Yan Sun * 1 Introduction

Size: px
Start display at page:

Download "Yan Sun * 1 Introduction"

Transcription

1 Sun Boundry Vlue Problems 22, 22:86 hp:// R E S E A R C H Open Access Posiive soluions of Surm-Liouville boundry vlue problems for singulr nonliner second-order impulsive inegro-differenil equion in Bnch spces Yn Sun Correspondence: ysun@shnu.edu.cn; sunyn@fudn.edu.cn; ysun88@sin.com.cn School of Mhemicl Sciences, Fudn Universiy, Shnghi, 2433, P.R. Chin Deprmen of Mhemics, Shnghi Norml Universiy, Shnghi, 2234, P.R. Chin Absrc In his work, we invesige he exisence of posiive soluions of Surm-Liouville boundry vlue problems for singulr nonliner second-order impulsive inegro differenil equion in rel Bnch spce. Some new exisence resuls of posiive soluions re esblished by pplying fixed-poin index heory ogeher wih comprison heorem. Some discussions nd n exmple re given o demonsre he pplicions of our min resuls. MSC: 34B5; 34B25; 45J5 Keywords: mesure of non-comprison; posiive soluion; boundry vlue problem; impulsive inegro-differenil equion Inroducion In his pper, we sudy he exisence of posiive soluions o second-order singulr nonliner impulsive inegro-differenil equion of he form: y + hf, y, y, Ty, Sy =, J, k, y =k = I k y k, k =,...,m, y =k = I k y k, y k, k =,...,m, αy βy =, γ y + δy =,. where α, β, γ, δ, = βγ + αγ + αδ >,I = [, ], J =,, < < 2 < < m <, J = J \, 2,..., m }, J = [, ], J =, ], J k = k, k+ ], k =,...,m,j m = m,], f C[J P P P P, P], nd P is posiive cone in E. θ is zero elemen of E, I k C[P, P], I k C[P, P], nd Ty= K, sys ds, Sy = H, sys ds,.2 22 Sun; licensee Springer. This is n Open Access ricle disribued under he erms of he Creive Commons Aribuion License hp://creivecommons.org/licenses/by/2., which permis unresriced use, disribuion, nd reproducion in ny medium, provided he originl work is properly cied.

2 Sun Boundry Vlue Problems 22, 22:86 Pge 2 of 8 hp:// in which K C[D, J], D =, s J J : s}, H C[J J, J], nd K = mxk, s:, s D}, H = mxh, s:, s D}. y =k nd y =k denoe he jump of y ndy = k, i.e., y =k = y + k y k, y =k = y + k y k, where y k +, y k + ndy k, y k represen he righ-hnd limi nd lef-hnd limi of y nd y = k,respecively.h CJ, R + ndmybesingulr = nd/or =. Boundry vlue problems for impulsive differenil equions rise from mny nonliner problems in sciences, such s physics, populion dynmics, bioechnology, nd economics ec. see [, 2, 4 4, 6 8]. As i is well known h impulsive differenil equions conin jumps nd/or impulses which re min chrcerisic feure in compuionl biology. Over he ps 5 yers, significn dvnce hs been chieved in heory of impulsive differenil equions. However, he corresponding heory of impulsive inegro-differenil equions in Bnch spces does no develop rpidly. Recenly, Guo [5 8] esblished he exisence of soluion, muliple soluions nd exreml soluions for nonliner impulsive inegro-differenil equions wih nonsingulr rgumen in Bnch spces. The min ools of Guo [5 8] re he Schuder fixed-poin heorem, fixed-poin index heory, upper nd lower soluions ogeher wih he monoone ierive echnique, respecively. The condiions of he Kurowski mesure of non-compcness in Guo [5 8] ply n imporn role in he proof of he resuls. Bu ll kinds of compcness ype condiions is difficul o verify in bsrc spces. As resul, i is n ineresing nd imporn problem o remove or wek compcness ype condiions. Inspired nd moived grely by he bove works, he im of he pper is o consider he exisence of posiive soluions for he boundry vlue problem. undersimpler condiions. The min resuls of problem. re obined by mking use of fixed-poin index heory nd fixed-poin heorem. More specificlly, in he proof of hese heorems, we consruc specil cone for sric se conrcion operor. Our min resuls in essence improve nd generlize he corresponding resuls of Guo [5 8]. Moreover, our mehod is differen from hose in Guo [5 8]. Theresofhepperisorgnizedsfollows:InSecion2, we presen some known resuls nd inroduce condiions o be used in he nex secion. The min heorem formuled nd proved in Secion 3. Finlly,inSecion4, some discussions nd n exmple for singulr nonliner inegro-differenil equions re presened o demonsre he pplicion of he min resuls. 2 Preliminries nd lemms In his secion, we shll se some necessry definiions nd preliminries resuls. Definiion 2. Le E be rel Bnch spce. A nonempy closed se P E is clled cone if i sisfies he following wo condiions: x P, λ >implies λx P; 2 x P, x P implies x =. A cone is sid solid if i conins inerior poins, P θ.aconep is clled o be genering if E = P P, i.e., every elemen y E cnberepresenedinheformy = x z,wherex, z P.

3 Sun Boundry Vlue Problems 22, 22:86 Pge 3 of 8 hp:// AconeP in E induces pril ordering in E given by u v if v u P.Ifu vnd u v, we wrie u < v;ifconep is solid nd v u P,wewrieu v. Definiion 2.2 AconeP E is sid o be norml if here exiss posiive consn N such h x + y N, x, y P, x =, y =. Definiion 2.3 Le E be meric spce nd S be bounded subse of E. Themesureof non-compcness ϒSofS is defined by ϒS=infδ >:S dmisfiniecoverbysesofdimeer δ}. Definiion 2.4 An operor B : D E is sid o be compleely coninuous if i is coninuous nd compc. B is clled k-se-conrcion k if i is coninuous, bounded nd ϒBS kϒs for ny bounded se S D,whereϒS denoes he mesure of noncompcness of S. A k-se-conrcion is clled sric-se conrcion if k <.AnoperorB is sid o be condensing if i is coninuous, bounded, nd ϒBS < ϒS for ny bounded se S D wih ϒS>. Obviously, if B is sric-se conrcion, hen B is condensing mpping, nd if operor B is compleely coninuous, hen B is sric-se conrcion. I is well known h y C 2, C[, ] is soluion of he problem.ifndonlyif x C[, ] is soluion of he following nonliner inegrl equion: y= G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k I k yk, y k + δi k yk, y k γ I k yk ]}, where G, s= γ + δ γ β + αs, s, β + αγ + δ γ s, s, 2. where = γβ + αγ + αδ >. In wh follows, we wrie J =[, ], J k = k, k ]k =,2,...,m, J m = m,]. By mking use of 2., we cn prove h G, s hs he following properies. Proposiion 2. G, s Gs, s α + δα + β,, s [, ]. Proposiion 2.2 σ G, s G, s,, s [, b] [, ],where, ],b [ m,nd β + α <σ = min α + β, δ + bγ } <. 2.2 γ + δ

4 Sun Boundry Vlue Problems 22, 22:86 Pge 4 of 8 hp:// Le PC[J, E] = y : y is mp from J ino E such h y is coninuous k,lef coninuous = k nd y k + exiss for k =,...,m} nd PC[J, P] =y PC[J, E] :y θ}. IisesyoverifyPC[J, E] is Bnch spce wih norm y PC = sup J y. Obviously, PC[J, P] is cone in Bnch spce PC[J, E]. Le PC [J, E] =y : y is mp from J ino E such h y exis nd is coninuous k, y lef coninuous = k,ndy k +, y k exisfork =,...,m}, PC [J, P] =y PC [J, E] :y θ, y θ}. IisesyoseehPC [J, E] isbnchspcewihhe norm y = mx y PC, y PC }. Evidenly, y y PC + y PC nd PC [J, P] iscone in Bnch spce PC [J, E]. For ny y PC [J, E], by mking use of he men vlue heorem y k y k h hcoy : k h < < k } h >, obviously we see h y k exissnd y k =lim h y k y k h. h Le K = y PC[J, P]:y σ y, [, b]}. For ny < r < R <+,lek r = y K : y < r}, K r = y K : y = r}, K r,r = y K : r y R}. Ampy PC [J, E] C 2 [J, E] is clled nonnegive soluion of problem.ify θ, y θ for J nd y sisfiesproblem.. An operor y PC [J, E] C 2 [J, E] is clled posiive soluion of problem. ify is nonnegive soluion of problem. nd y θ. For convenience nd simpliciy in he following discussion, we denoe f ν = lim inf min 4 y i ν [,b] f ν = lim sup mx 4 [,b] y i ν f, y, y 2, y 3, y 4 4 y, i f, y, y 2, y 3, y 4 4 y, i where ν denoe or. To esblish he exisence of muliple posiive soluions in E of problem., le us lis he following ssumpions, which will snd hroughou he pper: H f CJ P 4, P, h CJ, P nd f, y, y 2, y 3, y b i y i, 2.3 where nd b i relebesgueinegrblefuncionlsonj i =,2,3,4ndsisfying < shs ds, Gs, shs ds, 2 hs b i s+k b 3 s+h b 4 s ds < 2 G, shs ds <+, α + βγ + δ H 2 I k CP, P, I k CP, P nd here exis posiive consns c k, c k nd c k k =,...,m sisfying, m ck + c k + c k m + α + β [ ] γ + δ c k + c k + γ ck < 4 2.4

5 Sun Boundry Vlue Problems 22, 22:86 Pge 5 of 8 hp:// such h Ik y ck y, Ik y, y 2 c k y + c k y 2, J, H 3 for ny bounded se B i E, i =,2,3,4, f, B, B 2, B 3, B 4 nd I k B ogeher wih I k B, B 2 re relively compc ses, H 4 f > m, H 5 f < m,where m = mx σ α + βγ + δ Gs, shs ds, G, shs ds, } hss ds. 2.5 We shll reduce problem.oninegrlequionine. To his end, we firs consider operor A : K PC[J, E]definedby Ay= G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β γ k +δ I k yk, y k γ m I k yk }. 2.6 Lemm 2. y PC [J, E] C 2 [J, E] is soluion of problem.ifndonlyify PC [J, E] is soluion of he following impulsive inegrl equion: y= G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ] 2.7 i.e., y is fixed poin of operor A defined by 2.6inPC [J, E]. Proof Firs suppose h y PC [J, E] is soluion of problem.. I is esy o see by he inegrion of problem.h y =y f s, ys, y s, Tys, Sys ds + < k < [ y k + y k ] = y f s, ys, y s, Tys, Sys ds I k yk, y k, J. 2.8 < k <

6 Sun Boundry Vlue Problems 22, 22:86 Pge 6 of 8 hp:// Inegregin,wege y=y + y sf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ], J. 2.9 < k < Leing =in2.8nd2.9, we find h y = y f s, ys, y s, Tys, Sys ds m I k yk, y k. 2. y = y + y sf s, ys, y s, Tys, Sys ds m [ + Ik yk k I k yk, y k ]. 2. Since y = β α y, y = δ y γ We ge y = α δ + γ f s, ys, y s, Tys, Sys ds f s, ys, y s, Tys, Sys ds sf s, ys, y s, Tys, Sys ds m I k yk, y k }. 2.2 m [ + γ k +δ I k yk, y k γ I k yk ]}, J. 2.3 Subsiuing 2.2 nd2.3 ino2.9, we obin y= α + β γ s+δ f s, ys, y s, Tys, Sys ds m [ γ Ik yk γ k +δ I k yk, y k ]} γ sf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k <

7 Sun Boundry Vlue Problems 22, 22:86 Pge 7 of 8 hp:// = [ α + β γ s+δ s ] f s, ys, y s, Tys, Sys ds + α + β γ s+δ f s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ] = G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ]. Conversely, if y PC [J, E] is soluion of he inegrl equion 2.7. Evidenly, y =k = I k y k k =,...,m. For = k, direc differeniion of he inegrl equion 2.7implies y = γ + α αs + βf s, ys, y s, Tys, Sys ds γ s+δ f s, ys, y s, Tys, Sys ds I k yk, y k } α < k < m [ γ Ik yk γ k +δ I k yk, y k ] nd y = f, y, y, Ty, Sy. So y C 2 [J, E] nd y =k = I k y k, y k k =,...,m. I is esy o verify h αy βy = nd γ y + δy =. The proof is complee. Thnks o 2., we know h G, s= γ β + αs, s, αγ + δ γ s, s. In he following, le w = sup,s J, s G, s. ForB PC [J, E], we denoe B = y : y B} PC[J, E], B=y:y B} E nd B =y :y B} E J. Lemm 2.2 [2] Le D PC [J, E] be bounded se. Suppose h D is equiconinuous on ech J k k =,...,m. Then ϒ PC D=mx sup J ϒ D, sup ϒ D }, J

8 Sun Boundry Vlue Problems 22, 22:86 Pge 8 of 8 hp:// where ϒ nd ϒ PC denoe he Kurowski mesures of noncompcness of bounded ses in EndPC [J, E], respecively. Lemm 2.3 [5] Le H PC[J, E] be bounded equiconinuous, hen ϒH is coninuous on J nd } ϒ y d : y H ϒ H d. J J Lemm 2.4 [5] H PC [J, E] is relively compc if nd only if ech elemen y H nd y H re uniformly bounded nd equiconinuous on ech J k k =,...,m. Lemm 2.5 [5] Le E be Bnch spce nd H C[J, E] if H is counble nd here exiss ϕ L[J, R + ] such h y ϕ, J, y H. Then ϒy:y H} is inegrble on J, nd } ϒ y d : y H 2 ϒ y:y H } d. J J Lemm 2.6 AK K. Proof For ny y K, from Proposiion 2. nd 2.6, we obin Ay Gs, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k ] m γ I k yk }. On he oher hnd, for ny [, b], by 2.6 nd Proposiion 2.2,weknowh Ay = G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ] σ Gs, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ]} σ Ay. Hence, AK K.

9 Sun Boundry Vlue Problems 22, 22:86 Pge 9 of 8 hp:// Lemm 2.7 Suppose h H ndh 3 hold. Then A : K K is compleely coninuous. Proof Firsly, we show h A : K K is coninuous. Assume h y n, y K nd y n y, y n y n. Since f CJ P P P P, P, I k CJ, P nd I k CJ, P, hen lim f, y n, y n,ty n, Sy n f, y, y,ty, Sy =, 2.4 lim I k yn k I k y k =, k =,...,m, n n nd lim I k yn k, y n k I k y k, y k =, k =,...,m. 2.5 n Thus, for ny J, from he Lebesgue domined convergence heorem ogeher wih 2.4nd2.5, we know h Ay n Ay Gs, shs f s, y n s, y n s, Ty ns, Sy n s f s, y s, y s, Ty s, Sy s ds + [ Ik yn k I k y k < k < k I k yn k, y n k I k y k, y k ] + m α + β [ γ k +δ I k yn k, y n k I k y k, y k γ I k yn k I k y k ] Gs, shs f s, yn s, y n s, Ty ns, Sy n s f s, y s, y s, Ty s, Sy s ds + [ I k yn k I k y k < k < + k I k yn k, y n k I k y k, y k ] + m α + β [ γ k +δ Ik yn k, y n k I k y k, y k + γ Ik yn k I k y k ] sn. Hence, A : K K is coninuous.

10 Sun Boundry Vlue Problems 22, 22:86 hp:// Pgeof8 Le B K be ny bounded se, hen here exiss posiive consn R such h y R.Thus,fornyy B,,, we know h Ay = γ αs + βhsf s, ys, y s, Tys, Sys ds + α γ s+δ hsf s, ys, y s, Tys, Sys } ds I k yk, y k + α < k < m [ γ k +δ I k yk, y k γ I k yk ]. Therefore, Ay γ αs + βhs f s, ys, y s, Tys, Sys ds + α γ s+δ hs f s, ys, y s, Tys, Sys } ds + < k < I k yk, y k + α m [ γ k +δ I k yk, y k + γ Ik yk ] γ αs + βhs s 2 + b i s+k b 3 s+h b 4 s y ds + α γ s+δ hs s 2 + b i s+k b 3 s+h b 4 s ys } ds m + c k + c k ys + α m [ γ k +δ c k + c ] k + γ ck ys 2 γ αs + βhs s+ b i s+k b 3 s+h b 4 s R ds 2 } + α γ s+δ hs s+ b i s+k b 3 s+h b 4 s ds + m c k + c k R + α m [ γ k +δ c k + c ] k + γ ck R, 2.6 R

11 Sun Boundry Vlue Problems 22, 22:86 hp:// Pgeof8 J, k, k =,...,m.le ψ= γ + α 2 αs + βhs s+ b i s+k b 3 s+h b 4 s R ds 2 γ s+δ hs s+ b i s+k b 3 s+h b 4 s ds, m M = c k + c k R + α m [ γ k +δ c k + c ] k + γ ck R. Inegring ψ from o nd exchnging inegrl sequence, hen ψ d = s 2 αγ + δ γ shs s+ b i s + K b 3 s+h b 4 s R d ds γ s β + αshs s 2 + b i s+k b 3 s+h b 4 s R d ds 2 α sγ + δ γ shs s+ b i s+k b 3 s+h b 4 s ds γ 2 β + αshs s+ b i s+k b 3 s+h b 4 s 2 Gs, shs s+ b i s+k b 3 s+h b 4 s < R R R ds R ds Thus, by H nd2.7, we hve ψ L J. Hence, for ny 2 ndforll y E,from2.6, we know h Ay Ay = Ay d ψ+m d. 2.8 From 2.7, 2.8, nd he bsoluely coninuiy of inegrl funcion, we see h AB is equiconinuous. On he oher hnd, for ny y B nd J,weknowh Ay = G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ]}

12 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge2of8 + 2 Gs, shs s+ b i s+k b 3 s+h b 4 s m c k + c k R + α R ds m [ γ k +δ c k + c ] k + γ ck R <+. Therefore, AB is uniformly bounded. By virue of Lemm 2.3 nd H 3, we know h ϒ Ay:y B } = ϒ G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ] Gs, shsϒ f s, ys, y s, Tys, Sys ds + [ ϒ Ik yk + k ϒ I k yk, y k ] =. < k < + m α + β [ γ k +δ ϒ I k yk, y k + γϒ I k yk ]} So, ϒAB =. Therefore, A is compc. To sum up, he conclusion of Lemm 2.7 follows. The min ools of he pper re he following well-known fixed-poin index heorems see [2 4]. Lemm 2.8 Le A : K K be compleely coninuous mpping nd Ay yfory K r. Thus, we hve he following conclusions: i If y Ay for y K r,henia, K r, K=. ii If y Ay for y K r,henia, K r, K=. 3 Min resuls In his secion, we esblish he exisence of posiive soluions for problem.by mking use of Lemm 2.8. Theorem 3. Suppose h H -H 4 hold. Then problem. hs les one posiive soluion. Proof From H 4, here exiss ε >suchhf > m + ε nd lso here exiss r >such h for ny < 4 y i r nd [, b], we hve f, y, y 2, y 3, y 4 m + ε 4 y i. 3.

13 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge3of8 Se K r = y K : y < r}. Then for ny y K r K,byvirueof3., we know h Ay = G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ]} σ σ m + ε G, shsf s, ys, y s, Tys, Sys ds Gs, shsm + ε ys + y s + Tys + Sys ds Gs, shs ds ys mσ Gs, shs ds ys = r. Ay = G, shsf s, ys, y s, Tys, Sys ds I k yk, y k < k < + α m [ γ k +δ I k yk, y k γ I k yk ]} m + ε m G, shsf s, ys, y s, Tys, Sys ds G, shsm + ε ys + y s + Tys + Sys ds So Ay r. Therefore, G, shs ds ys G, shs ds ys = r. ia, K r K, K=. 3.2 Le R > mx4m,2r}.thenk R is bounded open subses in E,ndsofornyy K R K nd J,weobin Ay α + βγ + δ hss+b s ys + b2 s y s + b 3 s Tys + b 4 s Sys ds + [ Ik yk + k Ik yk, y k ] < k < + m α + β [ γ k +δ Ik yk, y k + γ Ik yk ]

14 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge4of8 α + βγ + δ hss ds + [ 2 ] α + βγ + δ hs b i s+k b 3 s+h b 4 s ds y m + c m [ ] } k + c k + c k + γ + δ c k + c k + γ ck y m + 2 y + 4 y < 4 R + 2 R + 4 R = R, Ay γ αs + βhsf s, ys, y s, Tys, Sys ds + α γ s+δ hsf s, ys, y s, Tys, Sys } ds I k yk, y k + α < k < m [ γ k +δ I k yk, y k γ I k yk ] α + βγ + δ hsf s, ys, y s, Tys, Sys ds + I k yk, y k + α < k < m [ γ k +δ Ik yk, y k + γ I k yk ] α + βγ + δ hs s+b s ys + b2 s y s + b 3 s Tys + b 4 s Sys ds + [ Ik yk + k Ik yk, y k ] < k < + m α + β [ γ k +δ Ik yk, y k + γ Ik yk ] α + βγ + δ hss ds + [ 2 ] α + βγ + δ hs b i s+k b 3 s+h b 4 s ds y Hence, Ay < R. Therefore, m + c m [ ] } k + c k + c k + γ + δ c k + c k + γ ck y m + 2 y + 4 y < 4 R + 2 R + 4 R = R. ia, K R K, K=. 3.3

15 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge5of8 From 3.2nd3.3, we ge i A,K R K \ K r K, K = ia, K R K, K ia, K r K, K=. Therefore, A hs les one fixed poin on K R K \ K r K. Consequenly, problem. hs les one posiive soluion. Theorem 3.2 Suppose h H H 3 ndh 5 re sisfied. Then problem. hs les one posiive soluion. Proof From H 5, we cn choose ε >suchhf > m + ε nd lso here exiss R > such h for ny 4 y i R nd [, b], we hve f, y, y 2, y 3, y 4 m + ε 4 y i. 3.4 Le R > R.Byvirueof3.4, we know h σ f, y, y, Ty, Sy m + ε y + y + Ty + Sy. 3.5 Se K R = y K : y < R }. Then for ny y K R K,byvirueof3.5, we know h Ay = G, shsf s, ys, y s, Tys, Sys ds + [ Ik yk k I k yk, y k ] < k < + m α + β [ γ k +δ I k yk, y k γ I k yk ]} σ σ m + ε mσ Ay = G, shsf s, ys, y s, Tys, Sys ds Gs, shsm + ε y + y s + Tys + Sys ds Gs, shs ds ys Gs, shs ds ys = R. G, shsf s, ys, y s, Tys, Sys ds I k yk, y k < k < + α m [ γ k +δ I k yk, y k γ I k yk ]} G, shsf s, ys, y s, Tys, Sys ds

16 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge6of8 m + ε m G, shsm + ε y + y + Tys + Sys ds So, Ay r. Therefore, G, shs ds ys G, shs ds ys = r. ia, K R K, K=. 3.6 Byhesmemehodsheselecionofr in Theorem 3., we cn obin r < R sisfying ia, K r K, K =. 3.7 According o 3.6nd3.7, we ge i A,K R K \ K r K, K = ia, K R K, K ia, K r K, K=. Therefore, A hs les one fixed poin on K R K \ K r K. Consequenly, problem. hs les one posiive soluion. The proof is complee. 4 Concerned resuls nd pplicions In his secion, we del wih specil cse of he problem.. The mehod is jus similrowhwehvedoneinsecion3, so we omi he proof of some min resuls of he secion. Cse F, x, x = f, x, x, Ax, Bx is reed in he following heorem. Under he cse, he problem. reduces o he following boundry vlue problems: y +hf, y, y = θ, J, k, y =k = I k y k, y =k = I k y k, y k, k =,...,m, αy βy =, γ y + δy =, 4. where F CJ P P, P, h CJ. Theorem 4. Assume h H 2 holds, nd he following condiions re sisfied: C F CJ P 2, P, h CJ, P nd F, y, y b i y i, where nd b i re Lebesgue inegrble funcionls on J i =,2 nd sisfying < shs ds, Gs, shs ds, G, shs ds <+,

17 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge7of8 2 hs b i s+k b 3 s+h b 4 s ds < α + βγ + δ, 2 C 2 for ny bounded se B i E i =,2, F, B, B 2 nd I k B ogeher wih I k B, B 2 re relively compc ses. C 3 lim y + y 2 F,y,y 2 y + y 2 > m, where m is defined by 2.4. Then he problem 4. hs les one posiive soluion. Theorem 4.2 Assume h H 2 ndc C 2 hold, nd he following condiion is sisfied: C 4 lim y + y 2 F,y,y 2 y + y 2 > m, where m is defined by 2.4. Then he problem 4.hs les one posiive soluion. To illusre how our min resuls cn be used in prcice, we presen n exmple. Exmple 4. Consider he following boundry vlue problem for sclr second-order impulsive inegro-differenil equion: y = π sin ln y+ e s yds+ e 2s yds 72 + y+ e s ys ds+, e 2s ys ds 2, y = = 3 2 y3 3, y = = 2 y3 3 +y 3, 3 y 3 +y 3 2 αy βy =, γ y + δy = Conclusion The problem 4.2 hs les one posiive soluion y. For J,,leh= π 72, F, y, y,ty, Sy = sin ln y + e s yds+ e 2s yds + y + e s ys ds +. e 2s ys ds 2 Choose =sin. By simple compuion, we know h shs ds = π 8 sin2 2 <+, G, shs ds π 36 <+. Gs, shs ds = π 2,7 <+, Then condiions H H 4 re sisfied. Therefore, by Theorem 3., heproblem4.2 hs les one posiive soluion. Remrk 5. In [2], by requiring h f sisfies some noncompc mesure condiions nd P is norml cone, Guo esblished he exisence of posiive soluions for iniil vlue problem.inhepper,weimposesomewekercondiiononf,weobinheposiive soluion of he problem..

18 Sun Boundry Vlue Problems 22, 22:86 hp:// Pge8of8 Remrk 5.2 For he specil cse when he problem. hs no singulriies nd J =[,], our resuls sill hold. Obviously, our heorems generlize nd improve he resuls in [9 2]. Compeing ineress The uhor declres h she hs no compeing ineress. Acknowledgemens The uhor is very greful o Professor Lishn Liu nd Professor R. P. Agrwl for heir mking mny vluble commens. The uhor would like o express her hnks o he edior of he journl nd he nonymous referees for heir crefully reding of he firs drf of he mnuscrip nd mking mny helpful commens nd suggesions which improved he presenion of he pper. The uhor ws suppored finncilly by he Foundion of Shnghi Municipl Educion Commission Grn Nos. DYL25. Received: 5 June 22 Acceped: 23 July 22 Published: 6 Augus 22 References. Wu, CZ, Teo, KL, Zhou, Y, Yn, WY: An opiml conrol problem involving impulsive inegro-differenil sysems. Opim. Mehods Sofw. 22, Wu, CZ, Teo, KL, Zhou, Y, Yn, WY: Solving n idenificion problem s n impulsive opiml prmeer selecion problem. Compu. Mh. Appl. 5, Guo, D, Lkshmiknhm, V: Nonliner Problems in Absrc Cones. Acdemic Press, Boson Guo, D: Boundry vlue problems for impulsive inegro-differenil equions on unbounded domins in Bnch spce. Appl. Mh. Compu. 99, Guo, D: Exisence of posiive soluions for nh order nonliner impulsive singulr inegro-differenil equions in Bnch spce. Nonliner Anl. 68, Guo, D: Exisence of soluions for nh order impulsive inegro-differenil equions in Bnch spce. Nonliner Anl. 44, Guo, D: Exreml soluions for nh order impulsive inegro-differenil equions on he hlf-line in Bnch spce. Nonliner Anl. 65, Guo, D:Muliple posiivesoluions for nh order impulsive inegro-differenil equions in Bnch spce. Nonliner Anl. 6, Liu, L, Xu, Y, Wu, Y: On unique soluion of n iniil vlue problem for nonliner firs-order impulsive inegro-differenil equions of Volerr ype in Bnch spces. Dyn. Conin. Discree Impuls. Sys., Ser. A Mh. Anl. 3, Xu, Y: A globl soluions of iniil vlue problems for second order impulsive inegro differenil equions in Bnch spces. Ac Mh. Sin., Chin. Ser. 25, Liu, L, Wu, Y, Zhng, X: On well-posedness of n iniil vlue problem for nonliner second order impulsive inegro differenil equions of Volerr ype in Bnch spces. J. Mh. Anl. Appl. 37, Zhng, X, Liu, L: Iniil vlue problem for nonliner second order impulsive inegro differenil equions of mixed ype in Bnch spces. Nonliner Anl. 64, Guo, D: Exisence of soluions for nh-order impulsive inegro-differenil equions in Bnch spce. Nonliner Anl. 47, Liu, L, Wu, C, Guo, F: A unique soluion of iniil vlue problems for firs order impulsive inegro-differenil equions of mixed ype in Bnch spces. J. Mh. Anl. Appl. 275, Liu, L: Ierive mehod for soluion nd coupled qusi-soluions of nonliner inegro differenil equions of mixed ype in Bnch spces. Nonliner Anl. 42, Liu, L: The soluions of nonliner inegro-differenil equions of mixed ype in Bnch spces. Ac Mh. Sin., Chin. Ser. 38, Zhng, X, Feng, M, Ge, W: Exisence of soluions of boundry vlue problems wih inegrl boundry condiions for second-order impulsive inegro-differenil equions in Bnch spces. J. Compu. Appl. Mh. 233, Feng, M, Png, H: A clss of hree-poin boundry-vlue problems for second-order impulsive inegro-differenil equions in Bnch spces. Nonliner Anl. 7, doi:.86/ Cie his ricle s: Sun: Posiive soluions of Surm-Liouville boundry vlue problems for singulr nonliner second-order impulsive inegro-differenil equion in Bnch spces. Boundry Vlue Problems 22 22:86.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION Avilble online hp://scik.org Eng. Mh. Le. 15, 15:4 ISSN: 49-9337 CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION PANDEY, C. P. 1, RAKESH MOHAN AND BHAIRAW NATH TRIPATHI 3 1 Deprmen o Mhemics, Ajy

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

1. Introduction. 1 b b

1. Introduction. 1 b b Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies

More information

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle J. Mh. Anl. Appl. 353 009) 43 48 Conens liss vilble ScienceDirec Journl of Mhemicl Anlysis nd Applicions www.elsevier.com/loce/jm Two normliy crieri nd he converse of he Bloch principle K.S. Chrk, J. Rieppo

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

EXISTENCE AND ITERATION OF MONOTONE POSITIVE POLUTIONS FOR MULTI-POINT BVPS OF DIFFERENTIAL EQUATIONS

EXISTENCE AND ITERATION OF MONOTONE POSITIVE POLUTIONS FOR MULTI-POINT BVPS OF DIFFERENTIAL EQUATIONS U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 3, 2 ISSN 223-727 EXISTENCE AND ITERATION OF MONOTONE POSITIVE POLUTIONS FOR MULTI-POINT BVPS OF DIFFERENTIAL EQUATIONS Yuji Liu By applying monoone ieraive meho,

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

..,..,.,

..,..,., 57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3 (

More information

Fractional operators with exponential kernels and a Lyapunov type inequality

Fractional operators with exponential kernels and a Lyapunov type inequality Abdeljwd Advnces in Difference Equions (2017) 2017:313 DOI 10.1186/s13662-017-1285-0 RESEARCH Open Access Frcionl operors wih exponenil kernels nd Lypunov ype inequliy Thbe Abdeljwd* * Correspondence: bdeljwd@psu.edu.s

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS Wu, G.-.: Lplce Trnsform Overcoming Principle Drwbcks in Applicion... THERMAL SIENE: Yer 22, Vol. 6, No. 4, pp. 257-26 257 Open forum LAPLAE TRANSFORM OVEROMING PRINIPLE DRAWBAKS IN APPLIATION OF THE VARIATIONAL

More information

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces Approximion nd numericl mehods for Volerr nd Fredholm inegrl equions for funcions wih vlues in L-spces Vir Bbenko Deprmen of Mhemics, The Universiy of Uh, Sl Lke Ciy, UT, 842, USA Absrc We consider Volerr

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Existence of positive solutions for second order m-point boundary value problems

Existence of positive solutions for second order m-point boundary value problems ANNALES POLONICI MATHEMATICI LXXIX.3 (22 Exisence of posiive soluions for second order m-poin boundary value problems by Ruyun Ma (Lanzhou Absrac. Le α, β, γ, δ and ϱ := γβ + αγ + αδ >. Le ψ( = β + α,

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Systems Variables and Structural Controllability: An Inverted Pendulum Case Reserch Journl of Applied Sciences, Engineering nd echnology 6(: 46-4, 3 ISSN: 4-7459; e-issn: 4-7467 Mxwell Scienific Orgniion, 3 Submied: Jnury 5, 3 Acceped: Mrch 7, 3 Published: November, 3 Sysems Vribles

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales Asympoic relionship beween rjecories of nominl nd uncerin nonliner sysems on ime scles Fim Zohr Tousser 1,2, Michel Defoor 1, Boudekhil Chfi 2 nd Mohmed Djemï 1 Absrc This pper sudies he relionship beween

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function Anlyic soluion of liner frcionl differenil equion wih Jumrie derivive in erm of Mig-Leffler funcion Um Ghosh (), Srijn Sengup (2), Susmi Srkr (2b), Shnnu Ds (3) (): Deprmen of Mhemics, Nbdwip Vidysgr College,

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Fractional Calculus. Connor Wiegand. 6 th June 2017

Fractional Calculus. Connor Wiegand. 6 th June 2017 Frcionl Clculus Connor Wiegnd 6 h June 217 Absrc This pper ims o give he reder comforble inroducion o Frcionl Clculus. Frcionl Derivives nd Inegrls re defined in muliple wys nd hen conneced o ech oher

More information

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS Mrin Bohner Deprmen of Mhemics nd Sisics, Universiy of Missouri-Roll 115 Roll Building, Roll, MO 65409-0020, USA E-mil: ohner@umr.edu Romn Hilscher

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS Elecronic Journl of Differenil Equions, Vol. 06 06), No. 9, pp. 3. ISSN: 07-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR

More information

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π RESPONSE UNDER A GENERAL PERIODIC FORCE When he exernl force F() is periodic wih periodτ / ω,i cn be expnded in Fourier series F( ) o α ω α b ω () where τ F( ) ω d, τ,,,... () nd b τ F( ) ω d, τ,,... (3)

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 29(29), No. 49, pp. 2. ISSN: 72-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN

More information

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function Turkish Journl o Anlysis nd Numer Theory, 4, Vol., No. 3, 85-89 Aville online h://us.scieu.com/jn//3/6 Science nd Educion Pulishing DOI:.69/jn--3-6 On The Hermie- Hdmrd-Fejér Tye Inegrl Ineuliy or Convex

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients Hsil nd Veselý Advnces in Difference Equions 2015 2015:190 DOI 10.1186/s13662-015-0533-4 R E S E A R C H Open Access Non-oscillion of perurbed hlf-liner differenil equions wih sums of periodic coefficiens

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations Journl of Mhemics nd Sisics 5 ():136-14, 9 ISS 1549-3644 9 Science Publicions On he Pseudo-Specrl Mehod of Solving Liner Ordinry Differenil Equions B.S. Ogundre Deprmen of Pure nd Applied Mhemics, Universiy

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Essential Maps and Coincidence Principles for General Classes of Maps

Essential Maps and Coincidence Principles for General Classes of Maps Filoma 31:11 (2017), 3553 3558 hps://doi.org/10.2298/fil1711553o Published by Faculy of Sciences Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma Essenial Maps Coincidence

More information

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose Mhemicl nd Compuionl Applicions Vol. 7 o. pp. 56-67 O THE STABILITY O DELAY POPULATIO DYAMICS RELATED WITH ALLEE EECTS O. A. Gumus nd H. Kose Deprmen o Mhemics Selcu Universiy 47 Kony Turey ozlem@selcu.edu.r

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Temperature Rise of the Earth

Temperature Rise of the Earth Avilble online www.sciencedirec.com ScienceDirec Procedi - Socil nd Behviorl Scien ce s 88 ( 2013 ) 220 224 Socil nd Behviorl Sciences Symposium, 4 h Inernionl Science, Socil Science, Engineering nd Energy

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

On Oscillation of a Generalized Logistic Equation with Several Delays

On Oscillation of a Generalized Logistic Equation with Several Delays Journal of Mahemaical Analysis and Applicaions 253, 389 45 (21) doi:1.16/jmaa.2.714, available online a hp://www.idealibrary.com on On Oscillaion of a Generalized Logisic Equaion wih Several Delays Leonid

More information

Probability, Estimators, and Stationarity

Probability, Estimators, and Stationarity Chper Probbiliy, Esimors, nd Sionriy Consider signl genered by dynmicl process, R, R. Considering s funcion of ime, we re opering in he ime domin. A fundmenl wy o chrcerize he dynmics using he ime domin

More information

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables Journl of Proiliy nd Sisics Volume 2015, Aricle ID 958980, 7 pges hp://dx.doi.org/10.1155/2015/958980 Reserch Aricle Generlized Frcionl Inegrl Inequliies for Coninuous Rndom Vriles Adullh Akkur, Zeynep

More information

Research Article Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems

Research Article Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems Hindawi Publishing Corporaion Boundary Value Problems Volume 29, Aricle ID 42131, 1 pages doi:1.1155/29/42131 Research Aricle Exisence and Uniqueness of Posiive and Nondecreasing Soluions for a Class of

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017 MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

Correspondence should be addressed to Nguyen Buong,

Correspondence should be addressed to Nguyen Buong, Hindawi Publishing Corporaion Fixed Poin Theory and Applicaions Volume 011, Aricle ID 76859, 10 pages doi:101155/011/76859 Research Aricle An Implici Ieraion Mehod for Variaional Inequaliies over he Se

More information

Necessary and Sufficient Conditions for Asynchronous Exponential Growth in Age Structured Cell Populations with Quiescence

Necessary and Sufficient Conditions for Asynchronous Exponential Growth in Age Structured Cell Populations with Quiescence JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 25, 49953 997 ARTICLE NO. AY975654 Necessry nd Sufficien Condiions for Asynchronous Exponenil Growh in Age Srucured Cell Populions wih Quiescence O. Arino

More information

FRACTIONAL-order differential equations (FDEs) are

FRACTIONAL-order differential equations (FDEs) are Proceedings of he Inernionl MuliConference of Engineers nd Compuer Scieniss 218 Vol I IMECS 218 Mrch 14-16 218 Hong Kong Comprison of Anlyicl nd Numericl Soluions of Frcionl-Order Bloch Equions using Relible

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

On some Properties of Conjugate Fourier-Stieltjes Series

On some Properties of Conjugate Fourier-Stieltjes Series Bullein of TICMI ol. 8, No., 24, 22 29 On some Properies of Conjugae Fourier-Sieljes Series Shalva Zviadadze I. Javakhishvili Tbilisi Sae Universiy, 3 Universiy S., 86, Tbilisi, Georgia (Received January

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Engineering Letter, 16:4, EL_16_4_03

Engineering Letter, 16:4, EL_16_4_03 3 Exisence In his secion we reduce he problem (5)-(8) o an equivalen problem of solving a linear inegral equaion of Volerra ype for C(s). For his purpose we firs consider following free boundary problem:

More information

A new model for solving fuzzy linear fractional programming problem with ranking function

A new model for solving fuzzy linear fractional programming problem with ranking function J. ppl. Res. Ind. Eng. Vol. 4 No. 07 89 96 Journl of pplied Reserch on Indusril Engineering www.journl-prie.com new model for solving fuzzy liner frcionl progrmming prolem wih rning funcion Spn Kumr Ds

More information