On the Application of the Multistage Differential Transform Method to the Rabinovich-Fabrikant System

Size: px
Start display at page:

Download "On the Application of the Multistage Differential Transform Method to the Rabinovich-Fabrikant System"

Transcription

1 The African Review of Physics (24) 9:23 69 On the Application of the Multistage Differential Transform Method to the Rabinovich-Fabrikant System O. T. Kolebaje,*, M. O. Ojo, O. L. Ojo and A. J. Omoliki 2 Department of Physics, Adeyemi College of Education, Ondo, Nigeria 2 Department of Physics and Solar Energy, Bowen University, Iwo, Nigeria In this paper, the Differential Transform Method (DTM) and the Multistage Differential Transform Method (MDTM) were applied to obtain solutions to the Rabinovich-Fabrikant system for non-chaotic and chaotic cases. The study shows that the DTM only gives reliable results for t. Comparison between the MDTM and the classical fourth-order Runge-Kutta (RK4) solutions shows that the MDTM performs well with high accuracy. The study shows that MDTM is a powerful and promising tool for solving nonlinear systems of ODEs of chaotic and non-chaotic nature.. Introduction Chaos theory studies the behaviour of dynamical systems that are highly sensitive to initial conditions. Chaos theory is applied in many scientific disciplines including physics, geology, mathematics, biology, computer science, economics [-2], engineering, finance, meteorology, philosophy, and population dynamics. The Rabinovich Fabrikant equations are a set of three coupled ordinary differential equations exhibiting chaotic behaviour for certain values of the parameters. They are named after Mikhail Rabinovich and Anatoly Fabrikant, who described them in 979. The equations are [3]: dx dt = yz +x +γx dy dt = x3z+ x +γy dz dt = 2zα+xy Where, α, γ are constants that control the evolution of the system. For some values of α and γ, the system is chaotic, but for others it tends to a stable periodic orbit. These equations were used by Rabinovich and Fabrikant to model waves in nonequilibrium substances. Reference [4] noted that the Rabinovich-Fabrikant system is difficult to analyse due to the presence of quadratic and cubic terms and that different attractors can be obtained for the same parameters by using different step sizes in the integration. The concept of differential transform method (DTM) was first proposed by [5] to solve linear and nonlinear initial value problems in electric circuit analysis [6]. The method is an iterative semi-analytic scheme that employs Taylor series to approximate solutions of differential equations in the form of polynomials. The merit of the DTM is that the method does not require discretization or perturbation and is easy to implement, while also greatly reducing the size of computational work to be done. The method is very effective and has been applied to the Lorenz system [7], to a nonlinear biochemical model [8], to fractional differential equation [9] and to the Riccati equation []. However, the differential transform method does not give a satisfactory approximation for a large time as observed in [7,] where the convergence region of semianalytic methods is said to be narrow. Since the DTM solutions blow out after a short time a multistaging technique known as the Multistage Differential Transform Method (MDTM) is proposed. The motivation of this paper is to apply the DTM and MDTM to the Rabinovich-Fabrikant system for both chaotic and non-chaotic scenarios and test the accuracy of the method with the well known fourth order Runge-Kutta method. The computations in this paper were carried out with the computer algebraic system MATHEMATICA. * olusolakolebaje28@gmail.com

2 The African Review of Physics (24) 9: Methodology 2.. Differential Transform Method (DTM) If the function, is analytic and differentiable continuously with respect to time and space in the domain of interest, then the function can be expanded in Taylor series about a point = as,=,! 2 The differential transformation of, is defined as =,! 3 Where, known as the -dimensional spectrum function which is the transformation of the function,. The inverse differential transform of is defined as follows The differential transformations of common functions following Eqn. (6) are presented in Table. Table : Differential Transform Table. FUNCTIONAL FORM,,± 2, 4, : ( : (,, 2, TRANSFORMED FORM =!, ±3 4 4 is a constant : ; + : + 3 =,= 4 When =, then Eqns. (2) and (3) are expressed as,, +>!!?,=,! 5 Nonlinear Function EF,G=HF,G E =! H =,!,= 6 7 The inverse transformation of the set of values ( & ' gives approximate solution as ))),= ( ( 8 Where, + is the order of approximation. Therefore, the exact solution of the equation is given by,= lim ))), ( ( Multistage Differential Transform Method (MDTM) An efficient way of ensuring the validity of solutions to differential equations for large value of t is by multi-staging the solution procedure to be employed. Let J,KL be the interval over which the solutions to the differential equation () is to be determined. The solution interval J,KL is divided into E subintervals + =,2,,E of equal step size given by h =K E with the interval end points ( =+h. Initially, the DTM scheme is applied to obtain the approximate solutions of,p and Q of Eqn. () over the interval J, R L by using initial the condition,p and Q respectively. For obtaining the approximate solution of () over the next interval J R, L, we take R,P R and Q R as the initial condition. Generally the scheme is repeated for any + with the right endpoints :=R,P :=R and Q :=R at the previous

3 The African Review of Physics (24) 9:23 7 interval being used as the initial condition for the interval J :=R, : L. 3. Application By using the fundamental operations of differential transformation method (Eqns. (5)-(9) and Table ), the transformed form of the Rabinovich-Fabrikant system is given below as +! S!?R = T U = T + T VS W S ==W X + S = W +! T!?R = 3S U = + S S VS W S ==W X +! T!?R = 24U = W + T 2 S VT W U ==W X = W The system of equations is solved using the initial condition =., P= and Q=.5. For α=. and γ=.87 we have a chaotic system, and 4 =.5, =.55 correspond to a non-chaotic system. The recurrence relation (Eqn. ()) was evaluated with the aid of Mathematica to obtain the solution up to the -term approximation for the time range [, 3] with a time step size.. MDTM is implemented by dividing the solution interval J, 3L into 5 subintervals + =, 2,, 5 of equal step size given by h=.2. P = [ \ ] ^ _.52433` a R Q= [ \ ].89985^+.326 _ ` a R The accuracy of the DTM and MDTM is investigated by comparing their solutions to the RK4 solution for the parameters α=.5, γ=.55, where the system is non-chaotic with the initial conditions =., P= and Q=.5. The RK4 with time steps =. and =. with the number of significant digits set to 6 is used. Tables 2 and 3 present the absolute errors between the -term DTM solutions and the -term MDTM solutions for α=.5, γ=.55 and RK4 solutions with time steps =. and =., respectively. In Tables 2 and 3, we can observe that the DTM only gives valid result for. The MDTM solutions on the time step =. for the nonchaotic case agree with RK4 solutions on the time step =. to at least 8 decimal places. Also, the MDTM solutions on the time step =. agree with the RK4 solutions on a smaller time step =. to at least 7 decimal places. Hence, for the non-chaotic Rabinovich-Fabrikant system we observe that the MDTM solutions even agree with the RK4 solutions with a larger time step. The x P, Q, P Q, and P Q phase portraits for non-chaotic case are obtained using the -term MDTM solutions which are shown in Figs. to Results and Discussion The non-chaotic case of the Rabinovich-Fabrikant system was solved using the DTM and MDTM implemented on Mathematica, the -term approximate DTM solution was obtained as = [.9897 \ ] ^ _ ` a R

4 The African Review of Physics (24) 9:23 72 Table 2: Absolute differences between -term DTM and -term MDTM with RK4 solutions =. for 4 =.5, =.55. efg h.hi klm h.hi gefg h.hi klm h.hi n o p q o p q E- 9.58E E E- 9.58E E E-5.8E E E E- 3.83E-.5.66E+.66E E E E E E E E+3.53E E E E E E E-.96E E E E+8.6E+9.52E E E E E+.46E+ 2.3E E-2 5.4E E E E+2.7E E E E E E+3 5.3E-2 2.6E E E E E+4.354E-2.6E- 6.25E E+3.333E+5.787E E E-.26E- Table 3: Absolute differences between -term DTM and -term MDTM with RK4 solutions =. for 4 =.5, =.55. efg h.hi klm h.hhi gefg h.hi klm h.hhi n o p q o p q E E E E E E E-5.8E E-4.8E-9.297E-9.52E E+.66E E E E E E E E E E-9.57E E E E E E E E E+8.6E E- 2.58E-8 6.E E E+.46E+ 4.52E-.922E-8.5E E E E E-9.6E-8 4.E E E E E-9.567E E E E E+4.928E-9.3E E E+3.333E+5.787E E-.2E E-

5 The African Review of Physics (24) 9: X.5 Fig.: X- Phase portrait using -term MDTM on =. for 4 =.5 and = Fig.2: - Phase portrait using -term MDTM on =. for 4 =.5 and = Fig.3: X- Phase portrait using -term MDTM on =. for 4 =.5 and = Fig.4: X-- Phase portrait using -term MDTM on =. for 4 =.5 and =.55. The terms approximate DTM solution for the chaotic Rabinovich-Fabrikant system was obtained as = [ \ ] ^ _ ` a R + P= [ \ ] ^ _.8878` a R + Q= [ \ ].7489^ _ ` a R + The differences of the -term DTM solutions and -term MDTM solutions for α=., γ=.87 and RK4 solutions with time steps =. and =. are given in Tables 4 and 5, respectively. In Tables 4 and 5, we can also observe that the DTM only gives valid result for. The MDTM solutions on the time step =. for the chaotic case agree with the RK4 solutions on both time steps =. and =. to at least 5 decimal places. The P, Q,P Q, and P Q phase portraits for the chaotic Rabinovich-Fabrikant system are obtained using -term MDTM solutions and shown in Figs. 5-8.

6 The African Review of Physics (24) 9:23 74 Table 4: Absolute differences between -term DTM and -term MDTM with RK4 solutions =. for 4 =., =.87. efg h.hi klm h.hi gefg h.hi klm h.hi n o p q o p q E E E- 2.47E E E E-4.48E E E- 3.77E E-.5.67E E+ 5.62E- 7.22E E- 3.78E E E E E- 4.99E E E E+6.786E E-.54E-.839E E+8.E E+7.224E-9.553E E E+.7E+.38E E-.947E-.583E E E E E- 7.77E- 6.26E E E E+ 3.7E E- 3.57E E E E+ 6.44E-2 9.7E E- 3..7E+5.872E E+.762E E-6.779E-8 Table 5: Absolute differences between -term DTM and -term MDTM with RK4 solutions =. for 4 =., =.87. efg h.hi klm h.hhi gefg h.hi klm h.hhi n o p q o p q E E E- 6.59E E E E-4.49E E-5.93E-9.63E E-.5.67E E+ 5.62E-.2E E E E E E+2 4.6E E-9.25E E E+6.786E+5.4E E-.58E E+8.E E E E- 8.7E E+.7E+.38E E E E E E E E E E E E E E-7.7E E E E E+ 8.E E E E+5.872E E+ 6.83E E E-6

7 The African Review of Physics (24) 9: X X. 5 Fig.5: X- Phase portrait using -term MDTM on =. for 4 =. and = Fig.8: X-- Phase portrait using -term MDTM on =. for 4 =. and = Conclusion In this work, the DTM and MDTM were applied to the solutions of the Rabinovich-Fabrikant system for the chaotic and non-chaotic case. Comparisons were made between the DTM, MDTM and the fourth-order Runge-Kutta (RK4) method. For the chaotic and non-chaotic case, we observe that the MDTM solutions were consistent with the RK4 solutions. Hence, the MDTM is a simple, efficient and accurate method of solving the Rabinovich- Fabrikant system and other nonlinear systems. Fig.6: - Phase portrait using -term MDTM on =. for 4 =. and = Fig.7: X- Phase portrait using -term MDTM on =. for 4 =. and = X References [] C. Kyrtsou and C. Vorlow, Complex Dynamics in Macroeconomics: A Novel Approach, New Trends in Macroeconomics (Springer-Verlag, Berlin, 25). [2] C. Kyrtsou and W. Labys, J. Macroeconomics 28, 256 (26). [3] M. I. Rabinovich and A. L. Fabrikant, Sov. Phys. JETP 5, 3 (979). [4] M. F. Danca and G. Chen, Int. J. Bifurcation and Chaos 4(), 349 (24). [5] J. K. hou, Differential Transformation and its Applications for Electrical Circuits (Huazhong University Press, Wuhan, China, 986). [6] C. K. Chen and S. H. Ho, Applied Mathematics and Computation 79, 73 (996). [7] M. M. Al-Sawalha and M. S. M. Noorani, Chin. Phys. Lett. 25(4), 27 (28). [8] Abdul-Monim Batiha and Belal Batiha, Advance Studies in Biology 3(8), 355 (2). [9] A. Arikoglu and I. Ozkol, Chaos, Solitons and Fractals 34, 473 (27).

8 The African Review of Physics (24) 9:23 76 [] J. Biazar and M. Eslami, Int. J. Nonlinear Science 9(4), 444 (2). [] O. T. Kolebaje and E. O. Oyewande, Int. J. Basic and Applied Sciences, Science Publishing Corporation (3), 32 (22). Received: January, 24 Accepted: 3 June, 24

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7),

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7), Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7), 271-278 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645 ISSN Print:2576-0653 Numerical Investigation of Dynamical Response

More information

Solving Zhou Chaotic System Using Fourth-Order Runge-Kutta Method

Solving Zhou Chaotic System Using Fourth-Order Runge-Kutta Method World Applied Sciences Journal 21 (6): 939-944, 2013 ISSN 11-4952 IDOSI Publications, 2013 DOI: 10.529/idosi.wasj.2013.21.6.2915 Solving Zhou Chaotic System Using Fourth-Order Runge-Kutta Method 1 1 3

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

Chap. 20: Initial-Value Problems

Chap. 20: Initial-Value Problems Chap. 20: Initial-Value Problems Ordinary Differential Equations Goal: to solve differential equations of the form: dy dt f t, y The methods in this chapter are all one-step methods and have the general

More information

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type

A Numerical-Computational Technique for Solving. Transformed Cauchy-Euler Equidimensional. Equations of Homogeneous Type Advanced Studies in Theoretical Physics Vol. 9, 015, no., 85-9 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.41160 A Numerical-Computational Technique for Solving Transformed Cauchy-Euler

More information

2 One-dimensional differential transform

2 One-dimensional differential transform International Mathematical Forum, Vol. 7, 2012, no. 42, 2061-2069 On Solving Differential Equations with Discontinuities Using the Differential Transformation Method: Short Note Abdelhalim Ebaid and Mona

More information

Research Article On a New Reliable Algorithm

Research Article On a New Reliable Algorithm Hindawi Publishing Corporation International Journal of Differential Equations Volume 2009, Article ID 710250, 13 pages doi:10.1155/2009/710250 Research Article On a New Reliable Algorithm A. K. Alomari,

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Controlling a Novel Chaotic Attractor using Linear Feedback

Controlling a Novel Chaotic Attractor using Linear Feedback ISSN 746-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 7-4 Controlling a Novel Chaotic Attractor using Linear Feedback Lin Pan,, Daoyun Xu 3, and Wuneng Zhou College of

More information

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. I1 (Sep. - Oct. 2017), PP 90-97 www.iosrjournals.org Approximate Solution of an Integro-Differential

More information

APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM

APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR THE STATIC ANALYSIS OF EULER-BERNOULLI BEAM Evin Varghese 1, C.S.C. Devadass 2, M.G. Rajendran 3 1 P G student, School of Civil Engineering, Karunya

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Australian Journal of Basic Applied Sciences, 3(4): 4397-4407, 2009 ISSN 1991-8178 A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Dr. Abbas Y. AL_ Bayati Dr. Ann

More information

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters Computers and Mathematics with Applications 59 (21) 3234 3244 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Adaptive

More information

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters Vol 16 No 5, May 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(05)/1246-06 Chinese Physics and IOP Publishing Ltd Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with

More information

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Variational iteration method for solving multispecies Lotka Volterra equations

Variational iteration method for solving multispecies Lotka Volterra equations Computers and Mathematics with Applications 54 27 93 99 www.elsevier.com/locate/camwa Variational iteration method for solving multispecies Lotka Volterra equations B. Batiha, M.S.M. Noorani, I. Hashim

More information

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Wang Ai-Yuan( 王爱元 ) a)b) and Ling Zhi-Hao( 凌志浩 ) a) a) Department of Automation, East China University of Science and

More information

Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method

Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method Article Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method H. M. Abdelhafez Department of Physics and Engineering Mathematics, Faculty of

More information

Application of Variational Iteration Method to a General Riccati Equation

Application of Variational Iteration Method to a General Riccati Equation International Mathematical Forum,, 007, no. 56, 759-770 Application of Variational Iteration Method to a General Riccati Equation B. Batiha, M. S. M. Noorani and I. Hashim School of Mathematical Sciences

More information

ISSN X (print) BIFURCATION ANALYSIS OF FRACTIONAL-ORDER CHAOTIC RÖSSLER SYSTEM

ISSN X (print) BIFURCATION ANALYSIS OF FRACTIONAL-ORDER CHAOTIC RÖSSLER SYSTEM Matematiqki Bilten ISSN 0351-336X (print) 42(LXVIII) No 1 ISSN 1857-9914 (online) 2018(27-36) UDC: 517938:5198765 Skopje, Makedonija BIFURCATION ANALYSIS OF FRACTIONAL-ORDER CHAOTIC RÖSSLER SYSTEM GJORGJI

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

A New Hyperchaotic Attractor with Complex Patterns

A New Hyperchaotic Attractor with Complex Patterns A New Hyperchaotic Attractor with Complex Patterns Safieddine Bouali University of Tunis, Management Institute, Department of Quantitative Methods & Economics, 41, rue de la Liberté, 2000, Le Bardo, Tunisia

More information

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt Motivation and Goals Modelling with ODEs 24.10.01 Motivation: Ordinary Differential Equations (ODEs) are very important in all branches of Science and Engineering ODEs form the basis for the simulation

More information

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator Indian Journal of Pure & Applied Physics Vol. 47, November 2009, pp. 823-827 Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator V Balachandran, * & G Kandiban

More information

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.3, pp , 2015

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.3, pp , 2015 International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304 Vol.8, No.3, pp 377-382, 2015 Adaptive Control of a Chemical Chaotic Reactor Sundarapandian Vaidyanathan* R & D Centre,Vel

More information

arxiv: v1 [q-bio.to] 21 Apr 2018

arxiv: v1 [q-bio.to] 21 Apr 2018 arxiv:1805.01009v1 [q-bio.to] 21 Apr 2018 Approximate Analytical Solution of a Cancer Immunotherapy Model by the Application of Differential Transform and Adomian Decomposition Methods Abstract Alireza

More information

Een vlinder in de wiskunde: over chaos en structuur

Een vlinder in de wiskunde: over chaos en structuur Een vlinder in de wiskunde: over chaos en structuur Bernard J. Geurts Enschede, November 10, 2016 Tuin der Lusten (Garden of Earthly Delights) In all chaos there is a cosmos, in all disorder a secret

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type Journal of Applied Mathematics and Physics, 2016, 4, 871-880 Published Online May 2016 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2016.45095 On Universality of Transition

More information

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD April, 4. Vol. 4, No. - 4 EAAS & ARF. All rights reserved ISSN35-869 A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD Ahmed A. M. Hassan, S. H. Hoda Ibrahim, Amr M.

More information

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Article history: Received 22 April 2016; last revision 30 June 2016; accepted 12 September 2016 FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Mihaela Simionescu Institute for Economic Forecasting of the

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

A SEMI-ANALYTICAL ANALYSIS OF A FREE CONVECTION BOUNDARY-LAYER FLOW OVER A VERTICAL PLATE

A SEMI-ANALYTICAL ANALYSIS OF A FREE CONVECTION BOUNDARY-LAYER FLOW OVER A VERTICAL PLATE A SEMI-ANALYTICAL ANALYSIS OF A FREE CONVECTION BOUNDARY-LAYER FLOW OVER A VERTICAL PLATE Haldun Alpaslan PEKER and Galip OTURANÇ Department of Mathematics, Faculty of Science, Selcu University, 475, Konya,

More information

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din

An efficient algorithm on timefractional. equations with variable coefficients. Research Article OPEN ACCESS. Jamshad Ahmad*, Syed Tauseef Mohyud-Din OPEN ACCESS Research Article An efficient algorithm on timefractional partial differential equations with variable coefficients Jamshad Ahmad*, Syed Tauseef Mohyud-Din Department of Mathematics, Faculty

More information

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation

Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation International Journal of Sciences & Applied Research www.ijsar.in Generalized Differential Transform Method for non-linear Inhomogeneous Time Fractional Partial differential Equation D. Das 1 * and R.

More information

ESTIMATING THE ATTRACTOR DIMENSION OF THE EQUATORIAL WEATHER SYSTEM M. Leok B.T.

ESTIMATING THE ATTRACTOR DIMENSION OF THE EQUATORIAL WEATHER SYSTEM M. Leok B.T. This paper was awarded in the I International Competition (99/9) First Step to Nobel Prize in Physics and published in the competition proceedings (Acta Phys. Pol. A 8 Supplement, S- (99)). The paper is

More information

Research Article Adaptive Control of Chaos in Chua s Circuit

Research Article Adaptive Control of Chaos in Chua s Circuit Mathematical Problems in Engineering Volume 2011, Article ID 620946, 14 pages doi:10.1155/2011/620946 Research Article Adaptive Control of Chaos in Chua s Circuit Weiping Guo and Diantong Liu Institute

More information

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

Controlling chaos in Colpitts oscillator

Controlling chaos in Colpitts oscillator Chaos, Solitons and Fractals 33 (2007) 582 587 www.elsevier.com/locate/chaos Controlling chaos in Colpitts oscillator Guo Hui Li a, *, Shi Ping Zhou b, Kui Yang b a Department of Communication Engineering,

More information

Nonchaotic random behaviour in the second order autonomous system

Nonchaotic random behaviour in the second order autonomous system Vol 16 No 8, August 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/1608)/2285-06 Chinese Physics and IOP Publishing Ltd Nonchaotic random behaviour in the second order autonomous system Xu Yun ) a), Zhang

More information

Bifurcations of Traveling Wave Solutions for a Generalized Camassa-Holm Equation

Bifurcations of Traveling Wave Solutions for a Generalized Camassa-Holm Equation Computational and Applied Mathematics Journal 2017; 3(6): 52-59 http://www.aascit.org/journal/camj ISSN: 2381-1218 (Print); ISSN: 2381-1226 (Online) Bifurcations of Traveling Wave Solutions for a Generalized

More information

A Classical Approach to the Stark-Effect. Mridul Mehta Advisor: Prof. Enrique J. Galvez Physics Dept., Colgate University

A Classical Approach to the Stark-Effect. Mridul Mehta Advisor: Prof. Enrique J. Galvez Physics Dept., Colgate University A Classical Approach to the Stark-Effect Mridul Mehta Advisor: Prof. Enrique J. Galvez Physics Dept., Colgate University Abstract The state of an atom in the presence of an external electric field is known

More information

THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZATION OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS

THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZATION OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS THE ACTIVE CONTROLLER DESIGN FOR ACHIEVING GENERALIZED PROJECTIVE SYNCHRONIZATION OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS Sarasu Pakiriswamy 1 and Sundarapandian Vaidyanathan 1 1 Department of

More information

Chaos in multiplicative systems

Chaos in multiplicative systems Chaos in multiplicative systems Dorota Aniszewska 1 and Marek Rybaczuk 2 1 Institute of Materials Science and Applied Mechanics Wroclaw University of Technology 50-370 Wroclaw, Smoluchowskiego 25 (e-mail:

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM International Journal of Bifurcation and Chaos, Vol. 23, No. 11 (2013) 1350188 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501885 SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

More information

Differential transformation method for solving one-space-dimensional telegraph equation

Differential transformation method for solving one-space-dimensional telegraph equation Volume 3, N 3, pp 639 653, 2 Copyright 2 SBMAC ISSN -825 wwwscielobr/cam Differential transformation method for solving one-space-dimensional telegraph equation B SOLTANALIZADEH Young Researchers Club,

More information

Synchronization of identical new chaotic flows via sliding mode controller and linear control

Synchronization of identical new chaotic flows via sliding mode controller and linear control Synchronization of identical new chaotic flows via sliding mode controller and linear control Atefeh Saedian, Hassan Zarabadipour Department of Electrical Engineering IKI University Iran a.saedian@gmail.com,

More information

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Experimental Characterization of Nonlinear Dynamics from Chua s Circuit John Parker*, 1 Majid Sodagar, 1 Patrick Chang, 1 and Edward Coyle 1 School of Physics, Georgia Institute of Technology, Atlanta,

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

Compound Structures of Six New Chaotic Attractors in a Modified Jerk Model using Sinh -1 Nonlinearity

Compound Structures of Six New Chaotic Attractors in a Modified Jerk Model using Sinh -1 Nonlinearity Chaotic Modeling and Simulation (CMSIM) 1: 273-279, 12 Compound Structures of Six New Chaotic Attractors in a Modified Jerk Model using Sinh -1 Nonlinearity Banlue Srisuchinwong, Teerachot Siriburanon,

More information

Synchronization and control in small networks of chaotic electronic circuits

Synchronization and control in small networks of chaotic electronic circuits Synchronization and control in small networks of chaotic electronic circuits A. Iglesias Dept. of Applied Mathematics and Computational Sciences, Universi~ of Cantabria, Spain Abstract In this paper, a

More information

Recent new examples of hidden attractors

Recent new examples of hidden attractors Eur. Phys. J. Special Topics 224, 1469 1476 (2015) EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02472-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review Recent new examples of hidden

More information

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 2 (2015), pp. 801-806 Research India Publications http://www.ripublication.com Numerical Solution of Two-Point Boundary

More information

Constructing a chaotic system with any number of equilibria

Constructing a chaotic system with any number of equilibria Nonlinear Dyn (2013) 71:429 436 DOI 10.1007/s11071-012-0669-7 ORIGINAL PAPER Constructing a chaotic system with any number of equilibria Xiong Wang Guanrong Chen Received: 9 June 2012 / Accepted: 29 October

More information

Applications of Differential Transform Method To Initial Value Problems

Applications of Differential Transform Method To Initial Value Problems American Journal of Engineering Research (AJER) 207 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-2, pp-365-37 www.ajer.org Research Paper Open Access

More information

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System

A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System A Highly Chaotic Attractor for a Dual-Channel Single-Attractor, Private Communication System Banlue Srisuchinwong and Buncha Munmuangsaen Sirindhorn International Institute of Technology, Thammasat University

More information

Adaptive feedback synchronization of a unified chaotic system

Adaptive feedback synchronization of a unified chaotic system Physics Letters A 39 (4) 37 333 www.elsevier.com/locate/pla Adaptive feedback synchronization of a unified chaotic system Junan Lu a, Xiaoqun Wu a, Xiuping Han a, Jinhu Lü b, a School of Mathematics and

More information

Application of Reduced Differential Transform Method for Solving Nonlinear Reaction-Diffusion-Convection Problems

Application of Reduced Differential Transform Method for Solving Nonlinear Reaction-Diffusion-Convection Problems Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 162 170 Applications and Applied Mathematics: An International Journal (AAM) Application of Reduced

More information

MAT335H1F Lec0101 Burbulla

MAT335H1F Lec0101 Burbulla Fall 2012 4.1 Graphical Analysis 4.2 Orbit Analysis Functional Iteration If F : R R, then we shall write F 2 (x) = (F F )(x) = F (F (x)) F 3 (x) = (F F 2 )(x) = F (F 2 (x)) = F (F (F (x))) F n (x) = (F

More information

A Novel Hyperchaotic System and Its Control

A Novel Hyperchaotic System and Its Control 1371371371371378 Journal of Uncertain Systems Vol.3, No., pp.137-144, 009 Online at: www.jus.org.uk A Novel Hyperchaotic System and Its Control Jiang Xu, Gouliang Cai, Song Zheng School of Mathematics

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600

More information

A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System

A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System Commun. Theor. Phys. (Beijing China) 44 (2005) pp. 1115 1124 c International Academic Publishers Vol. 44 No. 6 December 15 2005 A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized

More information

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.488-497 On a New Aftertreatment Technique for Differential Transformation Method and its Application

More information

Dynamical Systems with Applications using Mathematica

Dynamical Systems with Applications using Mathematica Stephen Lynch Dynamical Systems with Applications using Mathematica Birkhäuser Boston Basel Berlin Contents Preface xi 0 A Tutorial Introduction to Mathematica 1 0.1 A Quick Tour of Mathematica 2 0.2 Tutorial

More information

Electronic Circuit Simulation of the Lorenz Model With General Circulation

Electronic Circuit Simulation of the Lorenz Model With General Circulation International Journal of Physics, 2014, Vol. 2, No. 5, 124-128 Available online at http://pubs.sciepub.com/ijp/2/5/1 Science and Education Publishing DOI:10.12691/ijp-2-5-1 Electronic Circuit Simulation

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Generating hyperchaotic Lu attractor via state feedback control

Generating hyperchaotic Lu attractor via state feedback control Physica A 364 (06) 3 1 www.elsevier.com/locate/physa Generating hyperchaotic Lu attractor via state feedback control Aimin Chen a, Junan Lu a, Jinhu Lu b,, Simin Yu c a College of Mathematics and Statistics,

More information

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi,

More information

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol 10, No 2, 2015, pp 148-153 Chaos control of hyper chaotic delay Lorenz system via back stepping method Hanping Chen 1 Xuerong

More information

OUTPUT REGULATION OF THE SIMPLIFIED LORENZ CHAOTIC SYSTEM

OUTPUT REGULATION OF THE SIMPLIFIED LORENZ CHAOTIC SYSTEM OUTPUT REGULATION OF THE SIMPLIFIED LORENZ CHAOTIC SYSTEM Sundarapandian Vaidyanathan Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600 06, Tamil Nadu, INDIA

More information

EXACT DARK SOLITON, PERIODIC SOLUTIONS AND CHAOTIC DYNAMICS IN A PERTURBED GENERALIZED NONLINEAR SCHRODINGER EQUATION

EXACT DARK SOLITON, PERIODIC SOLUTIONS AND CHAOTIC DYNAMICS IN A PERTURBED GENERALIZED NONLINEAR SCHRODINGER EQUATION CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 1, Spring 9 EXACT DARK SOLITON, PERIODIC SOLUTIONS AND CHAOTIC DYNAMICS IN A PERTURBED GENERALIZED NONLINEAR SCHRODINGER EQUATION JIBIN LI ABSTRACT.

More information

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises Preface 0. A Tutorial Introduction to Mathematica 0.1 A Quick Tour of Mathematica 0.2 Tutorial 1: The Basics (One Hour) 0.3 Tutorial 2: Plots and Differential Equations (One Hour) 0.4 Mathematica Programs

More information

Simple conservative, autonomous, second-order chaotic complex variable systems.

Simple conservative, autonomous, second-order chaotic complex variable systems. Simple conservative, autonomous, second-order chaotic complex variable systems. Delmar Marshall 1 (Physics Department, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, Kerala 690-525, India) and J. C.

More information

An Exponential Matrix Method for Numerical Solutions of Hantavirus Infection Model

An Exponential Matrix Method for Numerical Solutions of Hantavirus Infection Model Available at http://pvamu.edu/aam Appl. Appl. Math. ISS: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 99-115 Applications and Applied Mathematics: An International Journal (AAM) An Exponential Matrix Method

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model Iranian Journal of Mathematical Chemistry, Vol. 6, No. 1, March 2015, pp. 81 92 IJMC Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model HOSSEIN KHEIRI 1 AND BASHIR NADERI 2 1 Faculty

More information

The Multi-Step Differential Transform Method and Its Application to Determine the Solutions of Non-Linear Oscillators

The Multi-Step Differential Transform Method and Its Application to Determine the Solutions of Non-Linear Oscillators Advances in Applied Mathematics and Mechanics Adv. Appl. Math. Mech., Vol. 4, No. 4, pp. 422-438 DOI: 10.4208/aamm.10-m1138 August 2012 The Multi-Step Differential Transform Method and Its Application

More information

arxiv: v1 [nlin.cd] 20 Jul 2010

arxiv: v1 [nlin.cd] 20 Jul 2010 Invariant manifolds of the Bonhoeffer-van der Pol oscillator arxiv:1007.3375v1 [nlin.cd] 20 Jul 2010 R. Benítez 1, V. J. Bolós 2 1 Departamento de Matemáticas, Centro Universitario de Plasencia, Universidad

More information

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume Issue ǁ July 206. Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential

More information

Unit I (Testing of Hypothesis)

Unit I (Testing of Hypothesis) SUBJECT NAME : Statistics and Numerical Methods SUBJECT CODE : MA645 MATERIAL NAME : Part A questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) Unit I (Testing of Hypothesis). State level

More information

Chaos Suppression in Forced Van Der Pol Oscillator

Chaos Suppression in Forced Van Der Pol Oscillator International Journal of Computer Applications (975 8887) Volume 68 No., April Chaos Suppression in Forced Van Der Pol Oscillator Mchiri Mohamed Syscom laboratory, National School of Engineering of unis

More information

Construction of four dimensional chaotic finance model and its applications

Construction of four dimensional chaotic finance model and its applications Volume 8 No. 8, 7-87 ISSN: 34-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu Construction of four dimensional chaotic finance model and its applications Dharmendra Kumar and Sachin Kumar Department

More information

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems Weonbae Kim a and Changbum Chun b a Department of Mathematics, Daejin University, Pocheon, Gyeonggi-do

More information

SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW

SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW Mathematical and Computational Applications,Vol. 15, No. 4, pp. 709-719, 2010. c Association for Scientific Research SYMMETRY REDUCTION AND NUMERICAL SOLUTION OF A THIRD-ORDER ODE FROM THIN FILM FLOW E.

More information

Chaos synchronization of nonlinear Bloch equations

Chaos synchronization of nonlinear Bloch equations Chaos, Solitons and Fractal7 (26) 357 361 www.elsevier.com/locate/chaos Chaos synchronization of nonlinear Bloch equations Ju H. Park * Robust Control and Nonlinear Dynamics Laboratory, Department of Electrical

More information

A new four-dimensional chaotic system

A new four-dimensional chaotic system Chin. Phys. B Vol. 19 No. 12 2010) 120510 A new four-imensional chaotic system Chen Yong ) a)b) an Yang Yun-Qing ) a) a) Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai

More information

A model for atmospheric circulation

A model for atmospheric circulation Apeiron, Vol. 19, No. 3, July 2012 264 A model for atmospheric circulation B S Lakshmi JNTU College Of Engineering Hyderabad K L Vasundhara Vidya Jyothi Institute of Technology Hyderabad In this paper

More information

Effect of various periodic forces on Duffing oscillator

Effect of various periodic forces on Duffing oscillator PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 351 356 Effect of various periodic forces on Duffing oscillator V RAVICHANDRAN 1, V CHINNATHAMBI 1, and S RAJASEKAR

More information

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification www.ccenet.org/ma Modern Applied Science Vol. 6, No. ; February Hybrid Projective Dilocated Synchronization of Liu Chaotic Sytem Baed on Parameter Identification Yanfei Chen College of Science, Guilin

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Physics 584 Computational Methods

Physics 584 Computational Methods Physics 584 Computational Methods Introduction to Matlab and Numerical Solutions to Ordinary Differential Equations Ryan Ogliore April 18 th, 2016 Lecture Outline Introduction to Matlab Numerical Solutions

More information

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD Arif Rafiq and Amna Javeria Abstract In this paper, we establish

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information