Statistics 360/601 Modern Bayesian Theory

Size: px
Start display at page:

Download "Statistics 360/601 Modern Bayesian Theory"

Transcription

1 Statistics 360/601 Modern Bayesian Theory Alexander Volfovsky Lecture 5 - Sept 12, 2016

2 How often do we see Poisson data? 1

3 2 Poisson data example Problem of interest: understand different causes of death

4 2 Poisson data example Problem of interest: understand different causes of death Specific problem: studying the asthma mortality rate

5 2 Poisson data example Problem of interest: understand different causes of death Specific problem: studying the asthma mortality rate (Why? Policy implications for pollution caps?)

6 2 Poisson data example Problem of interest: understand different causes of death Specific problem: studying the asthma mortality rate (Why? Policy implications for pollution caps?) Studying a single city with population 200,000

7 Poisson data example Problem of interest: understand different causes of death Specific problem: studying the asthma mortality rate (Why? Policy implications for pollution caps?) Studying a single city with population 200,000 Object (parameter) of interest: asthma mortality per 100,000

8 Poisson data example Problem of interest: understand different causes of death Specific problem: studying the asthma mortality rate (Why? Policy implications for pollution caps?) Studying a single city with population 200,000 Object (parameter) of interest: asthma mortality per 100,000 Observed data: 3 deaths in the city.

9 Poisson data example Problem of interest: understand different causes of death Specific problem: studying the asthma mortality rate (Why? Policy implications for pollution caps?) Studying a single city with population 200,000 Object (parameter) of interest: asthma mortality per 100,000 Observed data: 3 deaths in the city. Crude estimate: 1.5 deaths per 100,000.

10 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure.

11 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure. p(y θ, x) θ y exp( xθ) where θ is the rate and x is the exposure of a unit.

12 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure. p(y θ, x) θ y exp( xθ) where θ is the rate and x is the exposure of a unit. Commonly used in epidemiological studies

13 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure. p(y θ, x) θ y exp( xθ) where θ is the rate and x is the exposure of a unit. Commonly used in epidemiological studies Comes from an assumption of exchangeability among small intervals of exposure

14 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure. p(y θ, x) θ y exp( xθ) where θ is the rate and x is the exposure of a unit. Commonly used in epidemiological studies Comes from an assumption of exchangeability among small intervals of exposure y θ Poisson(2θ)

15 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure. p(y θ, x) θ y exp( xθ) where θ is the rate and x is the exposure of a unit. Commonly used in epidemiological studies Comes from an assumption of exchangeability among small intervals of exposure y θ Poisson(2θ) (Why? Parameter of interest is per 100,000 and the city has 200,000 people)

16 Poisson sampling model? Lets parametrize a Poisson distribution in terms of rate and exposure. p(y θ, x) θ y exp( xθ) where θ is the rate and x is the exposure of a unit. Commonly used in epidemiological studies Comes from an assumption of exchangeability among small intervals of exposure y θ Poisson(2θ) (Why? Parameter of interest is per 100,000 and the city has 200,000 people) y = 3, x = 2 and θ is unknown.

17 Priors Review asthma mortality rates around the world suggests 0.6 per 100,000 people in Western countries is typical.

18 Priors Review asthma mortality rates around the world suggests 0.6 per 100,000 people in Western countries is typical. 1.5 per 100,000 is rare.

19 Priors Review asthma mortality rates around the world suggests 0.6 per 100,000 people in Western countries is typical. 1.5 per 100,000 is rare. If our city is exchangeable with other cities then we can take a prior with mean 0.6 and 97.5% of the mass lying below 1.5:

20 Priors Review asthma mortality rates around the world suggests 0.6 per 100,000 people in Western countries is typical. 1.5 per 100,000 is rare. If our city is exchangeable with other cities then we can take a prior with mean 0.6 and 97.5% of the mass lying below 1.5: Comparison of Gamma with mean 0.6 Density Distributions a=3,b=5, q =1.44 a=6,b=10, q =1.17 a=9,b=15, q =1.05 a=12,b=20, q =0.98 a=0.6,b=1, q = x value

21 Priors Review asthma mortality rates around the world suggests 0.6 per 100,000 people in Western countries is typical. 1.5 per 100,000 is rare. If our city is exchangeable with other cities then we can take a prior with mean 0.6 and 97.5% of the mass lying below 1.5: Comparison of Gamma with mean 0.6 Density Distributions a=3,b=5, q =1.44 a=6,b=10, q =1.17 a=9,b=15, q =1.05 a=12,b=20, q =0.98 a=0.6,b=1, q = x value (What did we do? Set the prior mean α/β = 0.6 and play with the parameters)

22 5 Posterior We choose Gamma(3, 5) as our prior.

23 5 Posterior We choose Gamma(3, 5) as our prior. We know this is a conjugate set up so...

24 5 Posterior We choose Gamma(3, 5) as our prior. We know this is a conjugate set up so... Posterior is given by Gamma(α + y, β + x)

25 5 Posterior We choose Gamma(3, 5) as our prior. We know this is a conjugate set up so... Posterior is given by Gamma(α + y, β + x) In this data example the posterior is Gamma(6, 7)

26 5 Posterior We choose Gamma(3, 5) as our prior. We know this is a conjugate set up so... Posterior is given by Gamma(α + y, β + x) In this data example the posterior is Gamma(6, 7) Posterior mean is 0.86, shrinking the data substantially towards the global mean.

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

Lecture 3. Univariate Bayesian inference: conjugate analysis

Lecture 3. Univariate Bayesian inference: conjugate analysis Summary Lecture 3. Univariate Bayesian inference: conjugate analysis 1. Posterior predictive distributions 2. Conjugate analysis for proportions 3. Posterior predictions for proportions 4. Conjugate analysis

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

A few basics of credibility theory

A few basics of credibility theory A few basics of credibility theory Greg Taylor Director, Taylor Fry Consulting Actuaries Professorial Associate, University of Melbourne Adjunct Professor, University of New South Wales General credibility

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

Statistics 360/601 Modern Bayesian Theory

Statistics 360/601 Modern Bayesian Theory Statistics 360/601 Modern Bayesian Theory Alexander Volfovsky Lecture 8 - Sept 25, 2018 Monte Carlo 1 2 Monte Carlo approximation Want to compute Z E[ y] = p( y)d without worrying about actual integration...

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May 5-7 2008 Peter Schlattmann Institut für Biometrie und Klinische Epidemiologie

More information

X-ray Dark Sources Detection

X-ray Dark Sources Detection X-ray Dark Sources Detection Lazhi Wang Department of Statistics, Harvard University Nov. 5th, 2013 1 / 19 Data Y i, background contaminated photon counts in a source exposure over T = 48984.8 seconds

More information

STAT J535: Chapter 5: Classes of Bayesian Priors

STAT J535: Chapter 5: Classes of Bayesian Priors STAT J535: Chapter 5: Classes of Bayesian Priors David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 The Bayesian Prior A prior distribution must be specified in a Bayesian analysis. The choice

More information

Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification

Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification Bayesian Statistics Part III: Building Bayes Theorem Part IV: Prior Specification Michael Anderson, PhD Hélène Carabin, DVM, PhD Department of Biostatistics and Epidemiology The University of Oklahoma

More information

Beta statistics. Keywords. Bayes theorem. Bayes rule

Beta statistics. Keywords. Bayes theorem. Bayes rule Keywords Beta statistics Tommy Norberg tommy@chalmers.se Mathematical Sciences Chalmers University of Technology Gothenburg, SWEDEN Bayes s formula Prior density Likelihood Posterior density Conjugate

More information

Statistical Theory MT 2006 Problems 4: Solution sketches

Statistical Theory MT 2006 Problems 4: Solution sketches Statistical Theory MT 006 Problems 4: Solution sketches 1. Suppose that X has a Poisson distribution with unknown mean θ. Determine the conjugate prior, and associate posterior distribution, for θ. Determine

More information

Local Likelihood Bayesian Cluster Modeling for small area health data. Andrew Lawson Arnold School of Public Health University of South Carolina

Local Likelihood Bayesian Cluster Modeling for small area health data. Andrew Lawson Arnold School of Public Health University of South Carolina Local Likelihood Bayesian Cluster Modeling for small area health data Andrew Lawson Arnold School of Public Health University of South Carolina Local Likelihood Bayesian Cluster Modelling for Small Area

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process 10-708: Probabilistic Graphical Models, Spring 2015 19 : Bayesian Nonparametrics: The Indian Buffet Process Lecturer: Avinava Dubey Scribes: Rishav Das, Adam Brodie, and Hemank Lamba 1 Latent Variable

More information

Homework 1: Solution

Homework 1: Solution University of California, Santa Cruz Department of Applied Mathematics and Statistics Baskin School of Engineering Classical and Bayesian Inference - AMS 3 Homework : Solution. Suppose that the number

More information

Severity Models - Special Families of Distributions

Severity Models - Special Families of Distributions Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS & STATISTICS SEMESTER /2013 MAS2317/3317. Introduction to Bayesian Statistics: Mid Semester Test

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS & STATISTICS SEMESTER /2013 MAS2317/3317. Introduction to Bayesian Statistics: Mid Semester Test NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS & STATISTICS SEMESTER 2 2012/2013 Introduction to Bayesian Statistics: Mid Semester Test Time allowed: 50 minutes Candidates should attempt all questions. Marks

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Chapters 13-15 Stat 477 - Loss Models Chapters 13-15 (Stat 477) Parameter Estimation Brian Hartman - BYU 1 / 23 Methods for parameter estimation Methods for parameter estimation Methods

More information

INTRODUCTION TO BAYESIAN ANALYSIS

INTRODUCTION TO BAYESIAN ANALYSIS INTRODUCTION TO BAYESIAN ANALYSIS Arto Luoma University of Tampere, Finland Autumn 2014 Introduction to Bayesian analysis, autumn 2013 University of Tampere 1 / 130 Who was Thomas Bayes? Thomas Bayes (1701-1761)

More information

EXAMPLE: INFERENCE FOR POISSON SAMPLING

EXAMPLE: INFERENCE FOR POISSON SAMPLING EXAMPLE: INFERENCE FOR POISSON SAMPLING ERIK QUAEGHEBEUR AND GERT DE COOMAN. REPRESENTING THE DATA Observed numbers of emails arriving in Gert s mailbox between 9am and am on ten consecutive Mondays: 2

More information

Using Counting Processes to Estimate the Number of Ozone Exceedances: an Application to the Mexico City Measurements

Using Counting Processes to Estimate the Number of Ozone Exceedances: an Application to the Mexico City Measurements Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS058) p.5344 Using Counting Processes to Estimate the Number of Ozone Exceedances: an Application to the Mexico City

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Statistics 360/601 Modern Bayesian Theory

Statistics 360/601 Modern Bayesian Theory Statistics 360/601 Modern Bayesian Theory Alexander Volfovsky Lecture 20something - Nov 27, 2018 The Challenger disaster This is an example from Monte Carlo Statistical Methods by Robert and Casella (2004).

More information

A Discussion of the Bayesian Approach

A Discussion of the Bayesian Approach A Discussion of the Bayesian Approach Reference: Chapter 10 of Theoretical Statistics, Cox and Hinkley, 1974 and Sujit Ghosh s lecture notes David Madigan Statistics The subject of statistics concerns

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference Introduction to Bayesian Inference p. 1/2 Introduction to Bayesian Inference September 15th, 2010 Reading: Hoff Chapter 1-2 Introduction to Bayesian Inference p. 2/2 Probability: Measurement of Uncertainty

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

CH. 2 POPULATION AND HEALTH

CH. 2 POPULATION AND HEALTH CH. 2 POPULATION AND HEALTH KNOW age distribution agricultural density arithmetic density Cairo Conference carrying capacity census child mortality rate contraception Cornucopians crude death rate (CDR)

More information

Chapter 8.8.1: A factorization theorem

Chapter 8.8.1: A factorization theorem LECTURE 14 Chapter 8.8.1: A factorization theorem The characterization of a sufficient statistic in terms of the conditional distribution of the data given the statistic can be difficult to work with.

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

Method of Moments. which we usually denote by X or sometimes by X n to emphasize that there are n observations.

Method of Moments. which we usually denote by X or sometimes by X n to emphasize that there are n observations. Method of Moments Definition. If {X 1,..., X n } is a sample from a population, then the empirical k-th moment of this sample is defined to be X k 1 + + Xk n n Example. For a sample {X 1, X, X 3 } the

More information

Lecture 24. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 24. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University November 24, 2015 1 2 3 4 5 1 Odds ratios for retrospective studies 2 Odds ratios approximating the

More information

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9 Metropolis Hastings Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 9 1 The Metropolis-Hastings algorithm is a general term for a family of Markov chain simulation methods

More information

Neutral Bayesian reference models for incidence rates of (rare) clinical events

Neutral Bayesian reference models for incidence rates of (rare) clinical events Neutral Bayesian reference models for incidence rates of (rare) clinical events Jouni Kerman Statistical Methodology, Novartis Pharma AG, Basel BAYES2012, May 10, Aachen Outline Motivation why reference

More information

Predictive Distributions

Predictive Distributions Predictive Distributions October 6, 2010 Hoff Chapter 4 5 October 5, 2010 Prior Predictive Distribution Before we observe the data, what do we expect the distribution of observations to be? p(y i ) = p(y

More information

How to predict the probability of a major nuclear accident after Fukushima Da

How to predict the probability of a major nuclear accident after Fukushima Da How to predict the probability of a major nuclear accident after Fukushima Dai-ichi? CERNA Mines ParisTech March 14, 2012 1 2 Frequentist approach Bayesian approach Issues 3 Allowing safety progress Dealing

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

FINAL EXAM. ISyE 8843: Bayesian Statistics Brani Vidakovic due before noon, Thursday 12/9/2004. Name

FINAL EXAM. ISyE 8843: Bayesian Statistics Brani Vidakovic due before noon, Thursday 12/9/2004. Name FINAL EXAM ISyE 8843: Bayesian Statistics Brani Vidakovic due before noon, Thursday 12/9/2004. Name 1. Bayesian Wavelet Shrinkage. This open ended question is essentially asking to select a data set with

More information

AS Population Change Question spotting

AS Population Change Question spotting AS Change Question spotting Changing rate of growth How the rate of growth has changed over the last 100 years Explain the reasons for these changes Describe global or national distribution. Study the

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be Chapter 3: Parametric families of univariate distributions CHAPTER 3: PARAMETRIC

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 16 June 24th, 2009 Review Sum of Independent Normal Random Variables Sum of Independent Poisson Random Variables Sum of Independent Binomial Random Variables Conditional

More information

Lecture 6. Prior distributions

Lecture 6. Prior distributions Summary Lecture 6. Prior distributions 1. Introduction 2. Bivariate conjugate: normal 3. Non-informative / reference priors Jeffreys priors Location parameters Proportions Counts and rates Scale parameters

More information

HW3 Solutions : Applied Bayesian and Computational Statistics

HW3 Solutions : Applied Bayesian and Computational Statistics HW3 Solutions 36-724: Applied Bayesian and Computational Statistics March 2, 2006 Problem 1 a Fatal Accidents Poisson(θ I will set a prior for θ to be Gamma, as it is the conjugate prior. I will allow

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise.

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise. 1. Suppose Y 1, Y 2,..., Y n is an iid sample from a Bernoulli(p) population distribution, where 0 < p < 1 is unknown. The population pmf is p y (1 p) 1 y, y = 0, 1 p Y (y p) = (a) Prove that Y is the

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Bayesian nonparametric models of sparse and exchangeable random graphs

Bayesian nonparametric models of sparse and exchangeable random graphs Bayesian nonparametric models of sparse and exchangeable random graphs F. Caron & E. Fox Technical Report Discussion led by Esther Salazar Duke University May 16, 2014 (Reading group) May 16, 2014 1 /

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

A primer on Bayesian statistics, with an application to mortality rate estimation

A primer on Bayesian statistics, with an application to mortality rate estimation A primer on Bayesian statistics, with an application to mortality rate estimation Peter off University of Washington Outline Subjective probability Practical aspects Application to mortality rate estimation

More information

Treatment Effects. Christopher Taber. September 6, Department of Economics University of Wisconsin-Madison

Treatment Effects. Christopher Taber. September 6, Department of Economics University of Wisconsin-Madison Treatment Effects Christopher Taber Department of Economics University of Wisconsin-Madison September 6, 2017 Notation First a word on notation I like to use i subscripts on random variables to be clear

More information

UNIVERSITY OF KWAZULU-NATAL EXAMINATION: JUNE 2012 Howard College and Westville Campuses

UNIVERSITY OF KWAZULU-NATAL EXAMINATION: JUNE 2012 Howard College and Westville Campuses UNIVERSITY OF KWAZULU-NATAL EXAMINATION: JUNE 2012 Howard College and Westville Campuses SCHOOL : AGRICULTURE, EARTH AND ENVIRONMENTAL SCIENCES LEVEL : 1 MODULE : HUMAN ENVIRONMENTS CODE : GEOG 110 H1/W1

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

One-parameter models

One-parameter models One-parameter models Patrick Breheny January 22 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/17 Introduction Binomial data is not the only example in which Bayesian solutions can be worked

More information

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters Introduction Start with a probability distribution f(y θ) for the data y = (y 1,...,y n ) given a vector of unknown parameters θ = (θ 1,...,θ K ), and add a prior distribution p(θ η), where η is a vector

More information

Bayesian Inference. Chapter 2: Conjugate models

Bayesian Inference. Chapter 2: Conjugate models Bayesian Inference Chapter 2: Conjugate models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in

More information

Assignments for Applications of Mathematical Statistics

Assignments for Applications of Mathematical Statistics Assignments for Applications of Mathematical Statistics May 19, 2016 1 Theoretical Problems Problem 1 Let Y 1, Y 2,, Y n denote a random sample from an exponentially distributed population with density

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

36-463/663: Hierarchical Linear Models

36-463/663: Hierarchical Linear Models 36-463/663: Hierarchical Linear Models Taste of MCMC / Bayes for 3 or more levels Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Practical Bayes Mastery Learning Example A brief taste of JAGS

More information

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood 1 / 29 Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood Yuan Liao Wenxin Jiang Northwestern University Presented at: Department of Statistics and Biostatistics Rutgers University

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Part 4: Multi-parameter and normal models

Part 4: Multi-parameter and normal models Part 4: Multi-parameter and normal models 1 The normal model Perhaps the most useful (or utilized) probability model for data analysis is the normal distribution There are several reasons for this, e.g.,

More information

Hierarchical Models & Bayesian Model Selection

Hierarchical Models & Bayesian Model Selection Hierarchical Models & Bayesian Model Selection Geoffrey Roeder Departments of Computer Science and Statistics University of British Columbia Jan. 20, 2016 Contact information Please report any typos or

More information

Statistics for extreme & sparse data

Statistics for extreme & sparse data Statistics for extreme & sparse data University of Bath December 6, 2018 Plan 1 2 3 4 5 6 The Problem Climate Change = Bad! 4 key problems Volcanic eruptions/catastrophic event prediction. Windstorms

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation. PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.. Beta Distribution We ll start by learning about the Beta distribution, since we end up using

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

Health and Medical Geography (GEOG 222)

Health and Medical Geography (GEOG 222) Spring 2019 Class meets: Tuesdays and Thursdays 12:30-1:45pm Carolina Hall Room 220 Instructor: Michael Emch Email: emch@unc.edu Course Objectives Health and Medical Geography (GEOG 222) This course is

More information

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception PROBABILITY DISTRIBUTIONS Credits 2 These slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Parametric Distributions 3 Basic building blocks: Need to determine given Representation:

More information

Example using R: Heart Valves Study

Example using R: Heart Valves Study Example using R: Heart Valves Study Goal: Show that the thrombogenicity rate (TR) is less than two times the objective performance criterion R and WinBUGS Examples p. 1/27 Example using R: Heart Valves

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

1 Introduction. P (n = 1 red ball drawn) =

1 Introduction. P (n = 1 red ball drawn) = Introduction Exercises and outline solutions. Y has a pack of 4 cards (Ace and Queen of clubs, Ace and Queen of Hearts) from which he deals a random of selection 2 to player X. What is the probability

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Variational Bayes and Variational Message Passing

Variational Bayes and Variational Message Passing Variational Bayes and Variational Message Passing Mohammad Emtiyaz Khan CS,UBC Variational Bayes and Variational Message Passing p.1/16 Variational Inference Find a tractable distribution Q(H) that closely

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005

Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach. Radford M. Neal, 28 February 2005 Creating Non-Gaussian Processes from Gaussian Processes by the Log-Sum-Exp Approach Radford M. Neal, 28 February 2005 A Very Brief Review of Gaussian Processes A Gaussian process is a distribution over

More information

Bayesian methods in economics and finance

Bayesian methods in economics and finance 1/26 Bayesian methods in economics and finance Linear regression: Bayesian model selection and sparsity priors Linear Regression 2/26 Linear regression Model for relationship between (several) independent

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology

Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology Pumps, Maps and Pea Soup: Spatio-temporal methods in environmental epidemiology Gavin Shaddick Department of Mathematical Sciences University of Bath 2012-13 van Eeden lecture Thanks Constance van Eeden

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Using Probability to do Statistics.

Using Probability to do Statistics. Al Nosedal. University of Toronto. November 5, 2015 Milk and honey and hemoglobin Animal experiments suggested that honey in a diet might raise hemoglobin level. A researcher designed a study involving

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15 Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 15 Contingency table analysis North Carolina State University

More information

Advanced topics from statistics

Advanced topics from statistics Advanced topics from statistics Anders Ringgaard Kristensen Advanced Herd Management Slide 1 Outline Covariance and correlation Random vectors and multivariate distributions The multinomial distribution

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 4 Problem: Density Estimation We have observed data, y 1,..., y n, drawn independently from some unknown

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information