MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

Size: px
Start display at page:

Download "MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY"

Transcription

1 MA635-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES Deprtmet of Mthemtics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MADURAI 65, Tmildu, Idi

2 Bsic Formule DIFFERENTIATION &INTEGRATION FORMULAE Fuctio f ( ) Differetitio d d log 3 si cos 4 cos si 5 e e 6 C (costt) 7 t sec 8 sec sec t 9 cot cos ec cos ec cos ec cot si 3 cos 4 t 5 sec 6 cosec 7 cot 8 log Pge Deprtmet of Mthemtics FMCET MADURAI

3 9. If uv, the d du dv v u d d d. If du dv v u u v, the d d d d v Pge3 Deprtmet of Mthemtics FMCET MADURAI

4 . d e. e d e, e d & e d e 3. si d cos & si d 4. cos d si & cos d cos si 5. t d log sec log cos d 6. sec t d 7. d t d 8. d log d 9. d si. d d sih. d d cosh. d si 3. d sih 4. d cosh d 5. log d 6. log Pge4 Deprtmet of Mthemtics FMCET MADURAI

5 7. log d log 8. d d 3 3. d e. e cosbd cosb bsi b b e. e si bd si b bcosb b 3. udv uv u v u v u v f ( ) d f ( ) d whe f() is eve 5. f ( ) d whe f() is odd 6. e cos bd b b 7. e sibd b TRIGNOMETRY FORMULA. si A si Acos A.cos cos si A A A si A A cos Pge5 Deprtmet of Mthemtics FMCET MADURAI

6 3. cos cos cos & si 4. si( A B) si Acos B cos Asi B si( A B) si Acos B cos Asi B cos( A B) cos Acos B si Asi B cos( A B) cos Acos B si Asi B 5.si Acos B si( A B) si( A B) cos Asi B si( A B) si( A B) cos Acos B cos( A B) cos( A B) si Asi B cos( A B) cos( A B) A 4 A A A 4 A A 3 6. si 3si si 3 3 cos 3cos cos 3 7.si A A A si cos cos A A A cos si A A si cos A si LOGRATHEMIC FORMULA Pge6 Deprtmet of Mthemtics FMCET MADURAI

7 log m log m log log m log m log log m log m log log log e log UNIT - PARTIAL DIFFRENTIAL EQUATIONS PARTIAL DIFFERENTIAL EQUTIONS Nottios p q r s t Formtio PDE b Elimitig rbitrr fuctios Suppose we re give f(u,v) = The it c be writte s u = g(v) or v = g(u) LAGRANGE S LINEAR EQUATION (Method of Multipliers) Geerl form Pp + Qq = R Subsidir Equtio d d d P Q R Pge7 Deprtmet of Mthemtics FMCET MADURAI

8 d d d m P Q R P mq R Where (, m,) re the Lgrgi Multipliers Choose, m, such tht P + mq + R = The d + m d + d = O Itegrtio we get solutio u = Similrl, We c fid other solutio v = for other multiplier The solutio is (u, v) = TYPE (Clirut s form) Geerl form Z = p + q + f(p,q) () Complete itegrl Put p = & q = b i (), We get () Which is the Complete itegrl Sigulr Itegrl Diff () Prtill w.r.t We get (3) Diff () Prtill w.r.t b We get (4) Usig (3) & (4) Fid & b d sub i () we get Sigulr Itegrl REDUCIBLE FORM F( m p, q) = () (or) F( m p, q, )= () If m & the X = -m & Y = - m p = P(-m) & q = Q(-) Usig the bove i ()we get F(P,Q) = (or) F(P,Q,) = F( k p, k q)= If k the Z = k+ k Q q k Usig the bove i () We get F(P,Q) = Pge8 Deprtmet of Mthemtics FMCET MADURAI

9 If m= & = the X= log & Y= log p = P & q = Q Usig the bove i () we get F(P,Q) (or) F(P, Q, ) = If k =- the Z = log p P & q Q Usig the bove i () we get F(P,Q) = Pge9 Deprtmet of Mthemtics FMCET MADURAI

10 STANDARD TYPES TYPE TYPE 3() TYPE 3(b) TYPE 3(c) TYPE 4 Geerl form F(p,q) = () Complete Itegrl Put p = d q = b i () Fid b i terms of The sub b i = + b + c we get () which is the Complete Itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,p,q) = () Complete Itegrl Put q = i () The, fid p d sub i d = p d + q d Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,p,q) = () Complete Itegrl Put p = i () The, fid q d sub i d = p d + q d Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,p,q) = () Complete Itegrl Put q = p i () The, fid p d sub i d = p d + q d Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,,p,q) = () Complete Itegrl () C be writte s, f(,p) =f(,q) = The, fid p d q sub i d = p d + qd Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurd There is o Sigulr Itegrl Geerl Itegrl Put c = () i ()We get (3)Diff (3) prtill w.r.t We get (4)Elimitig from (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3)Diff (3) prtill w.r.t We get (4)Elimitig rom (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3) Diff (3) prtill w.r.t We get (4) Elimitig from (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3)Diff (3) prtill w.r.t We get (4)Elimitig from (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3) Diff (3) prtill w.r.t We get (4)Elimitig from (3) d (4) we get Geerl Itegrl Pge Deprtmet of Mthemtics FMCET MADURAI

11 HOMOGENEOUS LINEAR EQUATION Geerl form 3 3 ( ) (, ) D bd D cdd dd f () To Fid Complemetr Fuctio Auilir Equtio Put D = m & D = i () Solvig we get the roots m, m, m 3 Cse () If the roots re distict the C.F. = ( m ) ( m) 3( m3 ) Cse () If the roots re sme the C.F. = ( m) ( m) ( m ) 3 Cse (3) If the two roots re sme d oe is distict, the C.F = ( m) ( m) 3( m 3 ) Fuctio F(,) = e +b F(,)= si(+b)(or) Cos (+b) F(,) = r s PI = (, ) F( D, D ) F Put D = & D = b Put D ( ), DD ( b)& D ( b ) PI= F( D, D ) r s Epd d opertig D & D o r s F(,) = e +b f(,) Put D = D+ & D = D +b Pge Deprtmet of Mthemtics FMCET MADURAI

12 Prticulr Itegrl F(,)=e + cosh(+) F(,)= e e F(,)=e + sih(+) F(, ) = e e F(,)=si cos F(, ) si( ) si( ) F(,)= cos si F(, ) si( ) si( ) F(,)= cos cos F(, ) cos( ) cos( ) F(,)= si si F(, ) cos( ) cos( ) Note: D represets differetitio with respect to D represets differetitio with respect to D represets itegrtio with respect to D represets itegrtio with respect to Pge Deprtmet of Mthemtics FMCET MADURAI

13 PARTIAL DIFFRENTIAL EQUATIONS. Elimite the rbitrr costts & b from = ( + )( + b) Aswer: = ( + )( + b) Diff prtill w.r.to & here p & q p = ( + b) ; q = ( + ) ( + b) = p/ ; ( + ) = q/ = (p/)(q/) 4 = pq. Form the PDE b elimitig the rbitrr fuctio from = f() Aswer: = f() Diff prtill w.r.to & here p & q p = f ( ). q = f ( ). p/q = / p q = 3. Form the PDE b elimitig the costts d b from = + b Aswer: = + b Diff. w.r. t. d here p & q p = - ; q = b - Pge3 Deprtmet of Mthemtics FMCET MADURAI

14 p ; b q p q p q 4. Elimite the rbitrr fuctio f from f d form the PDE Aswer: f Diff. w.r. t. d here p & q p f p. q f q. p p. q q p pq q pq p q 5. Fid the complete itegrl of p + q =pq Aswer: Put p =, q = b p + q =pq +b=b b b = - b The complete itegrl is = + +c Pge4 Deprtmet of Mthemtics FMCET MADURAI

15 6. Fid the solutio of p q Aswer: = +b+c ----() is the required solutio give p q -----() put p=, q = b i () b b b ( ) ( ) c 7. Fid the Geerl solutio of p t + q t = t. Aswer: d d d t t t cot d cot d cot d tke cot d cot d cot d cot d log si log si log c log si log si log c c si si c si si si si, si si 8. Elimite the rbitrr fuctio f from f d form the PDE. Aswer: f p f q f p q p ; ( ) q 9. Fid the equtio of the ple whose cetre lie o the -is Aswer: Geerl form of the sphere equtio is Pge5 Deprtmet of Mthemtics FMCET MADURAI

16 c r () Where r is costt. From () +(-c) p= () +(-c) q = (3) From () d (3) p q Tht is p -q = which is required PDE.. Elimite the rbitrr costts Aswer: b b p ; q b p q p q b b d form the PDE.. Fid the sigulr itegrl of p q pq Aswer: The complete solutio is b b b ; b b ; ( ) ( ) (. ). Fid the geerl solutio of p+q= Aswer: The uilir equtio is d d d Pge6 Deprtmet of Mthemtics FMCET MADURAI

17 From d d o simplifig c. Itegrtig we get d d c log = log + log c Therefore, is geerl solutio. 3. Fid the geerl solutio of p +q = Aswer: d d d The uilir equtio is d d From d d Also Itegrtig we get c Itegrtig we get c Therefore, is geerl solutio. 4. Solve Aswer: Auilir equtio is D DD 3D m m 3 m 3 m m, m 3 The solutio is f f 3 Pge7 Deprtmet of Mthemtics FMCET MADURAI

18 5. Solve Aswer: Auilir equtio is D 4DD 3D e PI m m 4 3 m 3 m m, m 3 The CF is CF f f 3 D 4DD 3D e Put D, D Deomitor =. PI e D 4D e Z=CF + PI f f 3 e 6. Solve. D 3DD 4D e Aswer: Auilir equtio is m m C.F is = f ( + 4) + f ( - ) 3 4 m 4 m PI e e e D 3DD 4D Fid P.I D 4DD 4D e Aswer: PI e D 4DD 4D Put D, D PI D D e e e 6 Pge8 Deprtmet of Mthemtics FMCET MADURAI

19 8. Fid P.I Aswer: PI D D DD 6D D D D D D D 6D D Fid P.I Aswer: si PI Si Put D DD Si Si D DD, ()( ). Solve Aswer: Auilir equtio is 3 3 D 3DD D Z 3 m m 3 m m m m m m m, m The Solutio is CF f f f3 FOR PRACTICE:. Elimitig rbitrr costts b c. Solve si 3. Fid the complete the solutio of p. d.e 4. Form p.d.e elimitig rbitrr fuctio from p q pq 4, Pge9 Deprtmet of Mthemtics FMCET MADURAI

20 5. Fid the sigulr sol of p q p q. (i) Solve (ii) Solve p q p q. (i) Solve m l l m (ii) Solve 3 4 p 4 q 3 3. (i) Solve p q (ii) Solve p q 4. (i) Solve p q (ii) Solve p q 5. Solve 6. Solve 7. Solve 3 D DD D e 3 si(3 ) cos cos D DD 6D cos 8. Solve D DD 3D e 6 9. Solve D 6DD 5D e sih. Solve D 4DD 4D e. Solve 3 3 D D D DD D e cos( ). Solve (i) p q p q (ii) p q p q 3. Solve p q Pge Deprtmet of Mthemtics FMCET MADURAI

21 4. Solve 5. Solve (i) (ii) ( p q ) ( p q ) ( p q ) UNIT - FOURIER SERIES f b ( ) cos si (, ) ( -, ) Eve (or) Hlf rge Fourier co sie series Odd (or) Hlf rge Fourier sie series Neither eve or odd Pge Deprtmet of Mthemtics FMCET MADURAI

22 f ( ) d f ( ) d f ( ) d f ( )cos d f ( )cos d f ( )cos d b f ( )sid b = b f ( )sid b f ( )sid f b ( ) cos si (, ) ( -, ) Eve (or) Hlf rge Fourier cosie series Odd (or) Hlf rge Fourier sie series Neither eve or odd f ( ) d f ( ) d f ( ) d f ( )cos d f ( )cos d f ( )cos d b f ( )si d b = b f ( )si d b f ( )si d Eve d odd fuctio: Eve fuctio: f(-)=f() eg : cos,,,, si, cos re eve fuctios Odd fuctio: Pge Deprtmet of Mthemtics FMCET MADURAI

23 f(-)=-f() eg : si, 3,sih, t re odd fuctios For deductio I the itervl (, ) if = or = the f() = f( ) = f() f( ) I the itervl (, ) if = or = the f() = f( ) = f() f( ) I the itervl (-, ) if = - or = the f(- ) = f( ) = f( ) f( ) I the itervl (-, ) if = - or = the f(- ) = f( ) = f( ) f( ) HARMONIC ANALYSIS f()= + cos +b si + cos + b si for form cos, cos b si b, si f()= + cos +b si + cos + b si ( form) Pge3 Deprtmet of Mthemtics FMCET MADURAI

24 cos cos b si, b si. Defie R.M.S vlue. If let f() be fuctio defied i the itervl (, b), the the R.M.S vlue of f() is defied b b f ( ) d b. Stte Prsevl s Theorem. Let f() be periodic fuctio with period l defied i the itervl (c, c+l). l 4 c l o f ( ) d b c Where o, & b re Fourier costts 3. Defie periodic fuctio with emple. If fuctio f() stisfies the coditio tht f( + T) = f(), the we s f() is periodic fuctio with the period T. Emple:- i) Si, cos re periodic fuctio with period ii) t is re periodic fuctio with period 4. Stte Dirichlets coditio. (i) f() is sigle vlued periodic d well defied ecept possibl t Fiite umber of poits. (ii) f () hs t most fiite umber of fiite discotiuous d o ifiite Discotiuous. (iii) f () hs t most fiite umber of mim d miim. 5. Stte Euler s formul. Pge4 Deprtmet of Mthemtics FMCET MADURAI

25 Aswer: I ( c, c l) o f cos bsi where o c l c c l l f ( ) d f ( )cos d c c b f ( )si d c 6. Write Fourier costt formul for f() i the itervl (, ) Aswer: o f ( ) d f ( )cos d b f ( )si d 7. I the Fourier epsio of f() =,, i (-π, π ), fid the vlue of b Sice f(-)=f() the f() is eve fuctio. Hece b = 8. If f() = 3 i π < < π, fid the costt term of its Fourier series. Aswer: Give f() = 3 Hece f() is odd fuctio f(-) = (- ) 3 = - 3 = - f() The required costt term of the Fourier series = o = Pge5 Deprtmet of Mthemtics FMCET MADURAI

26 9. Wht re the costt term d the coefficiet of cos i the Fourier Epsio Aswer: Give f() = 3 f() = 3 i π < < π Hece f() is odd fuctio f(-) = - - (- ) 3 = - [ - 3 ] = - f() The required costt term of the Fourier series = =. Fid the vlue of for f() = ++ i (, ) Aswer: o f ( ) d 3 ( ) d (i)fid b i the epsio of s Fourier series i (, ) (ii)fid b i the epsio of si Fourier series i (, ) Aswer: (i) Give f() = f(-) = = f() Hece f() is eve fuctio I the Fourier series b = (ii) Give f() = si f(-) = (-)si(-) = si = f() Hece f() is eve fuctio I the Fourier series b = Pge6 Deprtmet of Mthemtics FMCET MADURAI

27 . Obti the sie series for f l / l l / l Give f l / l l / l Aswer: Give f l / l l / l Fourier sie series is l b f ( )si d l l l l f b si l si d ( l )si d l l l l l cos si cos si l l () l l l( l ) l l ( ) l l l l l cos l si l cos l l si l l si 4lsi l Fourier series is f 4l si si l 3. If f() is odd fuctio i ll,. Wht re the vlue of & Aswer: If f() is odd fuctio, o =, = Pge7 Deprtmet of Mthemtics FMCET MADURAI

28 4. I the Epsio f() = s Fourier series i (-. ) fid the vlue of Aswer: Give f() = Hece f() is eve fuctio f(-) = - = = f() o d 5. Fid hlf rge cosie series of f() =, i Aswer: o d cos si si d () Fourier series is cos o f cos cos 6. Fid the RMS vlue of f() =, Aswer: Give f() = Pge8 Deprtmet of Mthemtics FMCET MADURAI

29 R.M.S vlue l f ( ) d d l Fid the hlf rge sie series of f ( ) i (, ) Aswer: b f ( )si d cos si si d () ( ) ( ) Hlf rge Fourier sie series is ( ) f si 8. Fid the vlue of i the cosie series of f ( ) i (, 5) Aswer: o d Defie odd d eve fuctio with emple. Aswer: (i) If f ( ) f ( ) the the fuctio is eve fuctio. eg : cos,,, si, cos re eve fuctios (ii) If f ( ) f ( ) the the fuctio is odd fuctio. eg : si, 3,sih, t re odd fuctios Pge9 Deprtmet of Mthemtics FMCET MADURAI

30 . Write the first two hrmoic. Aswer: The first two hrmoics re o f cos b si cos b si FOURIER SERIES. Epd f( ) (, ) (, ) s Fourier series d hece deduce tht Fid the Fourier series for f() = i (-. ) d lso prove tht (i) (ii) (i) Epd f() = cos s Fourier series i (-. ). (ii) Fid cosie series for f() = i (, Show tht (i) Epd f() = si s Fourier series i (, ) ) use Prsevls idetit to (ii) Epd f() = s Fourier series i (-. ) d deduce to 5. If f( ) , (,) si, (, ) Fid the Fourier series d hece deduce tht (i) Fid the Fourier series up to secod hrmoic X Y (ii)fid the Fourier series up to third hrmoic Deprtmet of Mthemtics FMCET MADURAI Pge3

31 X π/3 π/3 π 4π/3 5π/3 π F() (i) Fid the Fourier epsio of f ( ) ( ) i (, ) d Hece deduce tht (ii). Fid Fourier series to represet i the rge (,3) f ( ) with period 3 (ii) Fid the Fourier series of f e i (, ). (ii) Fid the Fourier series for f i (, ) i (, ) d hece show tht (i) Fid the the hlf rge sie series for f i the itervl (, ) d deduce tht (ii) Obti the hlf rge cosie series for f i (,) d lso deduce tht (i) Fid the Fourier series for f() = i (-. ) d lso prove tht (use P.I) (ii) Fid the Fourier series for f() = i (-. ) d lso prove tht (use P.I) Pge3 Deprtmet of Mthemtics FMCET MADURAI

32 (i)obti the sie series for f l c, l c l, l (ii). Fid the Fourier series for the fuctio f k, l k l l, l.(i).fid the Fourier series for the fuctio f i (, ) d lso deduce tht (ii) Fid the Fourier epsio of f() =,, i (-π, π ), d lso deduce tht Pge3 Deprtmet of Mthemtics FMCET MADURAI

33 UNIT - 3 APPLICATIONS OF P.D.E S. N O VELOCITY MODEL STEP- Oe Dimesiol wve equtio is t ONE DIMENSIONAL WAVE EQUATION INITIAL POSITION MODEL STEP- Oe Dimesiol wve equtio is t STEP- Boudr coditios. (,t) = for t. (, t) = for t 3. (,) = for < < 4. t = f() for < < t STEP- Boudr coditios. (,t) = for t. (, t) = for t 3. t = for < < t 4. (,) = f() for < < Pge33 Deprtmet of Mthemtics FMCET MADURAI

34 3 STEP-3 The possible solutios re (,t) = (A e + B e - ) (C e t + D e - t ) (,t) = (A cos + B si )( C cos t + D si t) (,t) = (A + B) ( Ct + D) STEP-3 The possible solutios re (,t) = (A e + B e - ) (C e t + D e - t ) (,t) = (A cos + B si )( C cos t + D si t) (,t) = (A + B) ( Ct + D) 4 STEP-4 The suitble solutio for the give boudr coditio is (,t) = (Acos +B si )(Ccos t+d si t) () 5 STEP-5 Usig Boudr coditio (,t) = The () becomes, (,t) = (A cos +B si ) ( C cos t + Dsi t) = (A) ( C cos t + D si t)= A = Usig A = i () (,t) = ( B si ) ( C cos t + D si t) (3) STEP-4 The suitble solutio for the give boudr coditio is (,t) = (Acos +B si )(Ccos t+d si t) () STEP-5 Usig Boudr coditio (,t) = The () becomes, (,t) = (A cos +B si ) ( C cos t + D si t) = (A) ( C cos t + D si t)= A = Usig A = i () (,t) = ( B si ) ( C cos t + D si t) (3) 6 STEP-6 Usig Boudr coditio (,t) = The (3) becomes, (,t) = (B si ) ( C cos t + D si t)= (B si ) ( C cos t + D si t)= STEP-6 Usig Boudr coditio (,t) = The (3) becomes, (,t) = (B si ) ( C cos t + D si t)= (B si ) ( C cos t + D si t)= = The (3) becomes, t t (, t) Bsi( ) C cos( ) Dsi( ) (4) = The (3) becomes, t t (, t) Bsi( ) C cos( ) Dsi( ) (4) 7 STEP-7 Usig Boudr coditio 3 (,) = The (4) becomes, STEP-7 Usig Boudr coditio 3 Pge34 Deprtmet of Mthemtics FMCET MADURAI

35 (, t) Bsi( ) C cos Dsi Bsi( ) C C = The (4) becomes, t (, t) Bsi( ) Dsi( ) The most geerl solutio is t (, t) B si( )si( ) (5) = t t = The (4) becomes, Differetitig (5) prtill w.r.to t d put t = t t B si( ) C si( ) D cos( t t Bsi( ) D D = The (4) becomes, t (, t) Bsi( ) C cos( ) The most geerl solutio is t (, t) B si( )cos( ) (5) 8 STEP-8 Differetitig (5) prtill w.r.to t t B si( )cos( ) t Usig Boudr coditio (4), = f() t t f ( ) B si( ) This is the Hlf Rge Fourier Sie Series. B f ( )si( ) B f ( )si( ) d 9 STEP-9 The required solutio is t (, t) B si( )si( ) Where B f ( )si( ) d STEP-8 Usig Boudr coditio (4), (,) = f() (,) B si( )cos() f ( ) B si( ) This is the Hlf Rge Fourier Sie Series. B f ( )si( ) STEP-9 The required solutio is t (, t) B si( )si( ) Where B f ( )si( ) d Pge35 Deprtmet of Mthemtics FMCET MADURAI

36 ONE DIMENSIONAL HEAT EQUATION The oe dimesiol het equtio is u u t Boudr coditios.u(,t) = for t.u(,t) = fort 3.u(,t) = f() for << TWO DIMENSIONAL HEAT FLOW EQUATION The two Dimesiol equtio is u u Boudr coditios.u(,) = for <<.u(,) = for << 3.u(, ) = for << 4.u(,) = f() for << 3 The possible solutios re t u(, t) ( Ae Be ) Ce u(, t) ( Acos Bsi ) Ce u(, t) ( A B) C t The possible solutios re u(, ) ( Ae Be )( C cos Dsi ) u(, ) ( Acos Bsi )( Ce De ) u(, ) ( A B)( C D) 4, The most suitble solutio is t u(, t) ( Acos Bsi ) Ce () 5 Usig boudr coditio u(,t) = t u(, t) ( Acos Bsi) Ce = t ( A) Ce = A = The () becomes t u(, t) ( Bsi ) Ce (3) The most suitble solutio is (, ) ( cos si )( u A B Ce De ) () Usig boudr coditio u(,) = u(, ) ( Acos Bsi )( Ce De ) u(, ) ( A)( Ce Be ) A = The () becomes (, ) ( si )( u B Ce De ) (3) 6 Usig boudr coditio u(l,t) = t u(, t) ( Bsi ) Ce = t ( Bsi ) Ce The (3) becomes t u(, t) Bsi( ) Ce The most geerl solutio is u(, t) B si( ) e t (4) Usig boudr coditio u(l,t) = u(, ) ( Bsi )( Ce De ) ( si )( B Ce De ) The (3) becomes u(, ) ( Bsi )( Ce De ) (4) Pge36 Deprtmet of Mthemtics FMCET MADURAI

37 7 Usig Boudr coditio 3 u(,) = f() u(,) B si( ) f ( ) B si( ) This the Hlf rge Fourier sie series B f ( )si( ) d 8 The required solutio is u(, t) B si( ) e Where t B f ( )si( ) d Usig Boudr coditio 3 u(, ) = u(, ) ( Bsi )( Ce De ) ( Bsi )( C D ) C= the (3) becomes u(, ) ( Bsi )( De ) The most geerl solutio is u(, ) B si( ) e Usig Boudr coditio 4 (,) = f() u(,) B si( ) e f ( ) B si( ) (5 This the Hlf rge Fourier sie series B f ( )si( ) d The required solutio is u(, ) B si( ) e Where B f ( )si( ) d QUESTION WITH ANSWER. Clssif the Prtil Differetil Equtio i) Aswer: u u Pge37 Deprtmet of Mthemtics FMCET MADURAI

38 u u here A=,B=,&C=- B - 4AC=-4()(-)=4> The Prtil Differetil Equtio is hperbolic. Clssif the Prtil Differetil Equtio Aswer: u u u here A=,B=,&C= u u u B -4AC=-4()()=> The Prtil Differetil Equtio is hperbolic 3. Clssif the followig secod order Prtil Differetil equtio u u u u Aswer: u u u u B -4AC=-4()()=-4< here A=,B=,&C= The Prtil Differetil Equtio is Elliptic 4. Clssif the followig secod order Prtil Differetil equtio 4 u u u u u Aswer: 4 u u u u u here A= 4,B =4, & C = B -4AC =6-4(4)() = The Prtil Differetil Equtio is Prbolic 5. Clssif the followig secod order Prtil Differetil equtio i) u u u u 3u Pge38 Deprtmet of Mthemtics FMCET MADURAI

39 ii) u u u u 7 Aswer: i) Prbolic ii) Hperbolic (If = ) iii)elliptic (If m be +ve or ve) 6. I the wve equtio Aswer: c t t c wht does c stds for? here T m T-Tesio d m- Mss 7. I oe dimesiol het equtio u t = α u wht does α stds for? Aswer:- u t u = k c is clled diffusivit of the substce Where k Therml coductivit - Desit c Specific het 8. Stte two lws which re ssumed to derive oe dimesiol het equtio Aswer: i) Het flows from higher to lower temp ii) The rte t which het flows cross re is proportiol to the re d to the temperture grdiet orml to the curve. This costt of proportiolit is kow s the coductivit of the mteril. It is kow s Fourier lw of het coductio Pge39 Deprtmet of Mthemtics FMCET MADURAI

40 9. A tightl stretched strig of legth is fsteed t both eds. The midpoit of the strig is displced to distce b d relesed from rest i this positio. Write the iitil coditios. Aswer: (i) (, t) = (ii) (,t) = (iii) t t (iv) (, ) = b b ( ). Wht re the possible solutios of oe dimesiol Wve equtio? The possible solutios re Aswer: (,t) = (A e + B e - ) (C e t + D e - t ) (,t) = (A cos + B si )( C cos t + D si t) (,t) = (A + B) ( Ct + D). Wht re the possible solutios of oe dimesiol hed flow equtio? Aswer: The possible solutios re u(, t) ( Ae Be ) Ce t u(, t) ( Acos Bsi ) Ce u(, t) ( A B) C t. Stte Fourier lw of het coductio Aswer: Q u ka (the rte t which het flows cross re A t distce from oe ed of br is proportiol to temperture grdiet) Pge4 Deprtmet of Mthemtics FMCET MADURAI

41 Q=Qutit of het flowig k Therml coductivit A=re of cross sectio ; u =Temperture grdiet 3. Wht re the possible solutios of two dimesiol hed flow equtio? Aswer: The possible solutios re u(, ) ( Ae Be )( C cos Dsi ) u(, ) ( Acos Bsi )( Ce De ) u(, ) ( A B)( C D) 4. The sted stte temperture distributio is cosidered i squre plte with sides =, =, = d =. The edge = is kept t costt temperture T d the three edges re isulted. The sme stte is cotiued subsequetl. Epress the problem mthemticll. Aswer: U(,) =, U(,) =,U(,) =, U(,) = T 5. A isulted rod of legth 6cm hs its eds A d B mitied C d 8 C respectivel. Fid the sted stte solutio of the rod Aswer: Here = C & b=8 C I Sted stte coditio The Temperture u(, t) 8 6 b l u(, t) 6. Write the D Alembert s solutio of the oe dimesiol wve equtio? Aswer: Pge4 Deprtmet of Mthemtics FMCET MADURAI

42 t t t v( ) d here f g v f g 7. Wht re the boudr coditios of oe dimesiol Wve equtio? Aswer: Boudr coditios t. (,t) = for t. (, t) = for t 3. (,) = for < < 4. t = f() for < < t 8. Wht re the boudr coditios of oe dimesiol het equtio? Aswer: Boudr coditios.u(,t) = for t.u(,t) = fort 3.u(,t) = f() for << 9. Wht re the boudr coditios of oe dimesiol het equtio? Aswer: Boudr coditios.u(,) =.u(,) = 3.u(, ) = 4.u(,) = f() for << for << for << for << Pge4 Deprtmet of Mthemtics FMCET MADURAI

43 .T he eds A d B hs 3cm log hve their tempertures 3c d 8c util sted stte previls. If the temperture A is rised to4c d Reduced to 6C, fid the trsiet stte temperture Aswer: Here =3 C & b=8 C I Sted stte coditio The Temperture u(, t) Here =4 C & b=6 C b l u t PART-B QUESTION BANK APPLICATIONS OF PDE. A tightl stretched strig with fied ed poits = d = l is iitill t rest i its equilibrium positio. If it is set vibrtig givig ech poit velocit 3 (l-). Fid the displcemet.. A strig is stretched d fsteed to two poits d prt. Motio is strted b displcig the strig ito the form = K(l- ) from which it is relesed t time t =. Fid the displcemet t poit of the strig. 3. A tut strig of legth l is fsteed t both eds. The midpoit of strig is tke to height b d the relesed from rest i tht positio. Fid the displcemet of the strig. 4. A tightl stretched strig with fied ed poits = d = l is iitill t rest i its 3 positio give b (, ) = si. If it is relesed from rest fid the displcemet. l 5. A strig is stretched betwee two fied poits t distce l prt d poits of the c < < l strig re give iitil velocities where V Fid the c ( l ) < < l displcemet. 6. Derive ll possible solutio of oe dimesiol wve equtio. Derive ll possible solutio of oe dimesiol het equtio. Derive ll possible solutio of two dimesiol het equtios. 7. A rod 3 cm log hs its ed A d B kept t o C d 8 o C, respectivel util sted stte coditio previls. The temperture t ech ed is the reduced to o C d kept so. Fid the resultig temperture u(, t) tkig =. Pge43 Deprtmet of Mthemtics FMCET MADURAI

44 8. A br cm log, with isulted sides hs its ed A & B kept t o C d 4 o C respectivel util the sted stte coditio previls. The temperture t A is suddel rised to 5 o C d B is lowered to o C. Fid the subsequet temperture fuctio u(, t). 9. A rectgulr plte with isulted surfce is 8 cm wide so log compred to its width tht it m be cosidered s ifiite plte. If the temperture log short edge = is u (,) = si < <. While two edges = d = 8 s well s the other short 8 edges re kept t o C. Fid the sted stte temperture.. A rectgulr plte with isulted surfce is cm wide so log compred to its width tht it m be cosidered s ifiite plte. If the temperture log short edge = is give 5 b u d ll other three edges re kept t o C. Fid the sted ( ) 5 stte temperture t poit of the plte. Pge44 Deprtmet of Mthemtics FMCET MADURAI

45 Uit - 4 FOURIER TRANSFORMS FORMULAE. Fourier Trsform of f() is. The iversio formul F[ f ( )] f()e -is f ( ) F( s)e ds 3. Fourier cosie Trsform F c [f()] = F c (s) = 4. Iversio formul f() = - F ( )cos c s sds 5. Fourier sie Trsform (FST) F s [f()] = F s (s) = 6. Iversio formul f() = 7. Prsevl s Idetit Fs ( s)si sds f ( ) d F( s) ds - is d f ( )cos sd f ( )si sd 8. Gmm fuctio e d, & 9. e cos bd b e sibd b b. si d Pge45 Deprtmet of Mthemtics FMCET MADURAI

46 . e d & e d e e e e 3. cos & si i i i i ORKING RULE TO FIND THE FOURIER TRANSFORM Step: Write the FT formul. Step: Substitute give f() with their limits. Step3: Epd is e s cos s + isi s d use Eve & odd propert Step4: Itegrte b usig Beroulli s formul the we get F(s) WORKING RULE TO FIND THE INVERSE FOURIER TRANSFORM Step: Write the Iverse FT formul Step: Sub f() & F(s) with limit, i the formul Step3: Epd Step4: Simplif we get result is e s cos s -isi s d equte rel prt WORKING RULE FOR PARSEVAL S IDENTITY If F(s) is the Fourier trsform of f() the f ( ) d F( s) ds is kow s Prsevl s idetit. Step: Sub f() & F(s) With their limits i the bove formul Step: Simplif we get result WORKING RULE TO FIND FCT Step: Write the FCT formul & Sub f() with its limit i the formul Step: Simplif, we get F ( S ) C WORKING RULE TO FIND INVERSE FCT Pge46 Deprtmet of Mthemtics FMCET MADURAI

47 Step: Write the iverse FCT formul & Sub F ( ) Step: Simplif, we get f() WORKING RULE TO FIND FST C S with its limit i the formul Step: Write the FST formul & Sub f() with its limit i the formul Step: Simplif, we get F ( S ) WORKING RULE TO FIND INVERSE FCT S Step: Write the iverse FST formul & Sub Fs ( S) with limit i the formul Step: Simplif, we get f() WORKING RULE FOR f() = e Step: First we follow the bove FCT & FST workig rule d the we get this result F c (e - ) = s B Iversio formul, s F s (e - ) = s B Iversio formul, cos s ds s e s s si sds e TYPE-I : If problems of the form i) ii), the use Iversio formul TYPE-II: If problems of the form i) d d ii), the use Prsevl s Idetit TYPE-III d b, the use f ( ) g( ) d F f ( ) F g( ) d C C Pge47 Deprtmet of Mthemtics FMCET MADURAI

48 UNIT - 4 FOURIER TRANSFORM. Stte Fourier Itegrl Theorem. Aswer: If f( ) is piece wise cotiuousl differetible d bsolutel o, the, i( t) s f ( ) f t e dt ds. Pge48 Deprtmet of Mthemtics FMCET MADURAI

49 . SttedproveModultio F f cos F s F s Proof: is F f cos f cos e d theorem. i i e e is f e d i( s ) i( s ) f e d f e d F s F s F f cos F s F s 3. Stte Prsevl s Idetit. Aswer: If F s is Fourier trsform of f, the F s ds f d 4. Stte Covolutio theorem. Aswer: The Fourier trsform of Covolutio of f d g is the product of their Fourier trsforms. F f g F s G s 5. Stte d prove Chge of scle of propert. Pge49 Deprtmet of Mthemtics FMCET MADURAI

50 Aswer: If F s F f, the is F f f e d F f F s i s t dt f t e ; where t F f F s d 6. Prove tht if F[f()] = F(s) the F f ( ) ( i) F( s) ds Aswer: is F s f e d Diff w.r.t s times d is F s f i e d ds is f ( i) ( ) e d d is ( ) F s f e d () i ds d is ( i) F s ( ) f e d ds d ds F f i F s 7. Solve for f() from the itegrl equtio Aswer: f ( )cos sd e s Pge5 Deprtmet of Mthemtics FMCET MADURAI

51 f ( )cos sd e s F f f cos s d c F f e c s f ( ) F f coss ds c e s cos s ds e cosb d b s e cos s ds, b 8. Fid the comple Fourier Trsform of f( ) Aswer: is F f f e d ; Pge5 Deprtmet of Mthemtics FMCET MADURAI

52 is F f e d (coss isi s) d si s (cos s) d s si s s [Use eve d odd propert secod term become ero] 9. Fid the comple Fourier Trsform of f( ) Aswer: is F f f e d is e d ; (coss i si s) d i cos s si s ( ( isi s) d () s s i s cos s si s s [Use eve d odd propert first term become ero] Pge5 Deprtmet of Mthemtics FMCET MADURAI

53 . Write Fourier Trsform pir. Aswer: If f( ) is defied i,, the its Fourier trsform is defied s is F s f e d If F s is Fourier trsform of f, the t ever poit of Cotiuit of f, we hve is f F s e ds.. Fid the Fourier cosie Trsform of f() = e - Aswer: F f f cos s d c F e e cos s d F c c e s e cos b d b. Fid the Fourier Trsform of Aswer: f( ) im e, b, otherwise Pge53 Deprtmet of Mthemtics FMCET MADURAI

54 is F f f e d b im is i m s e e d e d b i m s e i m s i m s b e i m s b e i m s 3. Fid the Fourier sie Trsform of. Aswer: F f f si s d F s s si s d 4. Fid the Fourier sie trsform of Aswer: e F f f si s d s F e e si s d F s s e s s e si b d b b 5. Fid the Fourier cosie trsform of Aswer: e e Pge54 Deprtmet of Mthemtics FMCET MADURAI

55 F f f cos s d c Fc e e e e coss d e cos s d e cos s d s 4 s s 4 s 6. Fid the Fourier sie trsform of f( ) Aswer: F f f si s d s, F f f si s d f si s d s cos s si s d s cos s s Pge55 Deprtmet of Mthemtics FMCET MADURAI

56 7. Obti the Fourier sie trsform of, o f ( ),., Aswer: F f f si s d s si s d si s d F f s cos s si s cos s si s s s s s cos s si s si s cos s si s s s s s s si s si s s 8. Defie self reciprocl d give emple. If the trsform of f is equl to f s, the the fuctio f is clled self reciprocl. e is self reciprocl uder Fourier trsform. Pge56 Deprtmet of Mthemtics FMCET MADURAI

57 9. Fid the Fourier cosie Trsform of f( ) Aswer: F f f coss d coss d c si s cos s cos s si s s s s s s s si s cos s s. Fid the Fourier sie trsform of. Aswer: L et f e F s e s s Usig Iverse formul for Fourier sie trsforms e s s si s ds s ( ie) si s ds e, s Pge57 Deprtmet of Mthemtics FMCET MADURAI

58 Chge d s, we get si s d e s F s si s d s e e s. (i)fid the Fourier Trsform of FOURIER TRANSFORM PART-B f( ) if if d hece cos si 3 deduce tht (i) cos 3 d 6 (ii) si cos 3 d 5 (ii). Fid the Fourier Trsform of f( ). hece si cos deduce tht 3 d 4. Fid the Fourier Trsform of f( ) if if d hece evlute i) si d ii) si d 4. Fid Fourier Trsform of f( ) if if d hece evlute i) si d ii) si 4 d Pge58 Deprtmet of Mthemtics FMCET MADURAI

59 5. Evlute i) d d ii) 6 i). Evlute () d b d ii). Evlute () 4 (b) (b) d b t dt t 4 t 9 7. (i)fid the Fourier sie trsform of f( ) (ii) Fid the Fourier cosie trsform of f( ) si ; whe o ; whe cos ; whe o ; whe 8. (i) Show tht Fourier trsform e is e s (ii)obti Fourier cosie Trsform of e 9. (i) Solve for f() from the itegrl equtio d hece fid Fourier sie Trsform e f ( )cos d e, t (ii) Solve for f() from the itegrl equtio f ( )si t d, t. (i) Fid Fourier sie Trsform of e (ii) Fid Fourier cosie d sie Trsform of e cos si tht ( i) d e ( ii) d e , t, > d hece deduce tht 4 si d, > d hece deduce.(i)fid F e & F e S c (ii) Fid F S e & F c e (iii) Fid the Fourier cosie trsform of f ( ) e cos Pge59 Deprtmet of Mthemtics FMCET MADURAI

60 Z - TRANSFORMS Defiitio of Z Trsform Let {f()} be sequece defied for Z Trsform is defied s =,, d f() = for < the its Z f ( ) F f ( ) (Two sided trsform) Z f ( ) F f ( ) (Oe sided trsform) Uit smple d Uit step sequece The uit smple sequece is defied s follows ( ) for for The uit step sequece is defied s follows Properties u ( ) for for Pge6 Deprtmet of Mthemtics FMCET MADURAI

61 . Z Trsform is lier (i) Z { f() + b g()} = Z{f()} + b Z{g()}. First Shiftig Theorem (i) If Z {f(t)} = F(), the t Z e f t F e T (ii) If Z {f()} = F(), the Z f F 3. Secod Shiftig Theorem If Z[f()]= F() the (i)z[f( +)] = [ F() f()] (ii)z[f( +)] = [ F() f()-f() ] (iii)z[f( +k)] = k [ F() f()-f() - f() ( k ) - f(k-) ] (iv) Z[f( -k)] = k F() 4. Iitil Vlue Theorem If Z[f()] = F() the f() = lim F ( ) 5. Fil Vlue Theorem If Z[f()] = F() the lim f ( ) lim( ) F( ) PARTIAL FRACTION METHODS Pge6 Deprtmet of Mthemtics FMCET MADURAI

62 Model:I A B b b Model:II b A B C b ( b) Model:III A B C b b Covolutio of Two Sequeces Covolutio of Two Sequeces {f()} d {g()} is defied s { f ( )* g( )} f ( K) g( K ) K Covolutio Theorem If Z[f()] = F() d Z[g()] = G() the Z{f()*g()} = F().G() WORKING RULE TO FIND INVERSE Z-TRANSFORM USING CONVOLUTION THEOREM Step: Split give fuctio s two terms Step: Tke Step: 3 Appl both terms formul Step: 4 Simplifig we get swer Note:... Pge6 Deprtmet of Mthemtics FMCET MADURAI

63 ... ( ) Solutio of differece equtios Formul i) Z[()] = F() ii) Z[( +)] = [ F() ()] iii) Z[( +)] = [ F() ()- () ] iv) Z[( +3)] = 3 [ F() ()- () + () ] WORKING RULE TO SOLVE DIFFERENCE EQUATION: Step: Tke trsform o both sides Step: Appl formul d vlues of () d (). Step: 3 Simplif d we get F(Z) Step:4 Fid () b usig iverse method Z - Trsform Tble No. f() Z[f()].. 3. ( ) 4. ( ) 3 Pge63 Deprtmet of Mthemtics FMCET MADURAI

64 e.!. Cos. si log ( ) log ( ) log ( ) ( e ) e ( cos ) cos si cos 3. cos si 4. f(t) ( ) Z(f(t) t T ( ). t T ( ) 3 ( ) 3 e t 4. Si t T ( e ) si T cos T Pge64 Deprtmet of Mthemtics FMCET MADURAI

65 5. cos t ( cos T) cos T TWO MARKS QUESTIONS WITH ANSWER. Defie Z trsform Aswer: Let {f()} be sequece defied for =,, d f() = for < the its Z Trsform is defied s Z f ( ) F f ( ) (Two sided trsform) Z f ( ) F f ( ) (Oe sided trsform) Fid the Z Trsform of Aswer: Z f f Z ()... Z. Fid the Z Trsform of Aswer: Pge65 Deprtmet of Mthemtics FMCET MADURAI

66 Z f f Z Fid the Z Trsform of. Aswer: d Z Z Z d, b the propert, d d ( ) ( ) Stte Iitil & Fil vlue theorem o Z Trsform Iitil Vlue Theorem Fil Vlue Theorem If Z [f ()] = F () the f () = lim F ( ) If Z [f ()] = F () the lim f ( ) lim( ) F( ) 6. Stte covolutio theorem of Z- Trsform. Deprtmet of Mthemtics FMCET MADURAI Pge66

67 Aswer: Z[f()] = F() d Z[g()] = G() the Z{f()*g()} = F() G() 7. Fid Z Trsform of Aswer: Z f f Z Fid Z Trsform of cos d si Aswer: We kow tht Z Z f f cos cos cos Z cos cos cos Pge67 Deprtmet of Mthemtics FMCET MADURAI

68 Z si Similrl si cos Z si si cos 9. Fid Z Trsform of Aswer: Z f f Z log log log. Fid Z Trsform of Aswer:! Pge68 Deprtmet of Mthemtics FMCET MADURAI

69 Z f f Z!! 3...!!! 3! e e. Fid Z Trsform of Aswer: Z f f Z ( ) log log. Fid Z Trsform of Pge69 Deprtmet of Mthemtics FMCET MADURAI

70 Aswer: Z f f Z Stte d prove First shiftig theorem t Sttemet: If Z f t F, the Z e f () t F e Proof: Z e f ( t) e f ( T ) t T As f(t) is fuctio defied for discrete vlues of t, where t = T, the the Z-trsform is Z f ( t) f ( T ) F( ) ). t T T Z e f ( t) f ( T ) e F( e ) T 4. Defie uit impulse fuctio d uit step fuctio. The uit smple sequece is defied s follows: for ( ) for The uit step sequece is defied s follows: Pge7 Deprtmet of Mthemtics FMCET MADURAI

71 u ( ) for for 5. Fid Z Trsform of Aswer: t Z e t T T T Z e e e e T e [Usig First shiftig theorem] 6. Fid Z Trsform of Aswer: Z te t Z te t Z t e T T e T e Te T T [Usig First shiftig theorem] t 7. Fid Z Trsform of Z e cost Aswer: t Z e cos t Z cos t e T e T cos T T e e cost cos T cost e T e [Usig First shiftig theorem] Pge7 Deprtmet of Mthemtics FMCET MADURAI

72 8. Fid Z Trsform of Aswer: t T Z e Let f (t) = e t, b secod siftig theorem ( t T) Z e Z f t T F f ( ) ( ) () e e T e T T 9. Fid Z Trsform of Z si t T Aswer: Let f (t) = sit, b secod siftig theorem Z si( t T) Z f ( t T) F( ) f () si t si t t t cos cos. Fid Z trsform of Aswer: Z f f Z Z Z Pge7 Deprtmet of Mthemtics FMCET MADURAI

73 QUESTION BANK Z-TRANSFORMS. (i)fid Z (ii) Fid Z ( )(4 ) 8 ( )( b) & Z & Z ( )(4 ) 8 b covolutio theorem. b covolutio theorem ( )( 3). (i) Fid Z ( ) & Z ( ) b covolutio theorem 3. (i ) Stte d prove Iitil & Fil vlue theorem. (ii) Stte d prove Secod shiftig theorem (i) Fid the Z trsform of ( )( ) & 3 ( )( ) 4. (i) Fid Z ( 4) b residues. (ii) Fid the iverse Z trsform of 5. (i) Fid Z 6. (i)fid the Z trsform of (ii) Fid & Z f( )! 7 ( ) Hece fid b prtil frctios. Z d ( )! Z d lso fid the vlue of si( ) d cos( ).! 7. (i)solve 6 9 with & (ii) Solve 4 4 () =,() = 8. (i )Solve 3 4, give () 3& () (ii) Solve 3 3, 4, & 8, 9. (i)fid Z cos & Z si d lso fid Z cos & Z si Z. ( )! Pge73 Deprtmet of Mthemtics FMCET MADURAI

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem CHAPTER : Boudr-Vlue Problems i Electrosttics: I Applictios of Gree s theorem .6 Gree Fuctio for the Sphere; Geerl Solutio for the Potetil The geerl electrosttic problem (upper figure): ( ) ( ) with b.c.

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r Z-Trsforms. INTRODUCTION TO Z-TRANSFORM The Z-trsform is coveiet d vluble tool for represetig, lyig d desigig discrete-time sigls d systems. It plys similr role i discrete-time systems to tht which Lplce

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 4 UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios ALL questios re of equl vlue All

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Trasforms ad Partial Diff Eq SUBJECT CODE : MA MATERIAL NAME : Problem Material MATERIAL CODE : JM8AM6 REGULATION : R8 UPDATED ON : April-May 4 (Sca the above QR code for the direct dowload

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

DIGITAL SIGNAL PROCESSING LECTURE 5

DIGITAL SIGNAL PROCESSING LECTURE 5 DIGITAL SIGNAL PROCESSING LECTURE 5 Fll K8-5 th Semester Thir Muhmmd tmuhmmd_7@yhoo.com Cotet d Figures re from Discrete-Time Sigl Processig, e by Oppeheim, Shfer, d Buck, 999- Pretice Hll Ic. The -Trsform

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION (0 Adm. owrds) III Semester B.Sc. Mthemtics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY Questio Bk & Aswer Key. l l () =... 0.00 b) 0 c). l d =... c

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Mathematics Extension 2

Mathematics Extension 2 05 Bored of Studies Tril Emitios Mthemtics Etesio Writte by Crrotsticks & Trebl Geerl Istructios Totl Mrks 00 Redig time 5 miutes. Workig time 3 hours. Write usig blck or blue pe. Blck pe is preferred.

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Mathematics Extension 2

Mathematics Extension 2 04 Bored of Studies Tril Emitios Mthemtics Etesio Writte b Crrotsticks & Trebl Geerl Istructios Totl Mrks 00 Redig time 5 miutes. Workig time 3 hours. Write usig blck or blue pe. Blck pe is preferred.

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform Deprtmet of Electricl Egieerig Uiversity of Arkss ELEG 573L Digitl Sigl Processig Ch. The Z-Trsform Dr. Jigxi Wu wuj@urk.edu OUTLINE The Z-Trsform Properties Iverse Z-Trsform Z-Trsform of LTI system Z-TRANSFORM

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems PHY6 PHY6 Topic Fourier series (ectures 5-8. Itroductio to Fourier series pge. Why re they useful? pge 3.3 Towrds fidig the Fourier coefficiets pge. Averge vlue of fuctio pge 5.5 Orthogolity pge 5.6 Fourier

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

Lesson-2 PROGRESSIONS AND SERIES

Lesson-2 PROGRESSIONS AND SERIES Lesso- PROGRESSIONS AND SERIES Arithmetic Progressio: A sequece of terms is sid to be i rithmetic progressio (A.P) whe the differece betwee y term d its preceedig term is fixed costt. This costt is clled

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information