THE SCIENTIFIC METHOD


 Eustacia Ramsey
 4 years ago
 Views:
Transcription
1 THE SCIENTIFIC METHOD A Hypotheses, sad Medawar n 1964, are magnatve and nspratonal n character ; they are adventures of the mnd. He was argung n favour of the poston taken by Karl Popper n The Logc of Scentfc Dscovery (1972, rd edton) that the nature of scentfc method s hypothetcodeductve and not, as s generally beleved, nductve. B It s essental that you, as an ntendng researcher, understand the dfference between these two nterpretatons of the research process so that you do not become dscouraged or begn to suffer from a feelng of cheatng or not gong about t the rght way. C The myth of scentfc method s that t s nductve: that the formulaton of scentfc theory starts wth the basc, raw evdence of the senses  smple, unbased, unprejudced observaton. Out of these sensory data  commonly referred to as facts generalsatons wll form. The myth s that from a dsorderly array of factual nformaton an orderly, relevant theory wll somehow emerge. However, the startng pont of nducton s an mpossble one. D There s no such thng as an unbased observaton. Every act of observaton we make s a functon of what we have seen or otherwse experenced n the past. All scentfc work of an expermental or exploratory nature starts wth some expectaton about the outcome. Ths expectaton s a hypothess. Hypotheses provde the ntatve and ncentve for the nqury and nfluence the method. It s n the lght of an expectaton that some observatons are held to be relevant and some rrelevant, that one methodology s chosen and others dscarded, that some experments are conducted and others are not. Where s, your nave, pure and objectve researcher now? E Hypotheses arse by guesswork, or by nspraton, but havng been formulated they can and must be tested rgorously, usng the approprate methodology. If the predctons you make as a result of deducng certan consequences from your hypothess are not shown to be correct then you dscard or modfy your hypothess.if the predctons turn out to be correct then your hypothess has been supported and may be retaned untl such tme as some further test shows t not to be correct. Once you have arrved at your hypothess, whch s a product of your magnaton, you then proceed to a strctly logcal and rgorous process, based upon
2 deductve argument hence the term hypothetcodeductve. F So don t worry f you have some dea of what your results wll tell you before you even begn to collect data; there are no scentsts n exstence who really wat untl they have all the evdence n front of them before they try to work out what t mght possbly mean. The closest we ever get to ths stuaton s when somethng happens by accdent; but even then the researcher has to formulate a hypothess to be tested before beng sure that, for example, a mould mght prove to be a successful antdote to bacteral nfecton. G The myth of scentfc method s not only that t s nductve (whch we have seen s ncorrect) but also that the hypothetcodeductve method proceeds n a stepbystep, nevtable fashon. The hypothetcodeductve method descrbes the logcal approach to much research work, but t does not descrbe the psychologcal behavour that brngs t about. Ths s much more holstc nvolvng guesses, reworkngs, correctons, blnd alleys and above all nspraton, n the deductve as well as the hypothetc component than s mmedately apparent from readng the fnal thess or publshed papers. These have been, qute properly, organsed nto a more seral, logcal order so that the worth of the output may be evaluated ndependently of the behavoural processes by whch t was obtaned. It s the dfference, for example between the academc papers wth whch Crck and Watson demonstrated the structure of the DNA molecule and the fascnatng book The Double Helx n whch Watson (1968) descrbed how they dd t. From ths pont of vew, scentfc method may more usefully be thought of as a way of wrtng up research rather than as a way of carryng t out. Questons 290 Readng Passage 12 has seven paragraphs AG. Choose the most sutable headngs for paragraphs CG from the lst of headngs below. Wrte the approprate numbers x n boxes 29 on your answer sheet. Lst of Headngs The Crck and Watson approach to research Antdotes to bacteral nfecton
3 The testng of hypotheses v Explanng the nductve method v Antcpatng results before data s collected v How research s done and how t s reported v v The role of hypotheses n scentfc research Deducng the consequences of hypotheses x Karl Popper s clam that the scentfc method s hypothetcodeductve x The unbased researcher Example Paragraph A Answer: x 2 9 Paragraph C 0 Paragraph D 1 Paragraph E 2 Paragraph F Paragraph G
4 Questons 4 and 5 In whch TWO paragraphs n Readng Passage12 does the wrter gve advce drectly to the reader? Wrte the TWO approprate letters (A G) n boxes 4 and 5 on your answer sheet. Questons 69 Do the followng statements reflect the opnons of the wrter n Readng Passage 12? In boxes 69 on your answer sheet wrte YES f the statement reflects the opnon of the wrter. NO f the statement contradcts the opnon of the wrter. NOT GIVEN f t s mpossble to say what the wrter thnks about ths 6 Popper says that the scentfc method s hypothetcodeductve. 7 If a predcton based on a hypothess s fulflled, then the hypothess s confrmed as true. 8 Many people carry out research n a mstaken way. 9 The scentfc method s more a way of descrbng research than a way of dong t. Queston 40 Choose the approprate letter AD and wrte t n box 40 on your answer sheet. Whch of the followng statements best descrbes the wrter s man purpose n Readng Passage? A to advse Ph.D students not to cheat whle carryng out research. B to encourage Ph.D students to work by guesswork and nspraton. C to explan to Ph.D students the logc whch the scentfc research paper follows. D to help Ph.D students by explanng dfferent conceptons of the research process. 答案 : 29. v 0. v v. v 4. B
5 5. F 6. YES 7. No 8. NOT GIVEN 9. YES 40. D
Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test  Winter Solution
Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test  Wnter  Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a nonprogrammable
More informationFREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,
FREQUENCY DISTRIBUTIONS Page 1 of 6 I. Introducton 1. The dea of a frequency dstrbuton for sets of observatons wll be ntroduced, together wth some of the mechancs for constructng dstrbutons of data. Then
More informationand problem sheet 2
8 and 55 problem sheet Solutons to the followng seven exercses and optonal bonus problem are to be submtted through gradescope by :0PM on Wednesday th September 08. There are also some practce problems,
More informationFor example, if the drawing pin was tossed 200 times and it landed point up on 140 of these trials,
Probablty In ths actvty you wll use some real data to estmate the probablty of an event happenng. You wll also use a varety of methods to work out theoretcal probabltes. heoretcal and expermental probabltes
More informationSee Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)
Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of nonnegatve nteger values Examples: number of drver route changes per week, the number of trp departure changes
More informationMidterm Examination. Regression and Forecasting Models
IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 790 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm
More informationBeyond Zudilin s Conjectured qanalog of Schmidt s problem
Beyond Zudln s Conectured qanalog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs
More informationEPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski
EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on
More informationECONOMICS 351*A MidTerm Exam  Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics
ECOOMICS 35*A MdTerm Exam  Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35*  Secton A Introductory Econometrcs Fall Term 000 MIDTERM EAM ASWERS MG Abbott
More informationCHAPTER IV RESEARCH FINDING AND DISCUSSIONS
CHAPTER IV RESEARCH FINDING AND DISCUSSIONS A. Descrpton of Research Fndng. The Implementaton of Learnng Havng ganed the whole needed data, the researcher then dd analyss whch refers to the statstcal data
More information8.6 The Complex Number System
8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want
More informationC/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1
C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned
More informationCalifornia State Science Fair
Calforna State Scence Far Mathematcal Modelng of Real World Systems Part 1  Explorng on Chaos on Your Computer Edward Ruth drruth@x.netcom.com 1) Introducton Mathematcs s the language that scentsts use
More informationGravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)
Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng
More informationTHE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens
THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of
More informationAssortment Optimization under MNL
Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenuemaxmzng assortment of products to offer when the prces of products are fxed.
More informationHomework Assignment 3 Due in class, Thursday October 15
Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.
More informationChapter 9: Statistical Inference and the Relationship between Two Variables
Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,
More information1 Matrix representations of canonical matrices
1 Matrx representatons of canoncal matrces 2d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3d rotaton around the xaxs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3d rotaton around the yaxs:
More informationAnalytical Chemistry Calibration Curve Handout
I. Quckand Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem
More informationIntroduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:
CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and
More information/ n ) are compared. The logic is: if the two
STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence
More informationSection 3.6 Complex Zeros
04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there
More information1 GSW Iterative Techniques for y = Ax
1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn
More informationx = , so that calculated
Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to
More informationAffine transformations and convexity
Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/
More informationTHE SUMMATION NOTATION Ʃ
Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the
More informationPhysics 240: Worksheet 30 Name:
(1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy
More informationBayesian epistemology II: Arguments for Probabilism
Bayesan epstemology II: Arguments for Probablsm Rchard Pettgrew May 9, 2012 1 The model Represent an agent s credal state at a gven tme t by a credence functon c t : F [0, 1]. where F s the algebra of
More informationMore metrics on cartesian products
More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of
More informationSTAT 511 FINAL EXAM NAME Spring 2001
STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte
More informationa b a In case b 0, a being divisible by b is the same as to say that
Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :
More informationESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy
ESCI 341 Atmospherc Thermodynamcs Lesson 10 The Physcal Meanng of Entropy References: An Introducton to Statstcal Thermodynamcs, T.L. Hll An Introducton to Thermodynamcs and Thermostatstcs, H.B. Callen
More information2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification
E395  Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton
More informationTuring Machines (intro)
CHAPTER 3 The ChurchTurng Thess Contents Turng Machnes defntons, examples, Turngrecognzable and Turngdecdable languages Varants of Turng Machne Multtape Turng machnes, nondetermnstc Turng Machnes,
More informationEXAMINATION. N0028N Econometrics. Luleå University of Technology. Date: (A1016) Time: Aid: Calculator and dictionary
EXAMINATION Luleå Unversty of Technology N008N Econometrcs Date: 0110516 (A1016) Tme: 09.0013.00 Ad: Calculator and dctonary Teacher on duty (complete telephone number) Robert Lundmark (0701735788)
More information28 Finitely Generated Abelian Groups
8 Fntely Generated Abelan Groups In ths last paragraph of Chapter, we determne the structure of fntely generated abelan groups A complete classfcaton of such groups s gven Complete classfcaton theorems
More informationProblem Set 9 Solutions
Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem
More informationDr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur
Analyss of Varance and Desgn of ExpermentI MODULE VII LECTURE  3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed
More informationOn the correction of the hindex for career length
1 On the correcton of the hndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat
More informationChapter 13: Multiple Regression
Chapter 13: Multple Regresson 13.1 Developng the multpleregresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to
More information28. SIMPLE LINEAR REGRESSION III
8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a yvalue on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted
More informationSection 8.3 Polar Form of Complex Numbers
80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the
More information3.1 Expectation of Functions of Several Random Variables. )' be a kdimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X
Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number
More informationGaussian Mixture Models
Lab Gaussan Mxture Models Lab Objectve: Understand the formulaton of Gaussan Mxture Models (GMMs) and how to estmate GMM parameters. You ve already seen GMMs as the observaton dstrbuton n certan contnuous
More informationy i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem
SOLUTION TO HOMEWORK #7 #roblem 1 10.11 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number
More informationCSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography
CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve
More informationExperiment 1 Mass, volume and density
Experment 1 Mass, volume and densty Purpose 1. Famlarze wth basc measurement tools such as verner calper, mcrometer, and laboratory balance. 2. Learn how to use the concepts of sgnfcant fgures, expermental
More information4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA
4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth oneway ANOVA If the populatons ncluded n the study are selected
More information10. Canonical Transformations Michael Fowler
10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst
More informationStructure and Drive Paul A. Jensen Copyright July 20, 2003
Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.
More informationTHE NEED FOR MEASUREMENT
AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS THE NEED FOR MEASUREMENT The heart and sole of any scence s measurement and expermentaton. In scence, attempts are made to make sense of our physcal
More informationSTATISTICS QUESTIONS. Step by Step Solutions.
STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to
More information} Often, when learning, we deal with uncertainty:
Uncertanty and Learnng } Often, when learnng, we deal wth uncertanty: } Incomplete data sets, wth mssng nformaton } Nosy data sets, wth unrelable nformaton } Stochastcty: causes and effects related nondetermnstcally
More information= z 20 z n. (k 20) + 4 z k = 4
Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5
More informationSolutions Review Worksheet
Solutons Revew Worksheet NOTE: Namng acds s ntroduced on pages 1634 and agan on pages 2089.. You learned ths and were quzzed on t, but snce acd names are n the Data Booklet you wll not be tested on ths
More informationSubset Topological Spaces and Kakutani s Theorem
MOD Natural Neutrosophc Subset Topologcal Spaces and Kakutan s Theorem W. B. Vasantha Kandasamy lanthenral K Florentn Smarandache 1 Copyrght 1 by EuropaNova ASBL and the Authors Ths book can be ordered
More informationExercises. 18 Algorithms
18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)
More informationBasically, if you have a dummy dependent variable you will be estimating a probability.
ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy
More information18. SIMPLE LINEAR REGRESSION III
8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a yvalue on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.
More informationANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)
Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of
More informationChapter 3 Differentiation and Integration
MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton
More informationPBAF 528 Week Theory Is the variable s place in the equation certain and theoretically sound? Most important! 2. Ttest
PBAF 528 Week 6 How do we choose our model? How do you decde whch ndependent varables? If you want to read more about ths, try Studenmund, A.H. Usng Econometrcs Chapter 7. (ether 3 rd or 4 th Edtons) 1.
More informationDefinition. Measures of Dispersion. Measures of Dispersion. Definition. The Range. Measures of Dispersion 3/24/2014
Measures of Dsperson Defenton Range Interquartle Range Varance and Standard Devaton Defnton Measures of dsperson are descrptve statstcs that descrbe how smlar a set of scores are to each other The more
More informationLecture 6: Introduction to Linear Regression
Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6
More informationEquilibrium with Complete Markets. Instructor: Dmytro Hryshko
Equlbrum wth Complete Markets Instructor: Dmytro Hryshko 1 / 33 Readngs Ljungqvst and Sargent. Recursve Macroeconomc Theory. MIT Press. Chapter 8. 2 / 33 Equlbrum n pure exchange, nfnte horzon economes,
More informationStat 543 Exam 2 Spring 2016
Stat 543 Exam 2 Sprng 2016 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of 11 questons. Do at least 10 of the 11 parts of the man exam.
More informationSampling Theory MODULE VII LECTURE  23 VARYING PROBABILITY SAMPLING
Samplng heory MODULE VII LECURE  3 VARYIG PROBABILIY SAMPLIG DR. SHALABH DEPARME OF MAHEMAICS AD SAISICS IDIA ISIUE OF ECHOLOGY KAPUR he smple random samplng scheme provdes a random sample where every
More informationNumerical Transient Heat Conduction Experiment
Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use
More informationLinear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables
Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton
More information10701/ Machine Learning, Fall 2005 Homework 3
10701/15781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons10701@autonlaborg for queston Problem 1 Regresson and Crossvaldaton [40
More informationStatistics II Final Exam 26/6/18
Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the
More informationLecture 2: Prelude to the big shrink
Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120astyle regresson
More informationStat 543 Exam 2 Spring 2016
Stat 543 Exam 2 Sprng 206 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of questons. Do at least 0 of the parts of the man exam. I wll score
More informationSIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1
Journal of Expermental Vol. 5, No. 3, 1957 Psychology SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1 EDMUND T. KLEMMER Operatonal Applcatons Laboratory, Ar Force Cambrdge Research Center An earler
More informationMathematics Intersection of Lines
a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement
More informationAnswers Problem Set 2 Chem 314A Williamsen Spring 2000
Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) zstatstc,sded test, 99.7% confdence lmt ±3 b) tstatstc (Case I), 1sded test, 95%
More informationSIMPLE LINEAR REGRESSION
Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two
More informationCompilers. Spring term. Alfonso Ortega: Enrique Alfonseca: Chapter 4: Syntactic analysis
Complers Sprng term Alfonso Ortega: alfonso.ortega@uam.es nrque Alfonseca: enrque.alfonseca@uam.es Chapter : Syntactc analyss. Introducton. Bottomup Analyss Syntax Analyser Concepts It analyses the contextndependent
More informationEcon107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10)
I. Defnton and Problems Econ7 Appled Econometrcs Topc 9: Heteroskedastcty (Studenmund, Chapter ) We now relax another classcal assumpton. Ths s a problem that arses often wth cross sectons of ndvduals,
More informationGAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)
PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to
More informationModule 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:
More informationMethods of Detecting Outliers in A Regression Analysis Model.
Methods of Detectng Outlers n A Regresson Analyss Model. Ogu, A. I. *, Inyama, S. C+, Achugamonu, P. C++ *Department of Statstcs, Imo State Unversty,Owerr +Department of Mathematcs, Federal Unversty of
More informationNote on EMtraining of IBMmodel 1
Note on EMtranng of IBMmodel INF58 Language Technologcal Applcatons, Fall The sldes on ths subject (nf58 6.pdf) ncludng the example seem nsuffcent to gve a good grasp of what s gong on. Hence here are
More informationJanuary Examinations 2015
24/5 Canddates Only January Examnatons 25 DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR STUDENT CANDIDATE NO.. Department Module Code Module Ttle Exam Duraton (n words)
More informationModule 9. Lecture 6. Duality in Assignment Problems
Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept
More informationELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM
ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look
More informationFoundations of Arithmetic
Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an
More informationx yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.
The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a leastsquares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator
More informationDensity matrix. c α (t)φ α (q)
Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n
More informationCS433: Simulation and Modeling Modeling and Probability Review
CS433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown
More informationWhy? Chemistry Crunch #4.1 : Name: KEY Phase Changes. Success Criteria: Prerequisites: Vocabulary:
Chemstry Crunch #4.1 : Name: KEY Phase Changes Why? Most substances wll eventually go through a phase change when heated or cooled (sometmes they chemcally react nstead). Molecules of a substance are held
More informationWeek 2. This week, we covered operations on sets and cardinality.
Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from
More informationCommon loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:
15745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15745 20058 1 Common loop optmzatons Hostng of loopnvarant computatons precompute before
More informationComparison of Regression Lines
STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence
More informationMAE140  Linear Circuits  Fall 13 Midterm, October 31
Instructons ME140  Lnear Crcuts  Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator
More informationCS286r Assign One. Answer Key
CS286r Assgn One Answer Key 1 Game theory 1.1 1.1.1 Let offequlbrum strateges also be that people contnue to play n Nash equlbrum. Devatng from any Nash equlbrum s a weakly domnated strategy. That s,
More information1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands
Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of
More informationFor now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.
Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson
More informationLecture 4: Universal Hash Functions/Streaming Cont d
CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected
More information