Noliear Time Series: Noparametric ad Parametric Metods+ Spriger-Verlag+ Graovsky, B+L+ &H+-G+ Müller ~1991! Optimizig kerel metods: A uifyig variatioal priciple+ Iteratioal Statistical Review 59, Liebscer, E+ ~1996! Strog covergece of sums of a-mixig radom variables wit applicatios to desity estimatio+ Stocastic Processes ad Teir Applicatios 65, Mack, Y+P+ &B+W+ Silverma ~1982! Weak ad strog uiform cosistecy of kerel regressio estimates+ Zeitscrift für Warsceilickeitsteorie ud Verwadte Gebiete 61,

12 UNIFORM CONVERGENCE RATES 737 Marro, J+S+ &M+P+ Wad ~1992! Exact mea itegrated squared error+ Aals of Statistics 20, Masry, E+ ~1996! Multivariate local polyomial regressio for time series: Uiform strog cosistecy ad rates+ Joural of Time Series Aalysis 17, Müller, H+-G+ ~1984! Smoot optimum kerel estimators of desities, regressio curves ad modes+ Aals of Statistics 12, Nadaraya, E+A+ ~1964! O estimatig regressio+ Teory of Probability ad Its Applicatios 9, Newey, W+K+ ~1994! Kerel estimatio of partial meas ad a geeralized variace estimator+ Ecoometric Teory 10, Peligrad, M+ ~1991! Properties of uiform cosistecy of te kerel estimators of desity ad of regressio fuctios uder depedece coditios+ Stocastics ad Stocastic Reports 40, Rio, E+ ~1995! Te fuctioal law of te iterated logaritm for statioary strogly mixig sequeces+ Aals of Probability 23, Roseblatt, M+ ~1956! Remarks o some o-parametric estimates of a desity fuctio+ Aals of Matematical Statistics 27, Stoe, C+J+ ~1977! Cosistet oparametric regressio+ Aals of Statistics 5, Stoe, C+J+ ~1982! Optimal global rates of covergece for oparametric regressio+ Aals of Statistics 10, Tra, L+T+ ~1994! Desity estimatio for time series by istograms+ Joural of Statistical Plaig ad Iferece 40, Wad, M+P+ &W+R+ Scucay ~1990! Gaussia-based kerels+ Caadia Joural of Statistics 18, Watso, G+S+ ~1964! Smoot regressio aalysis+ Sakya, Series A 26, APPENDIX Proof of Teorem 1. We start wit some prelimiary bouds+ First ote tat Assumptio 1 implies tat for ay r s, 6K~u!6 R r du KP r1 m KP s1 m+ d (A.1) Secod, assumig witout loss of geerality tat B 0 1 ad B 1 1, ote tat te L r iequality, ~5!, ad ~6! imply tat for ay 1 r s E~6Y 0 6 r 6X 0 x! f ~x! ~E~6Y 0 6 s 6X 0 x!! r0s f ~x! ~E~6Y 0 6 s 6X 0 x! f ~x!! r0s f ~x! ~sr!0s B 1 r0s B 0 ~sr!0s B 1 B 0 + (A.2) Tird, for fixed x ad let Z i K x X i Y i +

13 738 BRUCE E. HANSEN Te for ay 1 r s, by iterated expectatios, ~A+2!, a cage of variables, ad ~A+1! d E6Z 0 6 r d EE K x X 0 Y 0 r 6X 0 d d R K x u r E~6Y 0 6 r 6X 0 u! f ~u! du R d 6K~u!6 r E~6Y 0 6 r 6X 0 x u! f ~x u! du R d 6K~u!6 r dub 1 B 0 KP s1 mb 1 B 0 [ mt `+ (A.3) Fially, for j j *, by iterated expectatios, ~7!, two cages of variables, ad Assumptio 1, E6Z 0 Z j 6 EE K x X 0 K x X jy 0 Y j 6X 0, X j d R K x u 0K x u j dr E~6Y 0Y j 66X 0 u 0, X j u j! f j ~u 0, u j! du 0 du j R dr d 6K~u 0!K~u j!6e~6y 0 Y j 66X 0 x u 0, X j x u j! f j ~x u 0, x u j! du 0 du j 2d R dr d 6K~u 0!K~u j!6du 0 du j B 2 2d m 2 B 2 + (A.4) Defie te covariaces C j E~~Z 0 EZ 0!~Z j EZ j!!+ Assume tat is sufficietly large so tat d j * + We ow boud te C j separately for j j *, j * j d, ad d 1 j `+ First, for j j *, by te Caucy Scwarz iequality ad ~A+3! wit r 2, 6C j 6 E~Z 0 EZ 0! 2 EZ 2 0 m T d +

14 Secod, for j * j d, ~A+4! ad ~A+3! for r 1 combie to yield 6C j 6 E6Z 0 Z j 6 ~E6Z 0 6! 2 ~m 2 B 2 mt 2! 2d + Tird, for j d 1, usig Davydov s lemma, ~2!, ad ~A+3! wit r s we obtai 6C j 6 6a j 120s ~E6Z i 6 s! 20s 6Aj b~120s! ~ m T d! 20s 6AmT 20s j ~220s! 2d0s, were te fial iequality uses ~4!+ Usig tese tree bouds, we calculate tat d Var ~ ZC~x!! 1 E Z i EZ i 2 i1 j * d ` C 0 2 6C j 6 2 6C j 6 2 j1 ~1 2j *! m T d 2 2 ` j d 1 jj * 1 d jj * 1 6AmT 20s j ~220s! 2d0s j d 1 ~m 2 B 2 mt 2! 2d 6C j 6 ~1 2j *! m T d 2~m 2 B 2 mt 2! d 12Am20s T ~s 2!0s d, were te fial iequality uses te fact tat for d 1 ad k 1 ` j d jk1 k ` x d dx k 1d ~d 1! + We ave sow tat ~8! olds wit m20s s Q ~1 2j *! mt 2~m 2 B 2 mt 2! 12A T, (A.5) s 2 completig te proof+ UNIFORM CONVERGENCE RATES 739 Before givig te proof of Teorem 2 we restate Teorem 2+1 of Liebscer ~1996! for statioary processes, wic is derived from Teorem 5 of Rio ~1995!+ LEMMA ~Liebscer0Rio!+ Let Z i be a statioary zero-mea real-valued process suc tat 6Z i 6 b, wit strog mixig coefficiets a m. Te for eac positive iteger m ad «suc tat m «b04

15 740 BRUCE E. HANSEN P i1 Z i «4 exp were s 2 m E~ m i1 Z i! 2. «2 «mb 64 s m 2 m 8 4 m a m, 3 Proof of Teorem 2. We first ote tat ~10! implies tat u defied i ~11! satisfies u 0, so tat ~12! allows o~1! as required+ Te proof is orgaized as follows+ First, we sow tat we ca replace Y i wit te trucated process Y i 1~6Y i 6 t! were t a 10~s1! + Secod, we replace te te supremum i ~15! wit a maximizatio over a fiite N-poit grid+ Tird, we use te expoetial iequality of te lemma to boud te remaider+ Te secod ad tird steps are a modificatio of te strategy of Liebscer ~1996, proof of Tm+ 4+2!+ Te first step is to trucate Y i + Defie R ~x! ZC~x! 1 d 1 d i1 Y i K i1 Y i K x X i 1~6Y i 6 t! x X i 1~6Y i 6 t!+ (A.6) Te by a cage of variables, usig te regio of itegratio, ~6!, ad Assumptio 1 6ER ~x!6 1 d d R K x u E~6Y 061~6Y 0 6 t!6x 0 u! f ~u! du R d 6K~u!6E~6Y 0 61~6Y 0 6 t!6x 0 x u! f ~x u! du R d 6K~u!6E~6Y 0 6 s t ~s1! 1~6Y 0 6 t!6x 0 x u! f ~x u! du t ~s1!r d 6K~u!6E~6Y 0 6 s 6X 0 x u! f ~x u! du t ~s1! mb 1 + (A.7) By Markov s iequality ad te defiitio of t 6R ~x! ER ~x!6 O p ~t ~s1!! O p ~a!, ad terefore replacig Y i wit Y i 1~6Y i 6 t! results i a error of order O p ~a!+ For te remaider of te proof we simply assume tat 6Y i 6 t + For te secod step we create a grid usig regios of te form A j $x :7x x j 7 a %+ By selectig x j to lay o a grid, te regio $x :7x7 c % ca be covered wit N c d d a d suc regios A j + Assumptio 3 implies tat for all 6x 1 x 2 6 d L, 6K~x 2! K~x 1!6 dk * ~x 1!, (A.8)

16 P P were K * ~u! satisfies Assumptio 1+ Ideed, if K~u! as compact support ad is Lipscitz te K * ~u! L 1 1~7u7 2L!+ O te oter ad, if K~u! satisfies te differetiability coditios of Assumptio 3, te K * ~u! L 1 ~1~7u7 2L! 7u L7 1~7u7 2L!!+ I bot cases K * ~u! is bouded ad itegrable ad terefore satisfies Assumptio 1+ Note tat for ay x A j te 7x x j 70 a, ad equatio ~A+8! implies tat if is large eoug so tat a L, K x X i Now defie K x j X i i1 * a K x j X i + UNIFORM CONVERGENCE RATES 741 * EC~x! 1 Y d i K x X i, (A.9) wic is a versio of ZC~x! wit K~u! replaced wit K * ~u!+ Note tat E6 EC~x!6 B 1 B 0 R d K * ~u! du `+ Te sup xa j 6 ZC~x! E ZC~x!6 6 ZC~x j! E ZC~x j!6 EC~x j!6 E6 EC~x j!6# 6 ZC~x j! E ZC~x j!6 a 6 EC~x j! E EC~x j!6 2a E6 EC~x j!6 6 ZC~x j! E ZC~x j!6 6 EC~x j! E EC~x j!6 2a M, te fial iequality because a 1 for sufficietly large ad for ay M E6 EC~x!6+ We fid tat P sup 7x7c 6 ZC~x! E ZC~x!6 3Ma N max P 1jN sup6 ZC~x! E ZC~x!6 3Ma xa j N max P~6 ZC~x j! E ZC~x j!6 M! (A.10) 1jN N max P~6 EC~x j! E EC~x j!6 M!+ (A.11) 1jN We ow boud ~A+10! ad ~A+11! usig te same argumet, as bot K~u! ad K * ~u! satisfy Assumptio 1, ad tis is te oly property we will use+ Let Z i ~x! Y i K~~x X i!0! EY i K~~x X i!0!+ Because 6Y i 6 t ad 6K~~x X i!0!6 K it follows tat 6Z i ~x!6 2t K [ b + Also from Teorem 1 we ave ~for sufficietly large! te boud

17 742 BRUCE E. HANSEN sup x m E i1 2 Z i ~x! Qm d + Set m a 1 t 1 ad ote tat m ad m «b 04 for «Ma d for sufficietly large+ Te by te lemma, for ay x, ad sufficietly large, P~6 ZC~x! E ZC~x!6 Ma! P i1 4 exp Z i ~x! Ma d M 2 a 2 2 2d d 4 64Q d 6KM P m a m 4 exp M 2 l 64Q 6KM4Am 1b P 4 M0~646K P! 4Aa 1b t 1b, te secod iequality usig ~2! ad ~14! ad te last iequality takig M Q+ Recallig tat N c d d a d, it follows from tis ad ~A+10! ~A+11! tat P sup 7x7c 6 ZC~x! E ZC~x!6 3Ma O~T 1! O~T 2!, (A.12) were T 1 c d d a d M0~646K P! (A.13) ad T 2 c d d a 1bd t 1b + (A.14) Recall tat t a 10~s1! ad c O~~l! 10d 102q!+ Equatio ~12! implies tat ~l! d o~ u! ad tus c d d o~ d02qu!+ Also a ~~l! d 1! 102 o~ ~1u!02!+ Tus T 1 o~ d02qud~1u!02m0~646k P!! o~1! for sufficietly large M ad T 2 o~ d02qu1~1u!@1bd~1b!0~s1!#02! o~1! by ~11!+ Tus ~A+12! is o~1!, wic is sufficiet for ~15!+ Proof of Teorem 3. We first ote tat ~16! implies tat u defied i ~17! satisfies u 0, so tat ~18! allows o~1! as required+

18 Te proof is a modificatio of te proof of Teorem 2+ Borrowig a argumet from Mack ad Silverma ~1982!, we first sow tat R ~x! defied i ~A+6! is O~a! we we set t ~f! 10s + Ideed, by ~A+7! ad s 2, 6ER ~x!6 t ~s1! mb 1 ~s1!s mb 1 O~a!, UNIFORM CONVERGENCE RATES 743 ad because ` 1 ` P~6Y 6 t! t s E6Y 6 s E6Y 0 6 s ~f! 1 `, 1 ` 1 usig te fact tat ` 1 ~f! 1 `, te for sufficietly large, 6Y 6 t wit probability oe+ Hece for sufficietly large ad all i, 6Y i 6 t, ad tus R ~x! 0 wit probability oe+ We ave sow tat 6R ~x! ER ~x!6 O~a! almost surely+ Tus, as i te proof of Teorem 2 we ca assume tat 6Y i 6 t + Equatios ~A+12! ~A+14! old wit t ~f! 10s ad c O~f 10d 102q!+ Employig d O~f 2 u! ad r o~f 102 ~1u!02! we fid T 1 c d d r d M0~646K P! o~f 1 d02qud~1u!02m0~646k P!! o~~f! 1! for sufficietly large M ad T 2 c d d a 1bd t 1b O~f 1~1bd!02~1b!0s d02qu1~1u!~1bd!02~1b!0s! O~~f! 1! by ~17! ad te fact tat ~1 b!0s ~1 b d!02 is implied by ~16!+ Tus ` 1 ~T 1 T 2! `+ It follows from tis ad ~A+12! tat ` 1 P sup 6 ZC~x! E ZC~x!6 3Ma 7x7c `, ad ~20! follows by te Borel Catelli lemma+

19 744 BRUCE E. HANSEN Proof of Teorem 4. Defie c 102q ad EC~x! 1 Y d i K x X i1~7x i 7 c!+ (A.15) i1 Observe tat c q O~a!+ Usig te regio of itegratio, a cage of variables, ~21!, ad Assumptio 1, 6E~ ZC~x! EC~x!!6 d E6Y 0 6 K x X 0 1~7X 07 c! d 7u7c E~6Y 0 66X 0 u! K x u d c qr d 7u7 q E~6Y 0 66X 0 u! K x u f ~u! du f ~u! du c qr d 7x u7 q E~6Y 0 66X 0 x u! f ~x u!6k~u!6du c q B 3 m O~a!+ (A.16) By Markov s iequality sup x 6 ZC~x! E ZC~x!6 sup6 EC~x! E EC~x!6 O p ~a!+ (A.17) x Tis sows tat te error i replacig ZC~x! wit EC~x! is O p ~a!+ Suppose tat c L, 7x7 2c, ad 7X i 7 c + Te 7x X i 7 c, ad ~22! ad q d imply tat K x X i Terefore L 2 x X i q L 2 q c q L 2 d c q + sup 6 EC~x!6 1 7x72c 6Y d i 6 sup 7x72c K x X i i1 1 q 6Y i 6L 2 c i1 1~7X i7 c! ad O~a! sup 7x72c 6 EC~x! E EC~x!6 O~a! (A.18)

20 UNIFORM CONVERGENCE RATES 745 almost surely+ Teorem 2 implies tat sup 7x72c 6 EC~x! E EC~x!6 O p ~a!+ Equatios ~A+17! ~A+19! togeter establis te result+ (A.19) Proof of Teorem 5. Let c ~f! 102q ad let EC~x! be defied as i ~A+15!+ Because E6X i 6 2q `, by te same argumet as at te begiig of te proof of Teorem 3, for sufficietly large ZC~x! EC~x! wit probability oe+ Tis ad ~A+16! imply tat te error i replacig ZC~x! wit EC~x! is O~c q! O~a!+ Furtermore, equatio ~A+18! olds+ Teorem 3 applies because 102q 10d implies c O~f 10d 102q!+ Tus sup6 EC~x! E EC~x!6 O~a! x almost surely+ Togeter, tis completes te proof+ Proof of Teorem 6. I te otatio of Sectio 2, f Z~x! r ZC~x! wit K~x! k ~r! ~x! ad Y i 1+ Assumptios 1 3 are satisfied wit s `; tus by Teorem 2 sup 6 f Z ~r! ~x! Ef Z ~r! ~x!6 r sup 6 ZC~x! E ZC~x!6 7x7c 7x7c 102 log O p r d O p log d2r By itegratio by parts ad a cage of variables, ~r! Ef Z ~r! ~x! 1 E k x X i dr 1 x u k ~r! f ~u! du dr k 1 x u f ~r! ~u! du d k~u! f ~r! ~x u! du f ~x! O~ p!, were te fial equality is by a pt-order Taylor series expasio ad usig te assumed properties of te kerel ad f ~x!+ Togeter we obtai ~25!+ Equatio ~27! is obtaied by settig ~l 0! 10~d2p2r!, wic is allowed we u d0~d 2p 2r!+

21 [ Z Z 746 BRUCE E. HANSEN Proof of Teorem 7. Te argumet is te same as for Teorem 6, except tat Teorem 3 is used so tat te covergece olds almost surely+ Proof of Teorem 8. Set g~x! m~x! f ~x!, g~x! [ ~ d! 1 i1 Y i k~~x X i!0!, ad f Z~x! ~ d! 1 i1 k~~x X i!0!+ We ca write m~x! g~x! [ f ~x! g~x!0f [ ~x! f ~x!0f ~x! + (A.20) We examie te umerator ad deomiator separately+ First, Teorem 6 sows tat sup 6 f Z~x! f ~x!6 O p ~a *! 7x7c ad terefore sup 7x7c f Z~x! f ~x! 1 f sup 7x7c Z ~x! f ~x! Secod, a applicatio of Teorem 2 yields d sup 6 g~x! [ E g~x!6 [ O 7x7c p log We calculate tat E g~x! [ 1 1 d R d k f ~x! O p~a O p ~d 1 a *!+ if f ~x! 6x6c E E~Y d 0 6X 0!k x X 0 x u m~u! f ~u! du R d k~u!g~x u! du *! ad tus g~x! O~ 2! sup 6 g~x! [ g~x!6 O p ~a *!+ 7x7c Tis ad g~x! m~x! f ~x! imply tat sup 7x7c g~x! [ f ~x! m~x! O p~a! O p ~d 1 a *!+ if f ~x! 6x6c (A.21)

22 [ K Z UNIFORM CONVERGENCE RATES 747 Togeter, ~A+20! ad ~A+21! imply tat uiformly over 7x7 c g~x!0f m~x! [ ~x! f ~x!0f ~x! m~x! O p~d 1 a *! m~x! O 1 O p ~d 1 a * p ~d 1 a *!! as claimed+ Te optimal rate is obtaied by settig ~l 0! 10~d4!, wic is allowed we u d0~d 4!, wic is implied by ~11! for sufficietly large b+ Proof of Teorem 9. Te argumet is te same as for Teorem 8, except tat Teorems 3 ad 7 are used so tat te covergece olds almost surely+ Proof of Teorem 10. We ca write m~x! g~x! [ S~x!' M~x! 1 N~x! f Z~x! S~x! ' M~x! 1 S~x!, were S~x! 1 d i1 M~x! 1 d i1 N~x! 1 d i1 x X i x X i x X i k x X i, x X i ' k x X i Y i + k x X i, Defiig V R d uu ' k~u! du, Teorem 2 ad stadard calculatios imply tat uiformly over 7x7 c, S~x! V f ~1! ~x! O p ~a *!, M~x! V f ~x! O p ~a *!, N~x! Vg ~1! ~x! O p ~a *!+ Terefore because f ~1! ~x! ad g ~2! ~x! are bouded, uiformly over 7x7 c, f ~x! 1 S~x! O p ~d 1 ~ a *!!, f ~x! 1 M~x! V O p ~d 1 a *!, f ~x! 1 N~x! O p ~d 1 ~ a *!!,

23 748 BRUCE E. HANSEN ad so S~x! ' M~x! 1 S~x! O p ~d 2 ~ a *! 2! O p ~d 2 a *! f ~x! ad S~x! ' M~x! 1 N~x! O p ~d 2 a *!+ f ~x! Terefore m~x! K g~x! [ S~x! ' M~x! 1 N~x! f ~x! f Z~x! S~x! ' M~x! 1 S~x! f ~x! uiformly over 7x7 c + m~x! O p ~d 2 a *! Proof of Teorem 11. Te argumet is te same as for Teorem 10, except tat Teorems 3 ad 7 are used so tat te covergece olds almost surely+

Uniformly Consistency of the Cauchy-Transformation Kernel Density Estimation Underlying Strong Mixing

Uniformly Consistency of the Cauchy-Transformation Kernel Density Estimation Underlying Strong Mixing Appl. Mat. If. Sci. 7, No. L, 5-9 (203) 5 Applied Matematics & Iformatio Scieces A Iteratioal Joural c 203 NSP Natural Scieces Publisig Cor. Uiformly Cosistecy of te Caucy-Trasformatio Kerel Desity Estimatio

More information

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION Jauary 3 07 LECTURE LEAST SQUARES CROSS-VALIDATION FOR ERNEL DENSITY ESTIMATION Noparametric kerel estimatio is extremely sesitive to te coice of badwidt as larger values of result i averagig over more

More information

Nonparametric regression: minimax upper and lower bounds

Nonparametric regression: minimax upper and lower bounds Capter 4 Noparametric regressio: miimax upper ad lower bouds 4. Itroductio We cosider oe of te two te most classical o-parametric problems i tis example: estimatig a regressio fuctio o a subset of te real

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Estimation of the essential supremum of a regression function

Estimation of the essential supremum of a regression function Estimatio of the essetial supremum of a regressio fuctio Michael ohler, Adam rzyżak 2, ad Harro Walk 3 Fachbereich Mathematik, Techische Uiversität Darmstadt, Schlossgartestr. 7, 64289 Darmstadt, Germay,

More information

Notes On Nonparametric Density Estimation. James L. Powell Department of Economics University of California, Berkeley

Notes On Nonparametric Density Estimation. James L. Powell Department of Economics University of California, Berkeley Notes O Noparametric Desity Estimatio James L Powell Departmet of Ecoomics Uiversity of Califoria, Berkeley Uivariate Desity Estimatio via Numerical Derivatives Cosider te problem of estimatig te desity

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS 1

ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS 1 Teory of Stocastic Processes Vol2 28, o3-4, 2006, pp*-* SILVELYN ZWANZIG ON LOCAL LINEAR ESTIMATION IN NONPARAMETRIC ERRORS-IN-VARIABLES MODELS Local liear metods are applied to a oparametric regressio

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

4 Conditional Distribution Estimation

4 Conditional Distribution Estimation 4 Coditioal Distributio Estimatio 4. Estimators Te coditioal distributio (CDF) of y i give X i = x is F (y j x) = P (y i y j X i = x) = E ( (y i y) j X i = x) : Tis is te coditioal mea of te radom variable

More information

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM

ALLOCATING SAMPLE TO STRATA PROPORTIONAL TO AGGREGATE MEASURE OF SIZE WITH BOTH UPPER AND LOWER BOUNDS ON THE NUMBER OF UNITS IN EACH STRATUM ALLOCATING SAPLE TO STRATA PROPORTIONAL TO AGGREGATE EASURE OF SIZE WIT BOT UPPER AND LOWER BOUNDS ON TE NUBER OF UNITS IN EAC STRATU Lawrece R. Erst ad Cristoper J. Guciardo Erst_L@bls.gov, Guciardo_C@bls.gov

More information

A Weak Law of Large Numbers Under Weak Mixing

A Weak Law of Large Numbers Under Weak Mixing A Weak Law of Large Numbers Uder Weak Mixig Bruce E. Hase Uiversity of Wiscosi Jauary 209 Abstract This paper presets a ew weak law of large umbers (WLLN) for heterogeous depedet processes ad arrays. The

More information

Computation Of Asymptotic Distribution For Semiparametric GMM Estimators

Computation Of Asymptotic Distribution For Semiparametric GMM Estimators Computatio Of Asymptotic Distributio For Semiparametric GMM Estimators Hideiko Icimura Departmet of Ecoomics Uiversity College Lodo Cemmap UCL ad IFS April 9, 2004 Abstract A set of su ciet coditios for

More information

Kernel density estimator

Kernel density estimator Jauary, 07 NONPARAMETRIC ERNEL DENSITY ESTIMATION I this lecture, we discuss kerel estimatio of probability desity fuctios PDF Noparametric desity estimatio is oe of the cetral problems i statistics I

More information

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences Commuicatios of the Korea Statistical Society 29, Vol. 16, No. 5, 841 849 Precise Rates i Complete Momet Covergece for Negatively Associated Sequeces Dae-Hee Ryu 1,a a Departmet of Computer Sciece, ChugWoo

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Lecture 9: Regression: Regressogram and Kernel Regression

Lecture 9: Regression: Regressogram and Kernel Regression STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 9: Regressio: Regressogram ad erel Regressio Istructor: Ye-Ci Ce Referece: Capter 5 of All of oparametric statistics 9 Itroductio Let X,

More information

CONCENTRATION INEQUALITIES

CONCENTRATION INEQUALITIES CONCENTRATION INEQUALITIES MAXIM RAGINSKY I te previous lecture, te followig result was stated witout proof. If X 1,..., X are idepedet Beroulliθ radom variables represetig te outcomes of a sequece of

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

A Note on the Kolmogorov-Feller Weak Law of Large Numbers Joural of Mathematical Research with Applicatios Mar., 015, Vol. 35, No., pp. 3 8 DOI:10.3770/j.iss:095-651.015.0.013 Http://jmre.dlut.edu.c A Note o the Kolmogorov-Feller Weak Law of Large Numbers Yachu

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

STA Object Data Analysis - A List of Projects. January 18, 2018

STA Object Data Analysis - A List of Projects. January 18, 2018 STA 6557 Jauary 8, 208 Object Data Aalysis - A List of Projects. Schoeberg Mea glaucomatous shape chages of the Optic Nerve Head regio i aimal models 2. Aalysis of VW- Kedall ati-mea shapes with a applicatio

More information

Nonparametric Conditional Density Estimation

Nonparametric Conditional Density Estimation Noparametric Coditioal Desity Estimatio Bruce E Hase Uiversity of Wiscosi wwwsscwiscedu/~bhase November 004 Prelimiary ad Icomplete Research supported by the Natioal Sciece Foudatio Departmet of Ecoomics,

More information

Semiparametric Mixtures of Nonparametric Regressions

Semiparametric Mixtures of Nonparametric Regressions Semiparametric Mixtures of Noparametric Regressios Sijia Xiag, Weixi Yao Proofs I tis sectio, te coditios required by Teorems, 2, 3 ad 4 are listed. Tey are ot te weakest sufficiet coditios, but could

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Week 6. Intuition: Let p (x, y) be the joint density of (X, Y ) and p (x) be the marginal density of X. Then. h dy =

Week 6. Intuition: Let p (x, y) be the joint density of (X, Y ) and p (x) be the marginal density of X. Then. h dy = Week 6 Lecture Kerel regressio ad miimax rates Model: Observe Y i = f (X i ) + ξ i were ξ i, i =,,,, iid wit Eξ i = 0 We ofte assume X i are iid or X i = i/ Nadaraya Watso estimator Let w i (x) = K ( X

More information

Hazard Rate Function Estimation Using Weibull Kernel

Hazard Rate Function Estimation Using Weibull Kernel Ope Joural of Statistics, 4, 4, 65-66 Publised Olie September 4 i SciRes. ttp://www.scirp.org/joural/ojs ttp://d.doi.org/.46/ojs.4.486 Hazard Rate Fuctio Estimatio Usig Weibull Kerel Raid B. Sala, Hazem

More information

Regression with an Evaporating Logarithmic Trend

Regression with an Evaporating Logarithmic Trend Regressio with a Evaporatig Logarithmic Tred Peter C. B. Phillips Cowles Foudatio, Yale Uiversity, Uiversity of Aucklad & Uiversity of York ad Yixiao Su Departmet of Ecoomics Yale Uiversity October 5,

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Notes On Median and Quantile Regression. James L. Powell Department of Economics University of California, Berkeley

Notes On Median and Quantile Regression. James L. Powell Department of Economics University of California, Berkeley Notes O Media ad Quatile Regressio James L. Powell Departmet of Ecoomics Uiversity of Califoria, Berkeley Coditioal Media Restrictios ad Least Absolute Deviatios It is well-kow that the expected value

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Uniform Convergence Rates for Nonparametric Estimation

Uniform Convergence Rates for Nonparametric Estimation Uniform Convergence Rates for Nonparametric Estimation Bruce E. Hansen University of Wisconsin www.ssc.wisc.edu/~bansen October 2004 Preliminary and Incomplete Abstract Tis paper presents a set of rate

More information

Notes 27 : Brownian motion: path properties

Notes 27 : Brownian motion: path properties Notes 27 : Browia motio: path properties Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces:[Dur10, Sectio 8.1], [MP10, Sectio 1.1, 1.2, 1.3]. Recall: DEF 27.1 (Covariace) Let X = (X

More information

Asymptotic Properties for Weighted Averages of Longitudinal Dependent Data

Asymptotic Properties for Weighted Averages of Longitudinal Dependent Data Asymptotic Properties for Weighted Averages of Logitudial Depedet Data Brahima Soro,, Ouagia Hili & Youssouf Diagaa Laboratoire de Mathématiques, Iformatique et Applicatios, Uiversité Nagui Abrogoua, 0

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL)

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL) TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES SUPPLEMENTARY MATERIAL) By Ke Zhu, Philip L.H. Yu ad Wai Keug Li Chiese Academy of Scieces ad Uiversity of Hog Kog APPENDIX: PROOFS I this appedix, we

More information

Mi-Hwa Ko and Tae-Sung Kim

Mi-Hwa Ko and Tae-Sung Kim J. Korea Math. Soc. 42 2005), No. 5, pp. 949 957 ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES Mi-Hwa Ko ad Tae-Sug Kim Abstract. For weighted sum of a sequece

More information

Study the bias (due to the nite dimensional approximation) and variance of the estimators

Study the bias (due to the nite dimensional approximation) and variance of the estimators 2 Series Methods 2. Geeral Approach A model has parameters (; ) where is ite-dimesioal ad is oparametric. (Sometimes, there is o :) We will focus o regressio. The fuctio is approximated by a series a ite

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Linear Elliptic PDE s Elliptic partial differential equations frequently arise out of conservation statements of the form

Linear Elliptic PDE s Elliptic partial differential equations frequently arise out of conservation statements of the form Liear Elliptic PDE s Elliptic partial differetial equatios frequetly arise out of coservatio statemets of the form B F d B Sdx B cotaied i bouded ope set U R. Here F, S deote respectively, the flux desity

More information

A NECESSARY MOMENT CONDITION FOR THE FRACTIONAL FUNCTIONAL CENTRAL LIMIT THEOREM

A NECESSARY MOMENT CONDITION FOR THE FRACTIONAL FUNCTIONAL CENTRAL LIMIT THEOREM Ecoometric Theory, 28, 2012, 671 679. doi:10.1017/s0266466611000697 A NECESSARY MOMENT CONDITION FOR THE FRACTIONAL FUNCTIONAL CENTRAL LIMIT THEOREM SØREN JOHANSEN Uiversity of Copehage ad CREATES MORTEN

More information

Research Article Moment Inequality for ϕ-mixing Sequences and Its Applications

Research Article Moment Inequality for ϕ-mixing Sequences and Its Applications Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2009, Article ID 379743, 2 pages doi:0.55/2009/379743 Research Article Momet Iequality for ϕ-mixig Sequeces ad Its Applicatios Wag

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

The central limit theorem for Student s distribution. Problem Karim M. Abadir and Jan R. Magnus. Econometric Theory, 19, 1195 (2003)

The central limit theorem for Student s distribution. Problem Karim M. Abadir and Jan R. Magnus. Econometric Theory, 19, 1195 (2003) The cetral limit theorem for Studet s distributio Problem 03.6.1 Karim M. Abadir ad Ja R. Magus Ecoometric Theory, 19, 1195 (003) Z Ecoometric Theory, 19, 003, 1195 1198+ Prited i the Uited States of America+

More information

1 Introduction, definitions and assumption

1 Introduction, definitions and assumption O almost sure covergece rates for the kerel estimator of a covariace operator uder egative associatio H. Jabbari 1 ad M. Erfaiya Departmet of Statistics, Ordered ad Spatial Data Ceter of Excellece, Ferdowsi

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

On the convergence rates of Gladyshev s Hurst index estimator

On the convergence rates of Gladyshev s Hurst index estimator Noliear Aalysis: Modellig ad Cotrol, 2010, Vol 15, No 4, 445 450 O the covergece rates of Gladyshev s Hurst idex estimator K Kubilius 1, D Melichov 2 1 Istitute of Mathematics ad Iformatics, Vilius Uiversity

More information

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A. Radom Walks o Discrete ad Cotiuous Circles by Jeffrey S. Rosethal School of Mathematics, Uiversity of Miesota, Mieapolis, MN, U.S.A. 55455 (Appeared i Joural of Applied Probability 30 (1993), 780 789.)

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

Estimating the Population Mean using Stratified Double Ranked Set Sample

Estimating the Population Mean using Stratified Double Ranked Set Sample Estimatig te Populatio Mea usig Stratified Double Raked Set Sample Mamoud Syam * Kamarulzama Ibraim Amer Ibraim Al-Omari Qatar Uiversity Foudatio Program Departmet of Mat ad Computer P.O.Box (7) Doa State

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

Bias reduction in local polynomial regression estimation via global Lipschitz conditions

Bias reduction in local polynomial regression estimation via global Lipschitz conditions Bias reductio i local polyomial regressio estimatio via global Lipscitz coditios Na Kyeog Lee Departmet of Ecoomics Te Uiversity of Colorado Boulder, CO 839-256 USA email: a.lee@colorado.edu Voice: + 62

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Lecture 7 Testing Nonlinear Inequality Restrictions 1

Lecture 7 Testing Nonlinear Inequality Restrictions 1 Eco 75 Lecture 7 Testig Noliear Iequality Restrictios I Lecture 6, we discussed te testig problems were te ull ypotesis is de ed by oliear equality restrictios: H : ( ) = versus H : ( ) 6= : () We sowed

More information

Model-based Variance Estimation for Systematic Sampling

Model-based Variance Estimation for Systematic Sampling ASA Sectio o Survey Researc Metods Model-based Variace Estimatio for Systematic Samplig Xiaoxi Li ad J D Opsomer Ceter for Survey Statistics ad Metodology, ad Departmet of Statistics, Iowa State Uiversity,

More information

for all x ; ;x R. A ifiite sequece fx ; g is said to be ND if every fiite subset X ; ;X is ND. The coditios (.) ad (.3) are equivalet for =, but these

for all x ; ;x R. A ifiite sequece fx ; g is said to be ND if every fiite subset X ; ;X is ND. The coditios (.) ad (.3) are equivalet for =, but these sub-gaussia techiques i provig some strog it theorems Λ M. Amii A. Bozorgia Departmet of Mathematics, Faculty of Scieces Sista ad Baluchesta Uiversity, Zaheda, Ira Amii@hamoo.usb.ac.ir, Fax:054446565 Departmet

More information

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data Proceedigs 59th ISI World Statistics Cogress, 5-30 August 013, Hog Kog (Sessio STS046) p.09 Kolmogorov-Smirov type Tests for Local Gaussiaity i High-Frequecy Data George Tauche, Duke Uiversity Viktor Todorov,

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data Appedix to: Hypothesis Testig for Multiple Mea ad Correlatio Curves with Fuctioal Data Ao Yua 1, Hog-Bi Fag 1, Haiou Li 1, Coli O. Wu, Mig T. Ta 1, 1 Departmet of Biostatistics, Bioiformatics ad Biomathematics,

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory ST525: Advaced Statistical Theory Departmet of Statistics & Applied Probability Tuesday, September 7, 2 ST525: Advaced Statistical Theory Lecture : The law of large umbers The Law of Large Numbers The

More information

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector Dimesio-free PAC-Bayesia bouds for the estimatio of the mea of a radom vector Olivier Catoi CREST CNRS UMR 9194 Uiversité Paris Saclay olivier.catoi@esae.fr Ilaria Giulii Laboratoire de Probabilités et

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

1 Covariance Estimation

1 Covariance Estimation Eco 75 Lecture 5 Covariace Estimatio ad Optimal Weightig Matrices I this lecture, we cosider estimatio of the asymptotic covariace matrix B B of the extremum estimator b : Covariace Estimatio Lemma 4.

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Complete Convergence for Asymptotically Almost Negatively Associated Random Variables

Complete Convergence for Asymptotically Almost Negatively Associated Random Variables Applied Mathematical Scieces, Vol. 12, 2018, o. 30, 1441-1452 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.810142 Complete Covergece for Asymptotically Almost Negatively Associated Radom

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Bull. Korean Math. Soc. 36 (1999), No. 3, pp. 451{457 THE STRONG CONSISTENCY OF NONLINEAR REGRESSION QUANTILES ESTIMATORS Seung Hoe Choi and Hae Kyung

Bull. Korean Math. Soc. 36 (1999), No. 3, pp. 451{457 THE STRONG CONSISTENCY OF NONLINEAR REGRESSION QUANTILES ESTIMATORS Seung Hoe Choi and Hae Kyung Bull. Korea Math. Soc. 36 (999), No. 3, pp. 45{457 THE STRONG CONSISTENCY OF NONLINEAR REGRESSION QUANTILES ESTIMATORS Abstract. This paper provides suciet coditios which esure the strog cosistecy of regressio

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

Empirical Processes: Glivenko Cantelli Theorems

Empirical Processes: Glivenko Cantelli Theorems Empirical Processes: Gliveko Catelli Theorems Mouliath Baerjee Jue 6, 200 Gliveko Catelli classes of fuctios The reader is referred to Chapter.6 of Weller s Torgo otes, Chapter??? of VDVW ad Chapter 8.3

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1 8. The cetral limit theorems 8.1. The cetral limit theorem for i.i.d. sequeces. ecall that C ( is N -separatig. Theorem 8.1. Let X 1, X,... be i.i.d. radom variables with EX 1 = ad EX 1 = σ (,. Suppose

More information

Statistical Inference Based on Extremum Estimators

Statistical Inference Based on Extremum Estimators T. Rotheberg Fall, 2007 Statistical Iferece Based o Extremum Estimators Itroductio Suppose 0, the true value of a p-dimesioal parameter, is kow to lie i some subset S R p : Ofte we choose to estimate 0

More information

Research Article Complete Convergence for Maximal Sums of Negatively Associated Random Variables

Research Article Complete Convergence for Maximal Sums of Negatively Associated Random Variables Hidawi Publishig Corporatio Joural of Probability ad Statistics Volume 010, Article ID 764043, 17 pages doi:10.1155/010/764043 Research Article Complete Covergece for Maximal Sums of Negatively Associated

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

On the convergence, consistence and stability of a standard finite difference scheme

On the convergence, consistence and stability of a standard finite difference scheme AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2, Sciece Huβ, ttp://www.sciub.org/ajsir ISSN: 253-649X, doi:.525/ajsir.2.2.2.74.78 O te covergece, cosistece ad stabilit of a stadard fiite differece

More information

Berry-Esseen bounds for self-normalized martingales

Berry-Esseen bounds for self-normalized martingales Berry-Essee bouds for self-ormalized martigales Xiequa Fa a, Qi-Ma Shao b a Ceter for Applied Mathematics, Tiaji Uiversity, Tiaji 30007, Chia b Departmet of Statistics, The Chiese Uiversity of Hog Kog,

More information

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology

Advanced Analysis. Min Yan Department of Mathematics Hong Kong University of Science and Technology Advaced Aalysis Mi Ya Departmet of Mathematics Hog Kog Uiversity of Sciece ad Techology September 3, 009 Cotets Limit ad Cotiuity 7 Limit of Sequece 8 Defiitio 8 Property 3 3 Ifiity ad Ifiitesimal 8 4

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Econometrica Supplementary Material

Econometrica Supplementary Material Ecoometrica Supplemetary Material SUPPLEMENT TO NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION OF A QUANTILE REGRESSION MODEL : MATHEMATICAL APPENDIX (Ecoometrica, Vol. 75, No. 4, July 27, 1191 128) BY

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Equivalent Conditions of Complete Convergence and Complete Moment Convergence for END Random Variables

Equivalent Conditions of Complete Convergence and Complete Moment Convergence for END Random Variables Chi. A. Math. Ser. B 391, 2018, 83 96 DOI: 10.1007/s11401-018-1053-9 Chiese Aals of Mathematics, Series B c The Editorial Office of CAM ad Spriger-Verlag Berli Heidelberg 2018 Equivalet Coditios of Complete

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

DEGENERACY AND ALL THAT

DEGENERACY AND ALL THAT DEGENERACY AND ALL THAT Te Nature of Termodyamics, Statistical Mecaics ad Classical Mecaics Termodyamics Te study of te equilibrium bulk properties of matter witi te cotext of four laws or facts of experiece

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information