Final Exam Spring 2014 May 05, 2014

Size: px
Start display at page:

Download "Final Exam Spring 2014 May 05, 2014"

Transcription

1 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show all formulas used for each problem prior to substitution of numbers. Label diagrams and include appropriate units for your answers. Write your name and section number at the top of each page in the space provided and write the name of your section instructor in the place provided in the cover sheet.you may use an alphanumeric calculator (one which exhibits physical formulas) during the exam as long as you do not program any formulas into memory. By using an alphanumeric calculator you agree to allow us to check its memory during the exam. Simple scientific calculators are always OK! A Formula Sheet Is Attached To The Back Of This Examination For your convenience you may carefully remove it from the Exam. Please take it with you at the end of the exam or throw it in a waste basket. Be Prepared to Show your Student ID Card Score on each problem: 1. (25) 2. (25) 3. (25) 4. (25) 5. (25) 6. (25) 7. (25) 8. (25) Total Score (out of 200 pts)

2 1. (25 point) Put a circle around the letter that you think is the best answer (5 pts) If a particle undergoes SHM with amplitude 0.15 m, what is the net displacement of the mass after a time interval T? A) 0 m B) 0.30 m C) 0.45m D) 0.60 m E) none of the above (5 pts) A mass m is attached to a spring with spring constant k. When this system is set in motion with amplitude A, it has a period T. What is the period if the amplitude of the motion is increased to 2A? A) 2T B) T/2 C) T. D) 4T E) T 1.3. (5 pts) A merry-go-round spins freely when Janice moves quickly to the center along a radius of the merry-go-round. It is true to say that A) the moment of inertia of the system decreases and the angular speed increases B) the moment of inertia of the system decreases and the angular speed decreases C) the moment of inertia of the system decreases and the angular speed remains the same. D) the moment of inertia of the system increases and the angular speed increases. E) the moment of inertia of the system increases and the angular speed decreases.

3 (5 pts) When you ride a bicycle, in what direction is the angular velocity of the wheels? A) to your left B) to your right C) forwards D) backwards E) up 1.5. (5 pts) If the net work done on an object is negative, then the object's kinetic energy A) decreases B) remains the same C) increases D) is zero E) cannot be determined without knowing the object's mass

4 4 2. a) (12 pts) What is the maximum speed at which a car can round a curve of 20 m radius on a level road if the coefficient of static friction between the tires and road is 0.60? b) (13 pts) Two objects are moving as shown in the figure. What is the total angular momentum about point O?

5 3. (25 pts)a vertical spring (ignore its mass), whose spring constant is k=875 N/m is attached to a table and is compressed down by m. (a) (13 pts) What upward speed can it give to a m=0.380 kg ball when released? 5 (b) (12 pts) How high above its original position (spring compressed) will the ball fly?

6 4. (25 pts) A m=2.0 kg block is attached to a massless string that is wrapped around a M=1.0 kg, R=20.0 cm radius cylinder, as shown in the figure. The cylinder rotates on an axel through the center. The block is released from the rest h=1.0 m above the floor. The moment of inertia of the cylinder is I = 1 2 MR2 a) (4 pts) Draw a free-body diagram. b) (14 pts) Find acceleration of the block and the tension in the wire. 6 c) (7 pts) How long does it take for the block to reach the floor?

7 7 5. (25 pts) In the figure shown below, a small body of mass m=1.00 kg swings in a vertical circle at the end of a cord of length R=1.0 m. The speed v = 2. 0 m/s when the cord makes an angle θ = 33 with the vertical. a) (4 pts) Draw a free-body diagram and resolve forces into radial and tangential components; b) (4 pts) Find the radial acceleration; c) (5 pts) Find the tangential acceleration; d) (5 pts) Find the magnitude and direction of the resultant acceleration; e) (7 pts) Find the tension in the cord.

8 8 6. (25 pts) A m=500 g block and a spring are arranged on a horizontal, frictionless surface. Position-versus-time graph for the oscillator is shown in the graph. The oscillations are measured to have a period of 2.0 s. a) (7 pts) Write down the amplitude (A), angular frequency (ω), and phase angle (φ) b) (2 pts) Write down a function which describes this simple harmonic motion c) (3 pts)what is the spring constant, k? d) (3 pts)what is the maximum speed of the block? e) (3 pts) Write a velocity as a function of time. f) (7 pts) At what position is the block s speed v=1.0 cm/s

9 9 7. (25 pts) A bullet of mass m moving with velocity v strikes and becomes embedded at the edge of a cylinder of mass M and radius R 0. The cylinder, initially at rest, begins to rotate about its symmetry axis, which remains fixed in position. Assume there is no frictional torque. a) (5 pts)what is conserved during this collision? Why is it conserved? b) (20 pts) What is the angular velocity of the cylinder after this collision?

10 8. (25 pts) An m=80 kg worker sits down 2.0 m from the end of an M=1450 kg steel beam of length l = 6. 0 m to eat his lunch. The cable supporting the beam is rated at F TTTT = 1111 N. a) (5 pts) Draw a free-body diagram of the beam b) (10 pts) Find the tension in the cord, F T. Should the worker be worried? c) (10 pts) Find the horizontal and vertical forces exerted by the wall on the beam. 10

11 Physics I Formula Sheet Translational Motion x= x 2 x 1 (displacement) v average = x/ t a average = v/ t Given x(t) v(t) = dx/dt a(t) = dv/dt = d 2 x/dt 2 Kinematic eq-ns with const. Acc.: v(t) = v 0x +at x(t) = x 0 + v 0x t +(1/2) at 2 v 2 = v 0x 2 + 2a(x x 0 ) Newton 2 nd law F = ma F = dp dd Frictional Forces: Fs µsf N Fk = µ k F N For springs: F = -kx U(x) = (1/2)kx 2 Linear Momentum and Impulse d d d J = Fdt = Fav t For elastic collision: For 1-D elastic head-on collisions: v A vb = ( v' A v' B ) Work and Kinetic Energy W = Flcosθ r 2 W = F dr r 1 K trans = (1/2)mv 2 ; K rot = (1/2)Iω 2 K tot = (1/2)I CM ω (1/2)Mv CM Work-Kinetic Energy principle Wnet = K With non-conservative forces: K + U = W NC Centripetal acceleration: a R = v 2 /R; a R = ω 2 R Rotational Motion θ= θ 2 θ 1 ω = dθ/dt α = dω/dt Given θ(t) ω(t) = d θ/dt α(t) = dω/dt = d 2 θ/dt 2 Rotat. kinematic eq-ns with const. angular acceleration ω(t) = ω 0 +αt θ(t) =θ 0 +ω 0 t +(1/2)αt 2 ω 2 = ω α (θ θ 0 ) Rotat. Newton 2 nd law τ = Iα τ = dl dd Angular Momentum L = r p ; L = I ω I = ΣmiRi 2 Torque τ = r F ; τ = r F sinθ Potential Energy U = U ( x) U 0 ( x0 ) F(x) = - du(x)/dx For gravity on earth's surface: F g = mg U(y) = mgy For gravity in general: F g = - GmM E /R 2 U(r) = - GmM E /R g = 9.8 m/s 2 ; G = 6.67 x N.m 2 /kg 2 Total mechanical energy: E tot = K + U Power P avg = W/t; = P = dw/dt; Equations connect. trans./rotat. motion v tan = Rω a tan = Rα x x0 Fdx

12 12 Center of Mass r cm = Σm i r i /M ΣF ext = Ma cm Differentiation: dx n /dx = nx n-1 (n 0) dcos(x)/dx = -sin(x) (x in radians) dsin(x)/dx = cos(x) (x in radians) Right triangle: sin θ = a/c cos θ = b/c tan θ = a/b c 2 = a 2 + b 2 Quadratic Formula: Ax 2 + Bx + C = 0 has solutions: B ± B 2 4AC x = 2A Harmonic Motion F = kx U(x) = (1/2) kx 2 ω = k ; T = 2π m T = 2π/ω ; f =1/T ; ω = 2πf x(t) = Acos(ωt + φ) v(t) = ωasin(ωt + φ) a(t) = ω 2 Acos(ωt + φ) Simple Pendulum T = 2π L ; ω = g g L Kepler's third law: T 2 /R 3 = 4π 2 /GM sun Integration: n+ 1 n x x dx = + C n + 1

Exam 2 Spring 2014

Exam 2 Spring 2014 95.141 Exam 2 Spring 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show

More information

Exam 2 Fall 2013

Exam 2 Fall 2013 95.141 Exam 2 Fall 2013 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show

More information

Score on each problem:

Score on each problem: 95.141 Exam 1 Spring 2013 Section Number Section Instructor Name (last name first) Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all

More information

Physics I Exam 2 Spring 2015 (version A)

Physics I Exam 2 Spring 2015 (version A) 95.141 Physics I Exam Spring 015 (version A) Section Number Section instructor Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Physics I Exam 1 Fall 2015 (version A)

Physics I Exam 1 Fall 2015 (version A) 95.141 Physics I Exam 1 Fall 2015 (version A) Recitation Section Number Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name on

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Final Exam. June 10, 2008, 1:00pm

Final Exam. June 10, 2008, 1:00pm PHYSICS 101: Fundamentals of Physics Final Exam Final Exam Name TA/ Section # June 10, 2008, 1:00pm Recitation Time You have 2 hour to complete the exam. Please answer all questions clearly and completely,

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

PHYSICS 218 Exam 3 Fall, 2013

PHYSICS 218 Exam 3 Fall, 2013 PHYSICS 218 Exam 3 Fall, 2013 Wednesday, November 20, 2013 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: E-mail: Section

More information

Physics I Exam 1 Spring 2015 (version A)

Physics I Exam 1 Spring 2015 (version A) 95.141 Physics I Exam 1 Spring 015 (version A) Section Number Section instructor Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Translational Motion Rotational Motion Equations Sheet

Translational Motion Rotational Motion Equations Sheet PHYSICS 01 Translational Motion Rotational Motion Equations Sheet LINEAR ANGULAR Time t t Displacement x; (x = rθ) θ Velocity v = Δx/Δt; (v = rω) ω = Δθ/Δt Acceleration a = Δv/Δt; (a = rα) α = Δω/Δt (

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Chapter 10: Rotation

Chapter 10: Rotation Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Chapter 10: Rotation. Chapter 10: Rotation

Chapter 10: Rotation. Chapter 10: Rotation Chapter 10: Rotation Change in Syllabus: Only Chapter 10 problems (CH10: 04, 27, 67) are due on Thursday, Oct. 14. The Chapter 11 problems (Ch11: 06, 37, 50) will be due on Thursday, Oct. 21 in addition

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

PHY2053 General Physics I

PHY2053 General Physics I PHY2053 General Physics I Section 584771 Prof. Douglas H. Laurence Final Exam May 3, 2018 Name: 1 Instructions: This final exam is a take home exam. It will be posted online sometime around noon of the

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Exam II Difficult Problems

Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B) PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x - x 0 = v 0 t + ½ at 2 2a(x - x

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Department of Physics

Department of Physics Department of Physics PHYS101-051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

Write your name legibly on the top right hand corner of this paper

Write your name legibly on the top right hand corner of this paper NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A & B Final Exam Formulæ & Constants Fall 2016 Unless otherwise directed, use the gravitational definition of weight, all problems take place on Earth, drag is to be neglected, and all pulleys

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Use a BLOCK letter to answer each question: A, B, C, or D (not lower case such a b or script such as D)

Use a BLOCK letter to answer each question: A, B, C, or D (not lower case such a b or script such as D) Physics 23 Spring 212 Answer Sheet Print LAST Name: Rec Sec Letter EM Mini-Test First Name: Recitation Instructor & Final Exam Student ID: Gently remove this page from your exam when you begin. Write clearly

More information

. d. v A v B. e. none of these.

. d. v A v B. e. none of these. General Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibrium Oct. 28, 2009 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show the formulas you use, the essential

More information

PHYSICS 218 Exam 3 Spring, 2014

PHYSICS 218 Exam 3 Spring, 2014 PHYSICS 218 Exam 3 Spring, 2014 Wednesday, April 16, 2014 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: E-mail: Section

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P Equilibrium when: F net = F i τ net = τ i a = 0 = α dp = 0 = d L = ma = d P = 0 = I α = d L = 0 P = constant L = constant F x = 0 τ i = 0 F y = 0 F z = 0 Static Equilibrium when: P = 0 L = 0 v com = 0

More information

Announcements Oct 27, 2009

Announcements Oct 27, 2009 Announcements Oct 7, 009 1. HW 14 due tonight. Reminder: some of your HW answers will need to be written in scientific notation. Do this with e notation, not with x signs. a. 6.57E33 correct format b.

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A, B, & C Final Exam Formulæ & Constants Spring 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all

More information

Midterm 3 Review (Ch 9-14)

Midterm 3 Review (Ch 9-14) Midterm 3 Review (Ch 9-14) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing as Pearson

More information

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2 Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Physics Final Exam Formulas

Physics Final Exam Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2013 EXAMINATIONS PHY 151H1F Duration - 3 hours Attempt all questions. Each question is worth 10 points. Points for each part-question are shown

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C 1. Four identical 0.18 kg masses are placed at the corners of a 4.0 x 3.0 m rectangle, and are held there by very light connecting rods which form the sides of the rectangle. What is the moment of inertia

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant.

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Circular Motion:- Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Angular Displacement:- Scalar form:-?s = r?θ Vector

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

More information

Physics 53 Summer Final Exam. Solutions

Physics 53 Summer Final Exam. Solutions Final Exam Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols given, and standard constants such as g. If numbers are required, use g = 10 m/s

More information

Physics x141 Practice Final Exam

Physics x141 Practice Final Exam Physics x141 Practice Final Exam Name: Partial credit will be awarded. However, you must show/explain your work. A correct answer without explanatory material will not receive full credit. Clearly indicate

More information

PHYSICS 221 SPRING 2014

PHYSICS 221 SPRING 2014 PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon 1 Your Name: PHYSICS 101 MIDTERM October 26, 2006 2 hours Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon Problem Score 1 /13 2 /20 3 /20 4

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Final Exam April 26, 2016

Final Exam April 26, 2016 PHYS 050 Spring 016 Name: Final Exam April 6, 016 INSTRUCTIONS: a) No books or notes are permitted. b) You may use a calculator. c) You must solve all problems beginning with the equations on the Information

More information

Physics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so.

Physics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so. , Final Exam Do not turn the pages of the exam until you are instructed to do so. You are responsible for reading the following rules carefully before beginning. Exam rules: You may use only a writing

More information

PHY2020 Test 2 November 5, Name:

PHY2020 Test 2 November 5, Name: 1 PHY2020 Test 2 November 5, 2014 Name: sin(30) = 1/2 cos(30) = 3/2 tan(30) = 3/3 sin(60) = 3/2 cos(60) = 1/2 tan(60) = 3 sin(45) = cos(45) = 2/2 tan(45) = 1 sin(37) = cos(53) = 0.6 cos(37) = sin(53) =

More information

Unless otherwise specified, use g = 9.80 m/s2

Unless otherwise specified, use g = 9.80 m/s2 Phy 111 Exam 2 March 10, 2015 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

Important: This test consists of 15 multiple choice problems, each worth points.

Important: This test consists of 15 multiple choice problems, each worth points. Physics 214 Practice Exam 1 C Fill in on the OPSCAN sheet: 1) Name 2) Student identification number 3) Exam number as 01 4) Sign the OPSCAN sheet Important: This test consists of 15 multiple choice problems,

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Physics I (Navitas) EXAM #2 Spring 2015

Physics I (Navitas) EXAM #2 Spring 2015 95.141 Physics I (Navitas) EXAM #2 Spring 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning each

More information

Simple Harmonic Motion Practice Problems PSI AP Physics B

Simple Harmonic Motion Practice Problems PSI AP Physics B Simple Harmonic Motion Practice Problems PSI AP Physics B Name Multiple Choice 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located

More information

PHYSICS 221 SPRING EXAM 2: March 31, 2016; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 2: March 31, 2016; 8:15pm 10:15pm PHYSICS 221 SPRING 2016 EXAM 2: March 31, 2016; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

More information

DO NOT TURN PAGE TO START UNTIL TOLD TO DO SO.

DO NOT TURN PAGE TO START UNTIL TOLD TO DO SO. University of California at Berkeley Physics 7A Lecture 1 Professor Lin Spring 2006 Final Examination May 15, 2006, 12:30 PM 3:30 PM Print Name Signature Discussion Section # Discussion Section GSI Student

More information

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

More information

Solution Derivations for Capa #12

Solution Derivations for Capa #12 Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

More information

Practice Problems for Exam 2 Solutions

Practice Problems for Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

More information

Name SOLUTION Student ID Score Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless

Name SOLUTION Student ID Score Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless Name SOLUTION Student ID Score last first Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless v o incline with initial speed v o, as shown, while a hand pushes with

More information

Ch 15 Simple Harmonic Motion

Ch 15 Simple Harmonic Motion Ch 15 Simple Harmonic Motion Periodic (Circular) Motion Point P is travelling in a circle with a constant speed. How can we determine the x-coordinate of the point P in terms of other given quantities?

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation:

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation: Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key The next three problems refer to the following situation: Two masses, m 1 and m 2, m 1 > m 2, are suspended by a massless rope over a

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Exam 2 Fall 2014

Exam 2 Fall 2014 1 95.144 Exam 2 Fall 2014 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

More information