4/22/12. NP and NP completeness. Efficient Certification. Decision Problems. Definition of P

Size: px
Start display at page:

Download "4/22/12. NP and NP completeness. Efficient Certification. Decision Problems. Definition of P"

Transcription

1 Efficient Certification and completeness There is a big difference between FINDING a solution and CHECKING a solution Independent set problem: in graph G, is there an independent set S of size at least k v If I give you such a set S, then you can check in polynomial time, that S is independent: check all pairs in S Copyright 990, Matt Groening 3-SAT: is there a satisfying assignment for 3-SAT CNF instance Φ v If I give you a truth assignment, you can check in polynomial time that it satisfies Φ: evaluate the expression. Decision Problems Definition of P Identify the instances with a yes answer of) a Decision Problem with a set of binary strings X Instance: string s. Algorithm A solves problem X: As) = yes iff s X. Polynomial time. Algorithm A runs in poly-time if for every string s, As) terminates in at most p s ) "steps", where p ) is some polynomial. s is length of s in bits.) The class P. Decision problems for which there is a polynomial-time algorithm. Problem Description Algorithm Yes No MULTIPLE Is x a multiple of y Grade school division 5, 7 5, 6 RELPRIME Are x and y relatively prime Euclid 300 BCE) 34, 39 34, 5 PRIMES Is x prime AKS 00) 53 5 PRIMES: X = {, 3, 5, 7,, 3, 7, 3, 9, 3, 37,. } Algorithm: [Agrawal-Kayal-Saxena, 00] p s ) = s. Later improved to s 6 [Pomerance, Lenstra] See wikipedia: AKS primality test) EDIT- DISTANCE LSOLVE Is the edit distance between x and y less than 5 Is there a vector x that satisfies Ax = b Dynamic programming Gauss-Edmonds elimination niether neither # 0 & % % 4 $ % 0 3 5, # 4& % % $ % 36 acgggt ttttta " 0 0% $ $ # $ 0 &, " % $ $ # $ & 3 4 Checking correctness of a solution is easier than finding it yourself : the class of problems that can be checked efficiently Certification algorithms. Certifier doesnt determine whether s X on its own; rather, it checks a proof t that s X. Definition. Algorithm Cs, t) is a certifier for problem X iff for every string s, s X there exists a string t such that Cs, t) = yes. t is called a certificate or witness.. Decision problems for which there exists a polynomial-time certifier: Cs, t) is a poly-time algorithm with t p s ) for some polynomial p ). 5 6

2 Why is called stands for Nondeterministic Polynomial Think of the certifier as performing a nondeterministic search over all possible certificates, at each step guessing a part of the solution. This brings the search time in an exponential sized search space down to polynomial. Certifiers and Certificates: COMPOSITES COMPOSITES. Given an integer s, is s composite Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover t s. Certifier. boolean Cs, t) { if t or t s) return false else if s is a multiple of t) return true else return false } Instance. s = 437,669. Certificate. t = 54 or ,669 = Conclusion. COMPOSITES is in. 7 8 Certifiers and Certificates: 3-Satisfiability SAT. Given a Conjunctive Normal Form formula Φ ands of ors), is there a satisfying assignment 3-SAT. 3 variables in each clause Certificate. An assignment of truth values to the n Boolean variables. Certifier. Check that each clause in Φ has at least one true literal. Example: instance: x x x 3 ) x x x 3 ) x x x 4 ) x x 3 x 4 ) Certifiers and Certificates: Hamiltonian Cycle HAM-CYCLE. Given an undirected graph G = V, E), does there exist a simple cycle C that visits every node Certificate. A permutation of the n nodes. Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation. Conclusion. HAM-CYCLE is in. Certificate x =, x =, x 3 = 0, x 4 = Conclusion. SAT is in. instance s certificate t 9 0 P,, EXP P. Decision problems for which there is a polynomial-time algorithm. EXP. Decision problems for which there is an exponential-time algorithm.. Decision problems for which there is a polynomial-time certifier. Claim. P. Proof. Consider any problem X in P. By definition, there exists a polynomial-time algorithm As) that solves X. Certificate: t = ε, certifier Cs, t) = As). P,, EXP P. Decision problems for which there is a polynomial-time algorithm. EXP. Decision problems for which there is an exponential-time algorithm.. Decision problems for which there is a polynomial-time certifier. Claim. EXP. Proof. Consider any problem X in. By definition, there exists a poly-time certifier Cs, t) for X. To solve input s, run Cs, t) on all strings t with t p s ). Return yes, if Cs, t) returns yes for any of these.

3 The One Million Dollar CS Question: P = The Simpsons: P = P = Is the decision problem as easy as the certification problem Clay mathematics institute $ million prize. EXP P EXP P = If P If P = would break RSA cryptography and potentially collapse economy) If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, Copyright 990, Matt Groening Consensus opinion on P = Probably no. 3 4 Futurama: P = -Completeness -complete. A problem Y in with the property that for every problem X in, X p Y. Theorem. Suppose Y is an -complete problem. Then Y is solvable in polynomial-time iff P =. Proof. If P = then Y can be solved in poly-time since Y is in. Suppose Y can be solved in poly-time. Let X be any problem in. Since X p Y, we can solve X in poly-time. This implies P. We already know P. Thus P =. Theorem. CIRCUIT-SAT is -complete. [Cook 97, Levin 973] Copyright 000, Twentieth Century Fox 5 6 yes: 0 Circuit Satisfiability CIRCUIT-SAT. A combinational circuit is a directed acyclic graph built out of AND, OR, and NOT nodes. Given such circuit, is there a way to set the circuit inputs so that the output is output 0 The "First" -Complete Problem Theorem. CIRCUIT-SAT is -complete. [Cook 97, Levin 973] Proof. sketch) Consider some problem X in. It has a poly-time certifier Cs, t). Any algorithm incl. certifier) that takes a fixed number of bits n as input and produces a yes/no answer can be represented by a circuit. Convert Cs, t) into a circuit K. first s bits are hard-coded with s remaining bits represent bits of t Circuit K is satisfiable iff Cs, t) = yes. hard-coded inputs inputs 7 8 3

4 Independent Set p CircSAT Example. Construction below creates a circuit C whose inputs can be set so that C outputs true iff graph G has an independent set of size >=. independent set of size >= v u both endpoints of some edge have been chosen w independent set set of size >= Establishing -Completeness Remark. Once we establish one "natural" -complete problem, others fall like dominoes. Recipe to establish -completeness of problem Y. Step. Show that Y is in. Step. Choose an -complete problem X. Step 3. Prove that X p Y. Justification. If X is an -complete problem, and Y is a problem in with the property that X P Y then Y is complete. G = V, E), n = 3 Try it for {u,v} Try it for {u,w} u-v u-w 0 v-w u v w Proof. Let W be any problem in. Then W P X P Y. By transitivity, W P Y. Hence Y is -complete. by definition of -completeness by assumption hard-coded inputs graph description) n inputs nodes in independent set) SAT is -Complete Theorem. 3-SAT is -complete. Proof. Enough to show that CIRCUIT-SAT P 3-SAT since 3-SAT is in. Let K be any circuit. Create a 3-SAT variable x i for each circuit element i. Make 3-SAT clauses compute values for each circ-sat node, eg.: x = x 3 add clauses: x x 3, x x 3 x = x 4 x 5 add 3 clauses: x x 4, x x 5, x x 4 x 5 x 0 = x x add 3 clauses: x 0 x, x 0 x, x 0 x x Hard-coded input values and output value. x 5 = 0 add clause: x 5 x 0 = add clause: x 0 Final step: turn clauses of length < 3 into clauses of length exactly 3. x 5 x output x 0 x 4 0 x x 3 Interim Summary v Polynomial time reductions X P Y) v v v The class problems with polynomial time certifiers complete problem problem in such that every other problem has a reduction to it. Examples of -complete problems: Circuit-SAT, 3-SAT -Completeness Observation. All problems below are -complete and polynomially reduce to one another! -Completeness Observation. All problems below are -complete and polynomially reduce to one another! CIRCUIT-SAT CIRCUIT-SAT by -completeness of CIRCUIT-SAT 3-SAT 3-SAT reduces to 3-SAT reduces to 3-SAT DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM VERTEX COVER VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING SET COVER SET COVER TSP 3 4 4

5 Extent and Impact of -Completeness Extent of -completeness. [Papadimitriou 995] Prime intellectual export of CS to other disciplines. 6,000 citations per year Broad applicability and classification power. "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly." -completeness can guide scientific inquiry. 96: Ising introduces simple model for phase transitions. 944: Onsager solves D case. 9xx: Feynman and other top minds seek 3D solution. 000: Istrail proves 3D problem -complete. More Hard Computational Problems Aerospace engineering: optimal mesh partitioning for finite elements. Biology: protein folding. Chemical engineering: heat exchanger network synthesis. Civil engineering: equilibrium of urban traffic flow. Economics: computation of arbitrage in financial markets with friction. Electrical engineering: VLSI layout. Environmental engineering: optimal placement of contaminant sensors. Financial engineering: find minimum risk portfolio of given return. Game theory: find Nash equilibrium that maximizes social welfare. Genomics: phylogeny reconstruction. Mechanical engineering: structure of turbulence in sheared flows. Medicine: reconstructing 3-D shape from biplane angiocardiogram. Operations research: optimal resource allocation. Physics: partition function of 3-D Ising model in statistical mechanics. Politics: Shapley-Shubik voting power. Pop culture: Minesweeper consistency. Statistics: optimal experimental design Complete Problems Most problems are either known to be in P or -complete. Notable exceptions. Factoring, graph isomorphism, Nash equilibria. image from: 7 5

4/19/11. NP and NP completeness. Decision Problems. Definition of P. Certifiers and Certificates: COMPOSITES

4/19/11. NP and NP completeness. Decision Problems. Definition of P. Certifiers and Certificates: COMPOSITES Decision Problems NP and NP completeness Identify a decision problem with a set of binary strings X Instance: string s. Algorithm A solves problem X: As) = yes iff s X. Polynomial time. Algorithm A runs

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 31 P and NP Self-reducibility NP-completeness Adam Smith 12/1/2008 S. Raskhodnikova; based on slides by K. Wayne Central ideas we ll cover Poly-time as feasible most

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURES 30-31 NP-completeness Definition NP-completeness proof for CIRCUIT-SAT Adam Smith 11/3/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova,

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Recap Polynomial Time Reductions (X P Y ) Key Problems Independent Set, Vertex Cover, Set Cover, 3-SAT etc Example Reductions

More information

3/22/2018. CS 580: Algorithm Design and Analysis. 8.3 Definition of NP. Chapter 8. NP and Computational Intractability. Decision Problems.

3/22/2018. CS 580: Algorithm Design and Analysis. 8.3 Definition of NP. Chapter 8. NP and Computational Intractability. Decision Problems. CS 580: Algorithm Design and Analysis 8.3 Definition of NP Jeremiah Blocki Purdue University Spring 208 Recap Decision Problems Polynomial Time Reductions (X P Y ) Key Problems Independent Set, Vertex

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Recap Polynomial Time Reductions (X P Y ) View 1: A polynomial time algorithm for Y yields a polynomial time algorithm

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

8.1 Polynomial-Time Reductions. Chapter 8. NP and Computational Intractability. Classify Problems

8.1 Polynomial-Time Reductions. Chapter 8. NP and Computational Intractability. Classify Problems Chapter 8 8.1 Polynomial-Time Reductions NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Classify Problems According to Computational

More information

Announcements. Analysis of Algorithms

Announcements. Analysis of Algorithms Announcements Analysis of Algorithms Piyush Kumar (Lecture 9: NP Completeness) Welcome to COP 4531 Based on Kevin Wayne s slides Programming Assignment due: April 25 th Submission: email your project.tar.gz

More information

7.8 Intractability. Overview. Properties of Algorithms. Exponential Growth. Q. What is an algorithm? A. Definition formalized using Turing machines.

7.8 Intractability. Overview. Properties of Algorithms. Exponential Growth. Q. What is an algorithm? A. Definition formalized using Turing machines. Overview 7.8 Intractability Q. What is an algorithm? A. Definition formalized using Turing machines. Q. Which problems can be solved on a computer? A. Computability. Q. Which algorithms will be useful

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Homework 5 due on March 29 th at 11:59 PM (on Blackboard) Recap Polynomial Time Reductions (X P Y ) P Decision problems

More information

3/22/2018. CS 580: Algorithm Design and Analysis. Circuit Satisfiability. Recap. The "First" NP-Complete Problem. Example.

3/22/2018. CS 580: Algorithm Design and Analysis. Circuit Satisfiability. Recap. The First NP-Complete Problem. Example. Circuit Satisfiability CS 580: Algorithm Design and Analysis CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

Chapter 8. NP and Computational Intractability. CS 350 Winter 2018

Chapter 8. NP and Computational Intractability. CS 350 Winter 2018 Chapter 8 NP and Computational Intractability CS 350 Winter 2018 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns. Greedy. Divide-and-conquer. Dynamic programming. Duality. Reductions.

More information

7.8: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

7.8: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine. Overview 7.8: Intractability What is an algorithm? Turing machine. Which problems can be solved on a computer? Computability. Which ALGORITHMS will be useful in practice? Analysis of algorithms. Which

More information

Algorithms Design & Analysis. Approximation Algorithm

Algorithms Design & Analysis. Approximation Algorithm Algorithms Design & Analysis Approximation Algorithm Recap External memory model Merge sort Distribution sort 2 Today s Topics Hard problem Approximation algorithms Metric traveling salesman problem A

More information

10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine. Overview 10.3: Intractability What is an algorithm? Turing machine. What problems can be solved on a computer? Computability. What ALGORITHMS will be useful in practice? Analysis of algorithms. Which PROBLEMS

More information

Approximation and Randomized Algorithms (ARA) Lecture 2, September 1, 2010

Approximation and Randomized Algorithms (ARA) Lecture 2, September 1, 2010 Approximation and Randomized Algorithms (ARA) Lecture 2, September 1, 2010 Last time Algorithm Revision Algorithms for the stable matching problem Five illustrative algorithm problems Computatibility Today

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 24 Last time Relationship between models: deterministic/nondeterministic Class P Today Class NP Sofya Raskhodnikova Homework 9 due Homework 0 out 4/5/206 L24. I-clicker

More information

A difficult problem. ! Given: A set of N cities and $M for gas. Problem: Does a traveling salesperson have enough $ for gas to visit all the cities?

A difficult problem. ! Given: A set of N cities and $M for gas. Problem: Does a traveling salesperson have enough $ for gas to visit all the cities? Intractability A difficult problem Traveling salesperson problem (TSP) Given: A set of N cities and $M for gas. Problem: Does a traveling salesperson have enough $ for gas to visit all the cities? An algorithm

More information

Intractability. A difficult problem. Exponential Growth. A Reasonable Question about Algorithms !!!!!!!!!! Traveling salesperson problem (TSP)

Intractability. A difficult problem. Exponential Growth. A Reasonable Question about Algorithms !!!!!!!!!! Traveling salesperson problem (TSP) A difficult problem Intractability A Reasonable Question about Algorithms Q. Which algorithms are useful in practice? A. [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966] Model of computation

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

NP completeness and computational tractability Part II

NP completeness and computational tractability Part II Grand challenge: Classify Problems According to Computational Requirements NP completeness and computational tractability Part II Some Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All

More information

NP and NP Completeness

NP and NP Completeness CS 374: Algorithms & Models of Computation, Spring 2017 NP and NP Completeness Lecture 23 April 20, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 44 Part I NP Chandra Chekuri (UIUC) CS374 2 Spring

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

NP and NP-Completeness

NP and NP-Completeness 0/2/206 Algorithms NP-Completeness 7- Algorithms NP-Completeness 7-2 Efficient Certification NP and NP-Completeness By a solution of a decision problem X we understand a certificate witnessing that an

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harry Lewis November 19, 2013 Reading: Sipser 7.4, 7.5. For culture : Computers and Intractability: A Guide to the Theory

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

More NP-Complete Problems

More NP-Complete Problems CS 473: Algorithms, Spring 2018 More NP-Complete Problems Lecture 23 April 17, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Recap NP: languages/problems that have

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

P and NP. Inge Li Gørtz. Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides

P and NP. Inge Li Gørtz. Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides P and NP Inge Li Gørtz Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides 1 Overview Problem classification Tractable Intractable Reductions Tools for classifying problems

More information

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM 8. INTRACTABILITY I poly-time reductions packing and covering problems constraint satisfaction problems sequencing problems partitioning problems graph coloring numerical problems Lecture slides by Kevin

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

Classes of Problems. CS 461, Lecture 23. NP-Hard. Today s Outline. We can characterize many problems into three classes:

Classes of Problems. CS 461, Lecture 23. NP-Hard. Today s Outline. We can characterize many problems into three classes: Classes of Problems We can characterize many problems into three classes: CS 461, Lecture 23 Jared Saia University of New Mexico P is the set of yes/no problems that can be solved in polynomial time. Intuitively

More information

Chapter 34: NP-Completeness

Chapter 34: NP-Completeness Graph Algorithms - Spring 2011 Set 17. Lecturer: Huilan Chang Reference: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd Edition, The MIT Press. Chapter 34: NP-Completeness 2. Polynomial-time

More information

COMPUTER SCIENCE. Computer Science. 16. Intractability. Computer Science. An Interdisciplinary Approach. Section 7.4.

COMPUTER SCIENCE. Computer Science. 16. Intractability. Computer Science. An Interdisciplinary Approach. Section 7.4. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 7.4 ROBERT SEDGEWICK

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Winter School on Optimization Techniques December 15-20, 2016 Organized by ACMU, ISI and IEEE CEDA NP Completeness and Approximation Algorithms Susmita Sur-Kolay Advanced Computing and Microelectronic

More information

Computer Science. 16. Intractability. 16. Intractability. Computer Science. Reasonable questions. P and NP Poly-time reductions NP-completeness

Computer Science. 16. Intractability. 16. Intractability. Computer Science. Reasonable questions. P and NP Poly-time reductions NP-completeness PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science 6. Intractability Computer Science Reasonable

More information

NP-complete problems. CSE 101: Design and Analysis of Algorithms Lecture 20

NP-complete problems. CSE 101: Design and Analysis of Algorithms Lecture 20 NP-complete problems CSE 101: Design and Analysis of Algorithms Lecture 20 CSE 101: Design and analysis of algorithms NP-complete problems Reading: Chapter 8 Homework 7 is due today, 11:59 PM Tomorrow

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch]

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch] NP-Completeness Andreas Klappenecker [based on slides by Prof. Welch] 1 Prelude: Informal Discussion (Incidentally, we will never get very formal in this course) 2 Polynomial Time Algorithms Most of the

More information

P and NP. Warm Up: Super Hard Problems. Overview. Problem Classification. Tools for classifying problems according to relative hardness.

P and NP. Warm Up: Super Hard Problems. Overview. Problem Classification. Tools for classifying problems according to relative hardness. Overview Problem classification Tractable Intractable P and NP Reductions Tools for classifying problems according to relative hardness Inge Li Gørtz Thank you to Kevin Wayne, Philip Bille and Paul Fischer

More information

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA.

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA. Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA NP Completeness Susmita Sur-Kolay Advanced Computing and Microelectronics Unit

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity CS 350 Algorithms and Complexity Winter 2019 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

INTRO TO COMPUTATIONAL COMPLEXITY

INTRO TO COMPUTATIONAL COMPLEXITY MA/CSSE 473 Day 38 Problems Decision Problems P and NP Polynomial time algorithms INTRO TO COMPUTATIONAL COMPLEXITY 1 The Law of the Algorithm Jungle Polynomial good, exponential bad! The latter is obvious,

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity 1 CS 350 Algorithms and Complexity Fall 2015 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

NP-Complete Problems. More reductions

NP-Complete Problems. More reductions NP-Complete Problems More reductions Definitions P: problems that can be solved in polynomial time (typically in n, size of input) on a deterministic Turing machine Any normal computer simulates a DTM

More information

A Working Knowledge of Computational Complexity for an Optimizer

A Working Knowledge of Computational Complexity for an Optimizer A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi 1 Why computational complexity? What is computational complexity theory? It s a branch of mathematics

More information

The P versus NP Problem. Ker-I Ko. Stony Brook, New York

The P versus NP Problem. Ker-I Ko. Stony Brook, New York The P versus NP Problem Ker-I Ko Stony Brook, New York ? P = NP One of the seven Millenium Problems The youngest one A folklore question? Has hundreds of equivalent forms Informal Definitions P : Computational

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity Agenda What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity class A complexity class is a set All problems within

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

ECS122A Handout on NP-Completeness March 12, 2018

ECS122A Handout on NP-Completeness March 12, 2018 ECS122A Handout on NP-Completeness March 12, 2018 Contents: I. Introduction II. P and NP III. NP-complete IV. How to prove a problem is NP-complete V. How to solve a NP-complete problem: approximate algorithms

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

8. INTRACTABILITY II

8. INTRACTABILITY II 8. INTRACTABILITY II P vs. NP NP-complete co-np NP-hard Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Last updated on 7/25/17 11:04

More information

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions Reduction Reductions Problem X reduces to problem Y if given a subroutine for Y, can solve X. Cost of solving X = cost of solving Y + cost of reduction. May call subroutine for Y more than once. Ex: X

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

8.5 Sequencing Problems

8.5 Sequencing Problems 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Homework 5 due tonight at 11:59 PM (on Blackboard) Midterm 2 on April 4 th at 8PM (MATH 175) Practice Midterm Released

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

The knapsack Problem

The knapsack Problem There is a set of n items. The knapsack Problem Item i has value v i Z + and weight w i Z +. We are given K Z + and W Z +. knapsack asks if there exists a subset S {1, 2,..., n} such that i S w i W and

More information

CS 5114: Theory of Algorithms

CS 5114: Theory of Algorithms CS 5114: Theory of Algorithms Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Spring 2014 Copyright c 2014 by Clifford A. Shaffer CS 5114: Theory of Algorithms Spring

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 18 February 16, 2018 February 16, 2018 CS21 Lecture 18 1 Outline the complexity class NP 3-SAT is NP-complete NP-complete problems: independent set, vertex cover,

More information

Show that the following problems are NP-complete

Show that the following problems are NP-complete Show that the following problems are NP-complete April 7, 2018 Below is a list of 30 exercises in which you are asked to prove that some problem is NP-complete. The goal is to better understand the theory

More information

Lecture 15 - NP Completeness 1

Lecture 15 - NP Completeness 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 29, 2018 Lecture 15 - NP Completeness 1 In the last lecture we discussed how to provide

More information

4/20/11. NP-complete problems. A variety of NP-complete problems. Hamiltonian Cycle. Hamiltonian Cycle. Directed Hamiltonian Cycle

4/20/11. NP-complete problems. A variety of NP-complete problems. Hamiltonian Cycle. Hamiltonian Cycle. Directed Hamiltonian Cycle A variety of NP-complete problems NP-complete problems asic genres. Packing problems: SE-PACKING, INDEPENDEN SE. Covering problems: SE-COVER, VEREX-COVER. Constraint satisfaction problems: SA, 3-SA. Sequencing

More information

Polynomial-time Reductions

Polynomial-time Reductions Polynomial-time Reductions Disclaimer: Many denitions in these slides should be taken as the intuitive meaning, as the precise meaning of some of the terms are hard to pin down without introducing the

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

COMP 382. Unit 10: NP-Completeness

COMP 382. Unit 10: NP-Completeness COMP 382 Unit 10: NP-Completeness Time complexity 1 log n n n 2 n 3 2 n n n Space complexity 1 log n n n 2 n 3 2 n n n Complexity theory Focus on decidability (yes/no) problems What is P? Deterministic,

More information

Notes for Lecture 21

Notes for Lecture 21 U.C. Berkeley CS170: Intro to CS Theory Handout N21 Professor Luca Trevisan November 20, 2001 Notes for Lecture 21 1 Tractable and Intractable Problems So far, almost all of the problems that we have studied

More information

Spring Lecture 21 NP-Complete Problems

Spring Lecture 21 NP-Complete Problems CISC 320 Introduction to Algorithms Spring 2014 Lecture 21 NP-Complete Problems 1 We discuss some hard problems: how hard? (computational complexity) what makes them hard? any solutions? Definitions Decision

More information

Introduction to Computational Complexity

Introduction to Computational Complexity Introduction to Computational Complexity Tandy Warnow October 30, 2018 CS 173, Introduction to Computational Complexity Tandy Warnow Overview Topics: Solving problems using oracles Proving the answer to

More information

Formal definition of P

Formal definition of P Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity. In SAT we want to know if

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information