Smol Results on the Möbius Function

Size: px
Start display at page:

Download "Smol Results on the Möbius Function"

Transcription

1 Karen Ge August 3, 207 Introduction We will address how Möbius function relates to other arithmetic functions, multiplicative number theory, the primitive complex roots of unity, and the Riemann zeta function. 2 Multiplicative Functions The Möbius function is an example of a special class of functions, called multiplicative functions. We will see why these functions are nice. Definition 2.. An arithmetic function is a function f : N C. It is completely multiplicative if f(mn = f(mf(n for any m and n. multiplicative if f(mn = f(mf(n for relatively prime m and n. Example 2.2 (Completely multiplicative functions The following are examples of completely multiplicative functions. The identity function id: id(n = n The Dirichlet delta function, δ(n = { n = 0 n 2. The constant function, given by (n =. Example 2.3 (Multiplicative functions The following are examples of multiplicative functions which are not completely multiplicative. Euler s ϕ. It counts the number of relatively prime positive integers less than n. For example, ϕ(5 = ϕ(3ϕ(5 (multiplicative, but ϕ(9 = 6 ϕ(3ϕ(3 = 4 (so it is not completely multiplicative. The Möbius function µ, defined by { ( m if n has m prime factors, all distinct µ(n = 0 n is not square-free. For example, µ(0 = = µ(2µ(5, µ(05 = = µ(3µ(5µ(7, but µ(2 = 0 µ(2µ(6 =. σ, the sum of divisors function. τ, the number of divisors function.

2 Example 2.4 Let n be an integer. Then ϕ(d = n. Proof. The idea is that we can use the property that if m, n are relatively prime positive integers, then ϕ(mn = ϕ(mϕ(n (this fact follows from the Chinese remainder theorem. Using this fact we can brea up ϕ(n = p e... pe = ϕ(p e... ϕ(pe and compute the sum by focusing on one prime at a time. More explicitly, let s write n = p e... pe. Then we have ϕ(d = (ϕ( + ϕ(p + + ϕ(p e... ( ϕ( + ϕ(p + + ϕ(p e because when we expand the product on the RHS, each term will be ϕ(d for some d n. Now we re done because it s easy to see that ϕ( + ϕ(p + + ϕ(p e = p e when p is a prime, and thus the right-hand side is p e... pe = n. Exercise 2.5. Verify that ϕ, µ, σ are indeed examples of multiplicative functions. Of course, the product of two multiplicative functions is also multiplicative. As we saw above, the nice property of multiplicative functions is that it is sufficient to determine their values on prime powers. For example, we can easily chec that ϕ(p = p p for p a prime and N. Then for n = p e... pe, we get 3 Dirichlet Convolution ϕ(n = (p e pe (p e 2 2 pe (p e p e. Given two arithmetic functions f and g, we define their Dirichlet convolution as (f g(n = f(dg(n/d = de=n f(dg(e. Here are some properties of : The identity of is the Dirichlet delta function δ. The reason for this fact is that δ(df(n/d = 0 f( + + f(n/ = f(n as all of the terms for d are multiplied by 0. The operation is commutative. The operation is associative because ((f g h (n = (f (g h (n = d d 2 d 3 =n It distributes over addition: f (g + h = f g + f h. f(d g(d 2 h(d 3. Most important: the convolution of two multiplicative functions is also multiplicative. 2

3 Exercise 3.. Chec that convolutions of multiplicative functions are multiplicative. Exercise 3.2. Show that if f is a multiplicative arithmetic function, then an inverse g of f under convolution (i.e. f g = δ exists if and only if f( 0. Also show that this inverse is unique. (Hint: compute the values of g inductively. Example 3.3 We have = τ. Proof. ( (n = (d(n/d = = τ(n. Exercise 3.4. Verify that id = σ. id id = n τ. ϕ = id (first example. δ f = f for any f. Now we can use our theory to simplify the proof of our earlier example. Example 3.5 (ϕ = id Let n be an integer. Then ϕ(d = n. Proof. Rephrasing the problem, we wish to show that ϕ = id. The above is true for prime powers n = p e, because in that case the LHS is + (p + (p 2 p + + (p e p e = p e. But since both the LHS and RHS are multiplicative, we are done. 4 Möbius Inversion We now now that given a multiplicative function f, we have a good handle on g(n = f(d because g is the Dirichlet convolution f. However, occasionally we instead have g and want to recover f. The way to do this is through Möbius inversion. Lemma 4. (Möbius is inverse of We have µ = δ. 3

4 Theorem 4.2 (Möbius inversion formula Let f and g be any arithmetic functions (possibly not multiplicative. Then g(n = f(d f(n = µ(dg(n/d. In other words, if g = f then f = g µ. Proof. Assume g = f. Then The reverse direction is similar. g µ = (f µ = f ( µ = f δ = f. Corollary 4.3 If g is multiplicative and g(n = f(d, then f is also multiplicative. Furthermore, if f is multiplicative and g(n = f(d, then g is also multiplicative. For example, σ (n, the sum of the th powers of the divisors of n, is just d. Since f(d = d is completely multiplicative, it follows that σ (n is multiplicative. 5 Cute Facts Recall Lemma 4., which states that µ = δ. If the proof below has too many words to understand, consider an example, say n = Proof of Lemma 4.. First note that the identity holds for n =. For n 2, we observe that there is a bijection between the divisors d of n for which µ(d 0 and the subsets of the prime factors of n. Indeed, whenever µ(d 0, the factorization of d consists of distinct prime numbers which thus form a subset of the prime factors of n. So the identity reduces to proving that the number of odd-sized subsets is equal to the number of even-sized subsets for any non-empty set (in this case, the set is that of the distinct prime factors of n. This fact is true by the binomial theorem. Say n has distinct prime factors. The negative terms in ( = 0 are of the form ( n 2a+, 0 a (n /2, and so count the number of subsets of size 2a +. The positive terms are of the form ( n 2a, 0 a n/2, and so count the number of subsets of size 2a. The sum of the negative terms is negation of the total number of odd-sized subsets and the sum of the positive terms is the total number of even-sized subsets. Since the sum of these two totals is ( = 0, they must cancel exactly. Remar 5.. An alternate proof of the last fact involves a fun combinatorial operation called toggling. Fact 5.2 (Möbius and primitive roots of unity. Let f(n = ζn. Then f(n = µ(n. n gcd(,n= 4

5 Proof. We recall another function that loos an awful lot lie the Dirichlet delta function. Define n s(n = ζn, the sum of the complex nth roots of unity. Clearly s( =. By definition, ζ n satisfies ζn n = 0 = (ζ n (ζn n + + ζ n +. Since ζ, it follows that n = ζ n = 0 for n > So we in fact have { n = s(n = 0 n 2. So s(n is exactly δ(n. Now we observe that every nth root of unity is a primitive dth root of unity for some d n. So f = s = δ. But µ = δ, so f = µ by uniqueness of convolution, as desired. = Proposition 5.3 Let s be a complex number with R(s > and define ζ(s = n= n s. Then ζ(s = n= µ(n n s Definition 5.4 (Dirichlet series. Let {a n } be any complex sequence and s be a complex number. The Dirichlet series for a n is n= a n n s. Definition 5.5 (Euler product. Let F (s = n= n be the Dirichlet series for a s multiplicative function f(n. Then the Euler product for F (s is the same function ( f(p m + p ms. p P m= Remar 5.6. We are manipulating F (s as a formal power series and thus assuming convergence. Observe that the above identity holds because when we expand the product out, we get exactly the sum of f(p e p e s f(pe p e s f(n = f(pe f(pe p e s p e s = f(n n s Proof of Proposition 5.3. Note that the Euler product of ζ(s is simply + p p P( s + p 2s +... = ( p s p P by the geometric series formula. So ζ(s = p P ( p, which is the Euler product s for µ(n n= n, as desired. s 5

6 6 Extra Problems Problem 6.. Prove that for any integer n, (τ(d 3 = τ(d Problem 6.2 (Bulgaria 989. Let Ω(n denote the number of prime factors of n, counted with multiplicity. Evaluate ( Ω(n. n Problem 6.3. Suppose that Describe f(n. n= ( n µ f(d = n. d Problem 6.4. Prove that if f is an arithmetic function and g(n = n = f ( n, then f(n = n µ(jg j= 2 ( n. j Problem 6.5. Let f and g be arithmetic functions such that f(n = g(d. Prove: g(n = ( n µ(d f. d. Problem 6.6. Let n N. Show that (µ(d 2 ϕ(d = n ϕ(n. Problem 6.7. Let p be a prime. We say that g is a primitive root (mod p if g p = and g a for 0 < a < p. (Why does g exist? In other words, the set {g a : a =,... p } generated by g is exactly Z p. Prove that the sum of the primitive roots (mod p is µ(p. Problem 6.8. Get a bound on the number of square-free numbers less than some number x in terms of x. Can you get an error term better than O( x? Problem 6.9. Consider µ a (n = n n µ(, the average value of µ(n. Prove that = lim µ a(n = 0. n This result is actually equivalent to the prime number theorem! However, this equivalence needs a lot of machinery to prove. See [6], [3] for more details. Remar 6.0. More precise estimates about the growth rate of nµ a (n are related to the Riemann Hypothesis. Again, see [3]. 6

7 References [] Summation, Evan Chen, October 3th, 206. [2] The Sum of Primitive Roots of Unity, Yimin Ge, June 9th, [3] Introduction to Analytic Number Theory Math 53 Lecture Notes, A.J. Hildebrand, Fall [4] Math 05 notes, wee 3, Carl Pomerance, Fall 203. [5] Euler Product, Sondow, Jonathan and Weisstein, Eric W. [6] Average Values Continued: ϕ and µ, Pete L. Clar, Spring [7] Number Theory for Mathematical Contests, David A. Santos, August 3,

f(n) = f(p e 1 1 )...f(p e k k ).

f(n) = f(p e 1 1 )...f(p e k k ). 3. Arithmetic functions 3.. Arithmetic functions. These are functions f : N N or Z or maybe C, usually having some arithmetic significance. An important subclass of such functions are the multiplicative

More information

18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions

18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions 18.785: Analytic Number Theory, MIT, spring 2006 (K.S. Kedlaya) Dirichlet series and arithmetic functions 1 Dirichlet series The Riemann zeta function ζ is a special example of a type of series we will

More information

Any real-valued function on the integers f:n R (or complex-valued function f:n C) is called an arithmetic function.

Any real-valued function on the integers f:n R (or complex-valued function f:n C) is called an arithmetic function. Arithmetic Functions Any real-valued function on the integers f:n R (or complex-valued function f:n C) is called an arithmetic function. Examples: τ(n) = number of divisors of n; ϕ(n) = number of invertible

More information

I(n) = ( ) f g(n) = d n

I(n) = ( ) f g(n) = d n 9 Arithmetic functions Definition 91 A function f : N C is called an arithmetic function Some examles of arithmetic functions include: 1 the identity function In { 1 if n 1, 0 if n > 1; 2 the constant

More information

LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS

LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS 1. The Chinese Remainder Theorem We now seek to analyse the solubility of congruences by reinterpreting their solutions modulo a composite

More information

Math 314 Course Notes: Brief description

Math 314 Course Notes: Brief description Brief description These are notes for Math 34, an introductory course in elementary number theory Students are advised to go through all sections in detail and attempt all problems These notes will be

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem Chapter 5 The Chinese Remainder Theorem 5.1 Coprime moduli Theorem 5.1. Suppose m, n N, and gcd(m, n) = 1. Given any remainders r mod m and s mod n we can find N such that N r mod m and N s mod n. Moreover,

More information

Summary Slides for MATH 342 June 25, 2018

Summary Slides for MATH 342 June 25, 2018 Summary Slides for MATH 342 June 25, 2018 Summary slides based on Elementary Number Theory and its applications by Kenneth Rosen and The Theory of Numbers by Ivan Niven, Herbert Zuckerman, and Hugh Montgomery.

More information

Trifectas in geometric progression

Trifectas in geometric progression 189 Trifectas in geometric progression Gerry Myerson Abstract The trifecta in the 2007 Melbourne Cup was the numbers 6 12 24, a geometric progression. How many trifectas in geometric progression are there

More information

MATH 361: NUMBER THEORY THIRD LECTURE

MATH 361: NUMBER THEORY THIRD LECTURE MATH 36: NUMBER THEORY THIRD LECTURE. Introduction The toic of this lecture is arithmetic functions and Dirichlet series. By way of introduction, consider Euclid s roof that there exist infinitely many

More information

Some multiplicative arithmetical functions

Some multiplicative arithmetical functions Some multiplicative arithmetical functions an invitation to number theory K. N. Raghavan http://www.imsc.res.in/ knr/ IMSc, Chennai August 203 Standard form of prime factorization of a number; GCD and

More information

Möbius Inversion Formula and Applications to Cyclotomic Polynomials

Möbius Inversion Formula and Applications to Cyclotomic Polynomials Degree Project Möbius Inversion Formula and Applications to Cyclotomic Polynomials 2012-06-01 Author: Zeynep Islek Subject: Mathematics Level: Bachelor Course code: 2MA11E Abstract This report investigates

More information

a = mq + r where 0 r m 1.

a = mq + r where 0 r m 1. 8. Euler ϕ-function We have already seen that Z m, the set of equivalence classes of the integers modulo m, is naturally a ring. Now we will start to derive some interesting consequences in number theory.

More information

An arithmetical equation with respect to regular convolutions

An arithmetical equation with respect to regular convolutions The final publication is available at Springer via http://dx.doi.org/10.1007/s00010-017-0473-z An arithmetical equation with respect to regular convolutions Pentti Haukkanen School of Information Sciences,

More information

Math 324, Fall 2011 Assignment 6 Solutions

Math 324, Fall 2011 Assignment 6 Solutions Math 324, Fall 2011 Assignment 6 Solutions Exercise 1. (a) Find all positive integers n such that φ(n) = 12. (b) Show that there is no positive integer n such that φ(n) = 14. (c) Let be a positive integer.

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

2 More on Congruences

2 More on Congruences 2 More on Congruences 2.1 Fermat s Theorem and Euler s Theorem definition 2.1 Let m be a positive integer. A set S = {x 0,x 1,,x m 1 x i Z} is called a complete residue system if x i x j (mod m) whenever

More information

Elementary Properties of Cyclotomic Polynomials

Elementary Properties of Cyclotomic Polynomials Elementary Properties of Cyclotomic Polynomials Yimin Ge Abstract Elementary properties of cyclotomic polynomials is a topic that has become very popular in Olympiad mathematics. The purpose of this article

More information

Number-Theoretic Function

Number-Theoretic Function Chapter 1 Number-Theoretic Function 1.1 The function τ and σ Definition 1.1.1. Given a positive integer n, let τ(n) denote the number of positive divisor of n and σ(n) denote the sum of these divisor.

More information

Elementary Number Theory Review. Franz Luef

Elementary Number Theory Review. Franz Luef Elementary Number Theory Review Principle of Induction Principle of Induction Suppose we have a sequence of mathematical statements P(1), P(2),... such that (a) P(1) is true. (b) If P(k) is true, then

More information

Solutions to Problem Set 4 - Fall 2008 Due Tuesday, Oct. 7 at 1:00

Solutions to Problem Set 4 - Fall 2008 Due Tuesday, Oct. 7 at 1:00 Solutions to 8.78 Problem Set 4 - Fall 008 Due Tuesday, Oct. 7 at :00. (a Prove that for any arithmetic functions f, f(d = f ( n d. To show the relation, we only have to show this equality of sets: {d

More information

Contest Number Theory

Contest Number Theory Contest Number Theory Andre Kessler December 7, 2008 Introduction Number theory is one of the core subject areas of mathematics. It can be somewhat loosely defined as the study of the integers. Unfortunately,

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

Theory of Numbers Problems

Theory of Numbers Problems Theory of Numbers Problems Antonios-Alexandros Robotis Robotis October 2018 1 First Set 1. Find values of x and y so that 71x 50y = 1. 2. Prove that if n is odd, then n 2 1 is divisible by 8. 3. Define

More information

arxiv: v1 [math.nt] 26 Apr 2016

arxiv: v1 [math.nt] 26 Apr 2016 Ramanuan-Fourier series of certain arithmetic functions of two variables Noboru Ushiroya arxiv:604.07542v [math.nt] 26 Apr 206 Abstract. We study Ramanuan-Fourier series of certain arithmetic functions

More information

Lecture 4: Number theory

Lecture 4: Number theory Lecture 4: Number theory Rajat Mittal IIT Kanpur In the next few classes we will talk about the basics of number theory. Number theory studies the properties of natural numbers and is considered one of

More information

Mathematics 4: Number Theory Problem Sheet 3. Workshop 26 Oct 2012

Mathematics 4: Number Theory Problem Sheet 3. Workshop 26 Oct 2012 Mathematics 4: Number Theory Problem Sheet 3 Workshop 26 Oct 2012 The aim of this workshop is to show that Carmichael numbers are squarefree and have at least 3 distinct prime factors (1) (Warm-up question)

More information

Zsigmondy s Theorem. Lola Thompson. August 11, Dartmouth College. Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, / 1

Zsigmondy s Theorem. Lola Thompson. August 11, Dartmouth College. Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, / 1 Zsigmondy s Theorem Lola Thompson Dartmouth College August 11, 2009 Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, 2009 1 / 1 Introduction Definition o(a modp) := the multiplicative order

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

The Euler Phi Function

The Euler Phi Function The Euler Phi Function 7-3-2006 An arithmetic function takes ositive integers as inuts and roduces real or comlex numbers as oututs. If f is an arithmetic function, the divisor sum Dfn) is the sum of the

More information

Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n.

Math 324, Fall 2011 Assignment 7 Solutions. 1 (ab) γ = a γ b γ mod n. Math 324, Fall 2011 Assignment 7 Solutions Exercise 1. (a) Suppose a and b are both relatively prime to the positive integer n. If gcd(ord n a, ord n b) = 1, show ord n (ab) = ord n a ord n b. (b) Let

More information

A Combinatorial Approach to Finding Dirichlet Generating Function Identities

A Combinatorial Approach to Finding Dirichlet Generating Function Identities The Waterloo Mathematics Review 3 A Combinatorial Approach to Finding Dirichlet Generating Function Identities Alesandar Vlasev Simon Fraser University azv@sfu.ca Abstract: This paper explores an integer

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

Introduction to Analytic Number Theory Math 531 Lecture Notes, Fall 2005

Introduction to Analytic Number Theory Math 531 Lecture Notes, Fall 2005 Introduction to Analytic Number Theory Math 53 Lecture Notes, Fall 2005 A.J. Hildebrand Department of Mathematics University of Illinois http://www.math.uiuc.edu/~hildebr/ant Version 2005.2.06 2 Contents

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

More information

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

AN ANALOG OF THE HARMONIC NUMBERS OVER THE SQUAREFREE INTEGERS

AN ANALOG OF THE HARMONIC NUMBERS OVER THE SQUAREFREE INTEGERS AN ANALOG OF THE HARMONIC NUMBERS OVER THE SQUAREFREE INTEGERS DICK BOLAND Abstract. A nice, short result establishing an asymptotic equivalent of the harmonic numbers, H n, in terms of the reciprocals

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively 6 Prime Numbers Part VI of PJE 6.1 Fundamental Results Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively D (p) = { p 1 1 p}. Otherwise

More information

Analytic Number Theory

Analytic Number Theory Analytic Number Theory 2 Analytic Number Theory Travis Dirle December 4, 2016 2 Contents 1 Summation Techniques 1 1.1 Abel Summation......................... 1 1.2 Euler-Maclaurin Summation...................

More information

Basic. Multiplicative Functions: NumThy. Basic functions. Define fncs δ, 1, Id M by: δ(1) := 1 and δ( 1) := 0 ; 1(n) := 1 and Id(n) := n.

Basic. Multiplicative Functions: NumThy. Basic functions. Define fncs δ, 1, Id M by: δ(1) := 1 and δ( 1) := 0 ; 1(n) := 1 and Id(n) := n. Multiplicative Functions: NumThy Jonathan LF King University of Florida, Gainesville FL 32611-2082, USA squash@ufledu Webpage http://squash1gainesvillecom/ 14 August, 2018 (at 12:25) Aside In number_theoryamstex

More information

PARTITION-THEORETIC FORMULAS FOR ARITHMETIC DENSITIES

PARTITION-THEORETIC FORMULAS FOR ARITHMETIC DENSITIES PARTITION-THEORETIC FORMULAS FOR ARITHMETIC DENSITIES KEN ONO, ROBERT SCHNEIDER, AND IAN WAGNER In celebration of Krishnaswami Alladi s 60th birthday Abstract If gcd(r, t) = 1, then a theorem of Alladi

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR. Wolfgang Schramm Schulgasse 62 / 11, A-1180 Vienna, AUSTRIA

THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR. Wolfgang Schramm Schulgasse 62 / 11, A-1180 Vienna, AUSTRIA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A50 THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR Wolfgang Schramm Schulgasse 62 / 11, A-1180 Vienna, AUSTRIA

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem R. C. Daileda February 19, 2018 1 The Chinese Remainder Theorem We begin with an example. Example 1. Consider the system of simultaneous congruences x 3 (mod 5), x 2 (mod

More information

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1 MATH 4400 SOLUTIONS TO SOME EXERCISES 1.1.3. If a b and b c show that a c. 1. Chapter 1 Solution: a b means that b = na and b c that c = mb. Substituting b = na gives c = (mn)a, that is, a c. 1.2.1. Find

More information

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions. D-MAH Algebra II FS18 Prof. Marc Burger Solution 26 Cyclotomic extensions. In the following, ϕ : Z 1 Z 0 is the Euler function ϕ(n = card ((Z/nZ. For each integer n 1, we consider the n-th cyclotomic polynomial

More information

Mosaics: A Prime-al Art

Mosaics: A Prime-al Art Mosaics: A Prime-al Art Kristen Bildhauser Saint Mary s College Notre Dame, IN 46556 kbildh01@saintmarys.edu Cara Tacoma Trinity Christian College Palos Heights, IL 60463 cara.tacoma@trnty.edu July 31,

More information

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a Math 4161 Dr. Franz Rothe December 9, 2013 13FALL\4161_fall13f.tex Name: Use the back pages for extra space Final 70 70 Problem 1. The following assertions may be true or false, depending on the choice

More information

Math 118: Advanced Number Theory. Samit Dasgupta and Gary Kirby

Math 118: Advanced Number Theory. Samit Dasgupta and Gary Kirby Math 8: Advanced Number Theory Samit Dasgupta and Gary Kirby April, 05 Contents Basics of Number Theory. The Fundamental Theorem of Arithmetic......................... The Euclidean Algorithm and Unique

More information

MATH 310: Homework 7

MATH 310: Homework 7 1 MATH 310: Homework 7 Due Thursday, 12/1 in class Reading: Davenport III.1, III.2, III.3, III.4, III.5 1. Show that x is a root of unity modulo m if and only if (x, m 1. (Hint: Use Euler s theorem and

More information

A Few Primality Testing Algorithms

A Few Primality Testing Algorithms A Few Primality Testing Algorithms Donald Brower April 2, 2006 0.1 Introduction These notes will cover a few primality testing algorithms. There are many such, some prove that a number is prime, others

More information

Counting subgroups of the multiplicative group

Counting subgroups of the multiplicative group Counting subgroups of the multiplicative group Lee Troupe joint w/ Greg Martin University of British Columbia West Coast Number Theory 2017 Question from I. Shparlinski to G. Martin, circa 2009: How many

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

Lemma 1.1. The field K embeds as a subfield of Q(ζ D ).

Lemma 1.1. The field K embeds as a subfield of Q(ζ D ). Math 248A. Quadratic characters associated to quadratic fields The aim of this handout is to describe the quadratic Dirichlet character naturally associated to a quadratic field, and to express it in terms

More information

Chapter 2 Arithmetic Functions and Dirichlet Series.

Chapter 2 Arithmetic Functions and Dirichlet Series. Chater 2 Arithmetic Functions and Dirichlet Series. [4 lectures] Definition 2.1 An arithmetic function is any function f : N C. Examles 1) The divisor function d (n) (often denoted τ (n)) is the number

More information

Part IA Numbers and Sets

Part IA Numbers and Sets Part IA Numbers and Sets Theorems Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

arxiv: v2 [math.co] 9 May 2017

arxiv: v2 [math.co] 9 May 2017 Partition-theoretic formulas for arithmetic densities Ken Ono, Robert Schneider, and Ian Wagner arxiv:1704.06636v2 [math.co] 9 May 2017 In celebration of Krishnaswami Alladi s 60th birthday. Abstract If

More information

Properties of Arithmetical Functions

Properties of Arithmetical Functions Properties of Arithmetical Functions Zack Clark Math 336, Spring 206 Introduction Arithmetical functions, as dened by Delany [2], are the functions f(n) that take positive integers n to complex numbers.

More information

arxiv: v1 [math.nt] 22 Jun 2017

arxiv: v1 [math.nt] 22 Jun 2017 lexander Kalmynin arxiv:1706.07343v1 [math.nt] 22 Jun 2017 Nová-Carmichael numbers and shifted primes without large prime factors bstract. We prove some new lower bounds for the counting function N C (x)

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

A class of Dirichlet series integrals

A class of Dirichlet series integrals A class of Dirichlet series integrals J.M. Borwein July 3, 4 Abstract. We extend a recent Monthly problem to analyse a broad class of Dirichlet series, and illustrate the result in action. In [5] the following

More information

Contribution of Problems

Contribution of Problems Exam topics 1. Basic structures: sets, lists, functions (a) Sets { }: write all elements, or define by condition (b) Set operations: A B, A B, A\B, A c (c) Lists ( ): Cartesian product A B (d) Functions

More information

Finite fields Michel Waldschmidt

Finite fields Michel Waldschmidt Finite fields Michel Waldschmidt http://www.imj-prg.fr/~michel.waldschmidt//pdf/finitefields.pdf Updated: 03/07/2018 Contents 1 Background: Arithmetic 1.1 Cyclic groups If G is a finite multiplicative

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Concrete Mathematics: A Portfolio of Problems

Concrete Mathematics: A Portfolio of Problems Texas A&M University - San Antonio Concrete Mathematics Concrete Mathematics: A Portfolio of Problems Author: Sean Zachary Roberson Supervisor: Prof. Donald Myers July, 204 Chapter : Recurrent Problems

More information

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have Exercise 23. (a) Solve the following congruences: (i) x 101 7 (mod 12) Answer. We have φ(12) = #{1, 5, 7, 11}. Since gcd(7, 12) = 1, we must have gcd(x, 12) = 1. So 1 12 x φ(12) = x 4. Therefore 7 12 x

More information

Math 319 Problem Set #2 Solution 14 February 2002

Math 319 Problem Set #2 Solution 14 February 2002 Math 39 Problem Set # Solution 4 February 00. (.3, problem 8) Let n be a positive integer, and let r be the integer obtained by removing the last digit from n and then subtracting two times the digit ust

More information

Reciprocals of the Gcd-Sum Functions

Reciprocals of the Gcd-Sum Functions 2 3 47 6 23 Journal of Integer Sequences, Vol. 4 20, Article.8.3 Reciprocals of the Gcd-Sum Functions Shiqin Chen Experimental Center Linyi University Linyi, 276000, Shandong China shiqinchen200@63.com

More information

The Humble Sum of Remainders Function

The Humble Sum of Remainders Function DRAFT VOL. 78, NO. 4, OCTOBER 2005 1 The Humble Sum of Remainders Function Michael Z. Spivey Samford University Birmingham, Alabama 35229 mzspivey@samford.edu The sum of divisors function is one of the

More information

Exercises for Chapter 1

Exercises for Chapter 1 Solution Manual for A First Course in Abstract Algebra, with Applications Third Edition by Joseph J. Rotman Exercises for Chapter. True or false with reasons. (i There is a largest integer in every nonempty

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

Number Theory A focused introduction

Number Theory A focused introduction Number Theory A focused introduction This is an explanation of RSA public key cryptography. We will start from first principles, but only the results that are needed to understand RSA are given. We begin

More information

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1. Problem Sheet 3. From Theorem 3. we have ζ (s) = + s s {u} u+sdu, (45) valid for Res > 0. i) Deduce that for Res >. [u] ζ (s) = s u +sdu ote the integral contains [u] in place of {u}. ii) Deduce that for

More information

A Concise Course in Number Theory Alan Baker, Cambridge University Press, 1983

A Concise Course in Number Theory Alan Baker, Cambridge University Press, 1983 A Concise Course in Number Theory Alan Baker, Cambridge University Press, 1983 Chapter 1: Divisibility Prime number: a positive integer that cannot be factored into strictly smaller factors. For example,,

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

Cyclotomic Polynomials in Olympiad Number Theory

Cyclotomic Polynomials in Olympiad Number Theory Cyclotomic Polynomials in Olympiad Number Theory Lawrence Sun lala-sun@hotmail.com February 17, 2013 Abstract This is a paper discussing the powerful applications cyclotomic polynomials have in olympiad

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Number Theory and Graph Theory. Arithmetic functions and roots of unity

Number Theory and Graph Theory. Arithmetic functions and roots of unity 1 Number Theory and Graph Theory Chapter 3 Arithmetic functions and roots of unity By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Some Arithmetic Functions Involving Exponential Divisors

Some Arithmetic Functions Involving Exponential Divisors 2 3 47 6 23 Journal of Integer Sequences, Vol. 3 200, Article 0.3.7 Some Arithmetic Functions Involving Exponential Divisors Xiaodong Cao Department of Mathematics and Physics Beijing Institute of Petro-Chemical

More information

Dimensions of the spaces of cusp forms and newforms on Γ 0 (N) and Γ 1 (N)

Dimensions of the spaces of cusp forms and newforms on Γ 0 (N) and Γ 1 (N) Journal of Number Theory 11 005) 98 331 www.elsevier.com/locate/jnt Dimensions of the spaces of cusp forms and newforms on Γ 0 N) and Γ 1 N) Greg Martin Department of Mathematics, University of British

More information

A SURVEY OF PRIMALITY TESTS

A SURVEY OF PRIMALITY TESTS A SURVEY OF PRIMALITY TESTS STEFAN LANCE Abstract. In this paper, we show how modular arithmetic and Euler s totient function are applied to elementary number theory. In particular, we use only arithmetic

More information

ELEMENTARY PROOF OF DIRICHLET THEOREM

ELEMENTARY PROOF OF DIRICHLET THEOREM ELEMENTARY PROOF OF DIRICHLET THEOREM ZIJIAN WANG Abstract. In this expository paper, we present the Dirichlet Theorem on primes in arithmetic progressions along with an elementary proof. We first show

More information

Week 6-8: The Inclusion-Exclusion Principle

Week 6-8: The Inclusion-Exclusion Principle Week 6-8: The Inclusion-Exclusion Principle March 24, 2017 1 The Inclusion-Exclusion Principle Let S be a finite set. Given subsets A, B, C of S, we have A B A + B A B, A B C A + B + C A B A C B C + A

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM JOHN BINDER Abstract. In this aer, we rove Dirichlet s theorem that, given any air h, k with h, k) =, there are infinitely many rime numbers congruent to

More information

GOLDBACH S PROBLEMS ALEX RICE

GOLDBACH S PROBLEMS ALEX RICE GOLDBACH S PROBLEMS ALEX RICE Abstract. These are notes from the UGA Analysis and Arithmetic Combinatorics Learning Seminar from Fall 9, organized by John Doyle, eil Lyall, and Alex Rice. In these notes,

More information

18 The analytic class number formula

18 The analytic class number formula 18.785 Number theory I Lecture #18 Fall 2015 11/12/2015 18 The analytic class number formula The following theorem is usually attributed to Dirichlet, although he originally proved it only for quadratic

More information

DIRICHLET S THEOREM ON PRIMES IN ARITHMETIC PROGRESSIONS. 1. Introduction

DIRICHLET S THEOREM ON PRIMES IN ARITHMETIC PROGRESSIONS. 1. Introduction DIRICHLET S THEOREM ON PRIMES IN ARITHMETIC PROGRESSIONS INNA ZAKHAREVICH. Introduction It is a well-known fact that there are infinitely many rimes. However, it is less clear how the rimes are distributed

More information

Lecture 3 - Tuesday July 5th

Lecture 3 - Tuesday July 5th Lecture 3 - Tuesday July 5th jacques@ucsd.edu Key words: Identities, geometric series, arithmetic series, difference of powers, binomial series Key concepts: Induction, proofs of identities 3. Identities

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

Divisibility. 1.1 Foundations

Divisibility. 1.1 Foundations 1 Divisibility 1.1 Foundations The set 1, 2, 3,...of all natural numbers will be denoted by N. There is no need to enter here into philosophical questions concerning the existence of N. It will suffice

More information

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin mcadam@math.utexas.edu Abstract: We offer a proof of quadratic reciprocity that arises

More information

Some infinite series involving arithmetic functions

Some infinite series involving arithmetic functions Notes on Number Theory and Discrete Mathematics ISSN 131 5132 Vol. 21, 215, No. 2, 8 14 Some infinite series involving arithmetic functions Ramesh Kumar Muthumalai Department of Mathematics, Saveetha Engineering

More information

18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve

18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve 18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve In this unit, we describe a more intricate version of the sieve of Eratosthenes, introduced by Viggo Brun in order

More information

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z:

Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some. Notation: b Fact: for all, b, c Z: Number Theory Basics Z = {..., 2, 1, 0, 1, 2,...} For, b Z, we say that divides b if z = b for some z Z Notation: b Fact: for all, b, c Z:, 1, and 0 0 = 0 b and b c = c b and c = (b + c) b and b = ±b 1

More information

The Prime Number Theorem

The Prime Number Theorem Chapter 3 The Prime Number Theorem This chapter gives without proof the two basic results of analytic number theory. 3.1 The Theorem Recall that if f(x), g(x) are two real-valued functions, we write to

More information