Inverse Eigenvalue Problems: Theory and Applications

Size: px
Start display at page:

Download "Inverse Eigenvalue Problems: Theory and Applications"

Transcription

1 Inverse Eigenvalue Problems: Theory and Applications A Series of Lectures to be Presented at IRMA, CNR, Bari, Italy Moody T. Chu (Joint with Gene Golub) Department of Mathematics North Carolina State University June 27, 2001

2 ii

3 Preface An inverse eigenvalue problem concerns the reconstruction of a matrix from prescribed spectral data. The spectral data involved may consist of the complete or only partial information of eigenvalues or eigenvectors. The objective of an inverse eigenvalue problem is to construct a matrix that maintains a certain specific structure as well as that given spectral property. Inverse eigenvalue problems arise in a remarkable variety of applications, including system and control theory, geophysics, molecular spectroscopy, particle physics, structure analysis, and so on. Generally speaking, the basic goal of an inverse eigenvalue problem is to reconstruct the physical parameters of a certain system from the knowledge or desire of its dynamical behavior. Since the dynamical behavior often is governed by the underlying natural frequencies and/or normal modes, the spectral constraints are thus imposed. On the other hand, in order that the resulting model is physically realizable, additional structural constraints must also be imposed upon the matrix. Depending on the application, inverse eigenvalue problems appear in many different forms. Associated with any inverse eigenvalue problem are two fundamental questions the theoretic issue on solvability and the practical issue on computability. Solvability concerns obtaining a necessary or a sufficient condition under which an inverse eigenvalue problem has a solution. Computability concerns developing a procedure by which, knowing a priori that the given spectral data are feasible, a matrix can be constructed numerically. Both questions are difficult and challenging. In this note the emphasis is to provide an overview of the vast scope of this fascinating problem. The fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems will be discussed. This research was supported in part by the National Science Foundation under the grants DMS and DMS The lectures are to be presented at the Istituto per Ricerche di Matematica Applicata (IRMA), Bari, Italy, from June 23 to July 20, 2001, upon the invitation by Fasma Diele. The visit to present this series of lectures is made possible by Professor Roberto Peluso at the IRMA and Professor Dario Bini at the Universita di Pisa with the support from the Il Consiglio Nazionale delle Ricerche (CNR) and the Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INDAM) under the project Algebra Lineare Numerica per Problemi con Struttura e Applicazioni. The warm kindness and encouragement received from these colleagues are greatly appreciated. MoodyT.Chu Raleigh, North Carolina iii

4 iv PREFACE May, 2001

5 Contents Preface iii 1 Introduction 1 Overview... 2 Inverse Eigenvalue Problem (IEP)... 3 Fundamental Questions... 4 Brief History... 5 Literature Review... 6 Applications... 8 An Example... 9 Classification Via Algebraic Characteristics Via Physical Characteristics A Glimpse of Some Major Issues Complex Solvability Real Solvability Numerical Methods Sensitivity Analysis Summary Applications 27 Pole Assignment Problem State Feedback Control Output Feedback Control Control of Vibration Undamped System Damped System Inverse Sturm-Liouville Problem Matrix Analogue Applied Physics Quantum Mechanics Geophysics Neutron Transport Theory v

6 vi CONTENTS Numerical Analysis Preconditioning High Order Stable Runge-Kutta Schemes Gauss Quadratures Low Rank Approximation Parameterized Inverse Eigenvalue Problems 51 Overview Generic Form Variations General Results Existence Theory for Linear PIEP Complex Solvability Real Solvability (n = m) Multiple Eigenvalue Sensitivity Analysis Forward Problem for General A(c) Inverse Problem for Linear Symmetric A(c) Numerical Methods Direct Method Iterative Methods Continuous Methods Additive Inverse Eigenvalue Problems Subvariations Solvability Issues Sensitivity Issues (for AIEP2) Numerical Methods Newton s Method (for AIEP2) Homotopy Method (for AIEP3) Multiplicative Inverse Eigenvalue Problems Subvariations Solvability Issues Optimal Conditioning by Diagonal Matrices Sensitivity Issues (for MIEP2) Numerical Methods Reformulate MIEP1 as Nonlinear Equations Newton s Method (for MIEP2) Structured Inverse Eigenvalue Problems 97 Jacobi Inverse Eigenvalue Problems Overview Subvariations Physical Interpretations...104

7 CONTENTS vii Existence Theory Sensitivity Issues Numerical Methods Lanczos Method (for SIEP6a) Orthogonal Reduction Method (for SIEP6a) Toeplitz Inverse Eigenvalue Problem Overview Spectral Properties of Centrosymmetric Matrices A 3 3 Example Inverse Problem for Centrosymmetric Matrices Existence Numerical Methods Continuous Method Refined Newton to Centrosymmetric Structure Numerical Experiment Conclusion Nonnegative Inverse Eigenvalue Problem Overview Some Existence Results Symmetric Nonnegative Inverse Eigenvalue Problem Numerical Method Stochastic Inverse Eigenvalue Problem General View Karpelevič s Theorem Relation to Nonnegative Matrices Basic Formulation Steepest Descent Flow ASVD flow Convergence Numerical Experiment Conclusion Unitary Inverse Eigenvalue Problem Overview Formulation Existence Theory Inverse Eigenvalue Problems with Prescribed Entries Overview Prescribed Entries along the Diagonal Schur-Horn Theorem Mirsky Theorem Sing-Thompson Theorem de Oliveira Theorem Prescribed Entries at Arbitrary Locations...188

8 viii CONTENTS Cardinality and Locations Numerical Methods Inverse Singular Value Problems IEP versus ISVP Existence Question A Continuous Approach An Iterative Approach for ISVP Inverse Singualar/Eigenvalue Problem Overview Weyl-Horn Theorem A Recursive Algorithm The 2 2 Case Ideas in Horn s Proof Key to the Algorithmic Success Outline of Proof A MATLAB Program Matrix Structure Correct the Mistake A Variation of Horn s Proof A Symbolic Example Numerical Experiment Rosser Test Wilkinson Test Conclusion Least Squares Inverse Eigenvalue Problems 249 Overview Formulation Least Squares Approximating the Spectrum Least Squares Approximating the Structure Main Theorem One Particular Case Geometric Sketch Algorithm Partially Described Inverse Eigenvalue Problems 259 Overview Generic Form PDIEP for Toeplitz Matrices...262

9 CONTENTS ix 7 Spectrally Constrained Approximation 265 Overview Spectrally Constrained Problem Singular-Value Constrained Problem Reformulation Feasible Set O(n) & Gradient of F The Projected Gradient An Isospectral Descent Flow The Second Order Derivative Least Squares Approximation Sorting Property Wielandt-Hoffman Theorem Toeplitz Inverse Eigenvalue Problem Toeplitz Annihilator Eigenvalue Computation Simultaneous Reduction Structured Low Rank Approximation 283 Overview Difficulties An Example of Existence Another Hidden Catch Low Rank Toeplitz Approximation A General Remark Algebraic Structure Constructing Lower Rank Toeplitz Matrices Lift and Project Algorithm Implicit Optimization Numerical Experiment Explicit Optimization An Illustration Using Existing Optimization Codes Conclusions Low Rank Circulant Approximation Basic Properties Elementary Spectral Properties (Inverse) Eigenvalue Problem Conjugate Evenness Low Rank Approximation Trivial O(n log n) TSVD Algorithm Data Matching Problem An Example using a Tree Structure Numerical Experiment...322

10 x CONTENTS Example 1: Symmetric Illustration Example 2: Complex Illustration Example 3: Perturbed Case Conclusion Lor Rank Covarance Approximation Euclidian Distance Matrix Approximation Approximate GCD...331

Inverse Eigenvalue Problems: Theory, Algorithms, and Applications

Inverse Eigenvalue Problems: Theory, Algorithms, and Applications Inverse Eigenvalue Problems: Theory, Algorithms, and Applications Moody T. Chu North Carolina State University Gene H. Golub Stanford University OXPORD UNIVERSITY PRESS List of Acronyms List of Figures

More information

Chapter 8 Structured Low Rank Approximation

Chapter 8 Structured Low Rank Approximation Chapter 8 Structured Low Rank Approximation Overview Low Rank Toeplitz Approximation Low Rank Circulant Approximation Low Rank Covariance Approximation Eculidean Distance Matrix Approximation Approximate

More information

Chapter 3 Parameterized Inverse Eigenvalue Problems

Chapter 3 Parameterized Inverse Eigenvalue Problems Chapter 3 Parameterized Inverse Eigenvalue Problems Overview. General Results. Additive Inverse Eigenvalue Problems. Multiplicative Inverse Eigenvalue Problems. 51 52 Parameterized Inverse Eigenvalue Problems

More information

Outline Background Schur-Horn Theorem Mirsky Theorem Sing-Thompson Theorem Weyl-Horn Theorem A Recursive Algorithm The Building Block Case The Origina

Outline Background Schur-Horn Theorem Mirsky Theorem Sing-Thompson Theorem Weyl-Horn Theorem A Recursive Algorithm The Building Block Case The Origina A Fast Recursive Algorithm for Constructing Matrices with Prescribed Eigenvalues and Singular Values by Moody T. Chu North Carolina State University Outline Background Schur-Horn Theorem Mirsky Theorem

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St Structured Lower Rank Approximation by Moody T. Chu (NCSU) joint with Robert E. Funderlic (NCSU) and Robert J. Plemmons (Wake Forest) March 5, 1998 Outline Introduction: Problem Description Diculties Algebraic

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Numerical Algorithms as Dynamical Systems

Numerical Algorithms as Dynamical Systems A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

More information

ON THE INVERSE PROBLEM OF CONSTRUCTING SYMMETRIC PENTADIAGONAL TOEPLITZ MATRICES FROM THREE LARGEST EIGENVALUES

ON THE INVERSE PROBLEM OF CONSTRUCTING SYMMETRIC PENTADIAGONAL TOEPLITZ MATRICES FROM THREE LARGEST EIGENVALUES ON THE INVERSE PROBLEM OF CONSTRUCTING SYMMETRIC PENTADIAGONAL TOEPLITZ MATRICES FROM THREE LARGEST EIGENVALUES MOODY T. CHU, FASMA DIELE, AND STEFANIA RAGNI Abstract. The inverse problem of constructing

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis J. Stoer R. Bulirsch Introduction to Numerical Analysis Second Edition Translated by R. Bartels, W. Gautschi, and C. Witzgall With 35 Illustrations Springer Contents Preface to the Second Edition Preface

More information

Introduction to Applied Linear Algebra with MATLAB

Introduction to Applied Linear Algebra with MATLAB Sigam Series in Applied Mathematics Volume 7 Rizwan Butt Introduction to Applied Linear Algebra with MATLAB Heldermann Verlag Contents Number Systems and Errors 1 1.1 Introduction 1 1.2 Number Representation

More information

1 Number Systems and Errors 1

1 Number Systems and Errors 1 Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floating-point Representation...........

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS MATHEMATICAL METHODS PARTIAL DIFFERENTIAL EQUATIONS I YEAR B.Tech By Mr. Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. SYLLABUS OF MATHEMATICAL

More information

MATHEMATICAL METHODS INTERPOLATION

MATHEMATICAL METHODS INTERPOLATION MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU

More information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information Contents Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information xi xiv xvii xix 1 Preliminaries 1 1.0 Introduction.............................

More information

Differential Equations

Differential Equations Differential Equations Theory, Technique, and Practice George F. Simmons and Steven G. Krantz Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota

More information

Energy-Preserving Runge-Kutta methods

Energy-Preserving Runge-Kutta methods Energy-Preserving Runge-Kutta methods Fasma Diele, Brigida Pace Istituto per le Applicazioni del Calcolo M. Picone, CNR, Via Amendola 122, 70126 Bari, Italy f.diele@ba.iac.cnr.it b.pace@ba.iac.cnr.it SDS2010,

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

Inverse Eigenvalue Problems

Inverse Eigenvalue Problems Constructing Matrices with Prescribed Eigenvalues N. Jackson Department of Mathematics Math 45 Term Project, Fall 2010 Outline Introduction Eigenvalues and Eigenvectors (IEP s) One Simple Algorithm Heuvers

More information

How to Find Matrix Modifications Keeping Essentially Unaltered a Selected Set of Eigenvalues

How to Find Matrix Modifications Keeping Essentially Unaltered a Selected Set of Eigenvalues How to Find Matrix Modifications Keeping Essentially Unaltered a Selected Set of Eigenvalues S. Noschese and L. Pasquini 1 Introduction In this paper we consider a matrix A C n n and we show how to construct

More information

Preface to Second Edition... vii. Preface to First Edition...

Preface to Second Edition... vii. Preface to First Edition... Contents Preface to Second Edition..................................... vii Preface to First Edition....................................... ix Part I Linear Algebra 1 Basic Vector/Matrix Structure and

More information

Inverse Singular Value Problems

Inverse Singular Value Problems Chapter 8 Inverse Singular Value Problems IEP versus ISVP Existence question A continuous approach An iterative method for the IEP An iterative method for the ISVP 139 140 Lecture 8 IEP versus ISVP Inverse

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

Numerical Mathematics

Numerical Mathematics Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector

More information

Numerical Methods with MATLAB

Numerical Methods with MATLAB Numerical Methods with MATLAB A Resource for Scientists and Engineers G. J. BÖRSE Lehigh University PWS Publishing Company I(T)P AN!NTERNATIONAL THOMSON PUBLISHING COMPANY Boston Albany Bonn Cincinnati

More information

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA 1 BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545.

More information

Iterative Methods for Smooth Objective Functions

Iterative Methods for Smooth Objective Functions Optimization Iterative Methods for Smooth Objective Functions Quadratic Objective Functions Stationary Iterative Methods (first/second order) Steepest Descent Method Landweber/Projected Landweber Methods

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

Mathematics for Chemists

Mathematics for Chemists Mathematics for Chemists MATHEMATICS FOR CHEMISTS D. M. Hirst Department of Molecular Sciences, university of Warwick, Coventry M D. M. Hirst 1976 All rights reserved. No part of this publication may be

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation Zheng-jian Bai Abstract In this paper, we first consider the inverse

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

Numerical methods part 2

Numerical methods part 2 Numerical methods part 2 Alain Hébert alain.hebert@polymtl.ca Institut de génie nucléaire École Polytechnique de Montréal ENE6103: Week 6 Numerical methods part 2 1/33 Content (week 6) 1 Solution of an

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Matrix stabilization using differential equations.

Matrix stabilization using differential equations. Matrix stabilization using differential equations. Nicola Guglielmi Universitá dell Aquila and Gran Sasso Science Institute, Italia NUMOC-2017 Roma, 19 23 June, 2017 Inspired by a joint work with Christian

More information

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Methods in Geochemistry and Geophysics, 36 GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Michael S. ZHDANOV University of Utah Salt Lake City UTAH, U.S.A. 2OO2 ELSEVIER Amsterdam - Boston - London

More information

Although the rich theory of dierential equations can often be put to use, the dynamics of many of the proposed dierential systems are not completely u

Although the rich theory of dierential equations can often be put to use, the dynamics of many of the proposed dierential systems are not completely u A List of Matrix Flows with Applications Moody T. Chu Department of Mathematics North Carolina State University Raleigh, North Carolina 7695-805 Abstract Many mathematical problems, such as existence questions,

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis J. Stoer R. Bulirsch Introduction to Numerical Analysis Translated by R. Bartels, W. Gautschi, and C. Witzgall Springer Science+Business Media, LLC J. Stoer R. Bulirsch Institut fiir Angewandte Mathematik

More information

Engineering Mathematics

Engineering Mathematics Thoroughly Revised and Updated Engineering Mathematics For GATE 2017 and ESE 2017 Prelims Note: ESE Mains Electrical Engineering also covered Publications Publications MADE EASY Publications Corporate

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

MATRIX AND LINEAR ALGEBR A Aided with MATLAB

MATRIX AND LINEAR ALGEBR A Aided with MATLAB Second Edition (Revised) MATRIX AND LINEAR ALGEBR A Aided with MATLAB Kanti Bhushan Datta Matrix and Linear Algebra Aided with MATLAB Second Edition KANTI BHUSHAN DATTA Former Professor Department of Electrical

More information

Differential Equations with Mathematica

Differential Equations with Mathematica Differential Equations with Mathematica THIRD EDITION Martha L. Abell James P. Braselton ELSEVIER ACADEMIC PRESS Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore

More information

On the Local Convergence of an Iterative Approach for Inverse Singular Value Problems

On the Local Convergence of an Iterative Approach for Inverse Singular Value Problems On the Local Convergence of an Iterative Approach for Inverse Singular Value Problems Zheng-jian Bai Benedetta Morini Shu-fang Xu Abstract The purpose of this paper is to provide the convergence theory

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fifth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada International Edition contributions by Telagarapu Prabhakar Department

More information

On the Eigenstructure of Hermitian Toeplitz Matrices with Prescribed Eigenpairs

On the Eigenstructure of Hermitian Toeplitz Matrices with Prescribed Eigenpairs The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp 298 305 On the Eigenstructure of Hermitian

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Stability of Krylov Subspace Spectral Methods

Stability of Krylov Subspace Spectral Methods Stability of Krylov Subspace Spectral Methods James V. Lambers Department of Energy Resources Engineering Stanford University includes joint work with Patrick Guidotti and Knut Sølna, UC Irvine Margot

More information

Engineering. Mathematics. GATE 2019 and ESE 2019 Prelims. For. Comprehensive Theory with Solved Examples

Engineering. Mathematics. GATE 2019 and ESE 2019 Prelims. For. Comprehensive Theory with Solved Examples Thoroughly Revised and Updated Engineering Mathematics For GATE 2019 and ESE 2019 Prelims Comprehensive Theory with Solved Examples Including Previous Solved Questions of GATE (2003-2018) and ESE-Prelims

More information

ADVANCED ENGINEERING MATHEMATICS

ADVANCED ENGINEERING MATHEMATICS ADVANCED ENGINEERING MATHEMATICS DENNIS G. ZILL Loyola Marymount University MICHAEL R. CULLEN Loyola Marymount University PWS-KENT O I^7 3 PUBLISHING COMPANY E 9 U Boston CONTENTS Preface xiii Parti ORDINARY

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Orthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal Raf Vandebril, Ellen Van Camp, Marc Van Barel, Nicola Mastronardi Report

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon's method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

A Modified Method for Reconstructing Periodic Jacobi Matrices

A Modified Method for Reconstructing Periodic Jacobi Matrices mathematics of computation volume 42. number 165 january 1984, pages 143 15 A Modified Method for Reconstructing Periodic Jacobi Matrices By Daniel Boley and Gene H. Golub* Abstract. In this note, we discuss

More information

Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments

Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments Implicitly Defined High-Order Operator Splittings for Parabolic and Hyperbolic Variable-Coefficient PDE Using Modified Moments James V. Lambers September 24, 2008 Abstract This paper presents a reformulation

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

Contents. Acknowledgments

Contents. Acknowledgments Table of Preface Acknowledgments Notation page xii xx xxi 1 Signals and systems 1 1.1 Continuous and discrete signals 1 1.2 Unit step and nascent delta functions 4 1.3 Relationship between complex exponentials

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Semi-definite Programming Techniques for Quadratic Inverse Eigenvalue Problem

Semi-definite Programming Techniques for Quadratic Inverse Eigenvalue Problem Semi-definite Programming Techniques for Quadratic Inverse Eigenvalue Problem Moody T. Chu North Carolina State University March 31, 2010 @ National Chiao Tung University Outline Basic Ideas General Quadratic

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

MA3025 Course Prerequisites

MA3025 Course Prerequisites MA3025 Course Prerequisites MA 3025 (4-1) MA3025 (4-1) Logic and Discrete Mathematics: Provides a rigorous foundation in logic and elementary discrete mathematics. Topics from logic include modeling English

More information

Risoluzione di equazioni matriciali con matrici infinite quasi-toeplitz

Risoluzione di equazioni matriciali con matrici infinite quasi-toeplitz Risoluzione di equazioni matriciali con matrici infinite quasi-toeplitz Leonardo Robol, ISTI-CNR, Pisa, Italy joint work with: D. A. Bini, B. Meini (UniPi) S. Massei (EPFL)

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

Third Edition. William H. Press. Raymer Chair in Computer Sciences and Integrative Biology The University of Texas at Austin. Saul A.

Third Edition. William H. Press. Raymer Chair in Computer Sciences and Integrative Biology The University of Texas at Austin. Saul A. NUMERICAL RECIPES The Art of Scientific Computing Third Edition William H. Press Raymer Chair in Computer Sciences and Integrative Biology The University of Texas at Austin Saul A. Teukolsky Hans A. Bethe

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science The Lanczos-Ritz values appearing in an orthogonal similarity reduction of a matrix into semiseparable form M Van Barel R Vandebril N Mastronardi Report TW 36, May 23 Katholieke Universiteit Leuven Department

More information

A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations

A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations A Method for Constructing Diagonally Dominant Preconditioners based on Jacobi Rotations Jin Yun Yuan Plamen Y. Yalamov Abstract A method is presented to make a given matrix strictly diagonally dominant

More information

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact:

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact: Linear algebra forms the basis for much of modern mathematics theoretical, applied, and computational. The purpose of this book is to provide a broad and solid foundation for the study of advanced mathematics.

More information

The Reconstruction of An Hermitian Toeplitz Matrices with Prescribed Eigenpairs

The Reconstruction of An Hermitian Toeplitz Matrices with Prescribed Eigenpairs The Reconstruction of An Hermitian Toeplitz Matrices with Prescribed Eigenpairs Zhongyun LIU Lu CHEN YuLin ZHANG Received: c 2009 Springer Science + Business Media, LLC Abstract Toeplitz matrices have

More information

Chapter 6. Algebraic eigenvalue problems Introduction Introduction 113. Das also war des Pudels Kern!

Chapter 6. Algebraic eigenvalue problems Introduction Introduction 113. Das also war des Pudels Kern! 6.0. Introduction 113 Chapter 6 Algebraic eigenvalue problems Das also war des Pudels Kern! GOETHE. 6.0. Introduction Determination of eigenvalues and eigenvectors of matrices is one of the most important

More information

Numerical Analysis for Engineers and Scientists

Numerical Analysis for Engineers and Scientists Numerical Analysis for Engineers and Scientists Striking a balance between theory and practice, this graduate-level text is perfect for students in the applied sciences. The author provides a clear introduction

More information

Special Functions of Mathematical Physics

Special Functions of Mathematical Physics Arnold F. Nikiforov Vasilii B. Uvarov Special Functions of Mathematical Physics A Unified Introduction with Applications Translated from the Russian by Ralph P. Boas 1988 Birkhäuser Basel Boston Table

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

MATCOM and Selected MATCOM Functions

MATCOM and Selected MATCOM Functions book-onlin page 567 Appendix C MATCOM and Selected MATCOM Functions C.1 MATCOM and Selected MATCOM Functions C.1.1 What is MATCOM? MATCOM is a MATLAB-based interactive software package containing the implementation

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data

Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data Zdeněk Strakoš Academy of Sciences and Charles University, Prague http://www.cs.cas.cz/

More information

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations MATHEMATICS Subject Code: MA Course Structure Sections/Units Section A Section B Section C Linear Algebra Complex Analysis Real Analysis Topics Section D Section E Section F Section G Section H Section

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

Course Contents. L space, eigen functions and eigen values of self-adjoint linear operators, orthogonal polynomials and

Course Contents. L space, eigen functions and eigen values of self-adjoint linear operators, orthogonal polynomials and Course Contents MATH5101 Ordinary Differential Equations 4(3+1) Existence and uniqueness of solutions of linear systems. Stability Theory, Liapunov method. Twodimensional autonomous systems, oincare-bendixson

More information

2nd Symposium on System, Structure and Control, Oaxaca, 2004

2nd Symposium on System, Structure and Control, Oaxaca, 2004 263 2nd Symposium on System, Structure and Control, Oaxaca, 2004 A PROJECTIVE ALGORITHM FOR STATIC OUTPUT FEEDBACK STABILIZATION Kaiyang Yang, Robert Orsi and John B. Moore Department of Systems Engineering,

More information

as specic as the Schur-Horn theorem. Indeed, the most general result in this regard is as follows due to Mirsky [4]. Seeking any additional bearing wo

as specic as the Schur-Horn theorem. Indeed, the most general result in this regard is as follows due to Mirsky [4]. Seeking any additional bearing wo ON CONSTRUCTING MATRICES WITH PRESCRIBED SINGULAR VALUES AND DIAGONAL ELEMENTS MOODY T. CHU Abstract. Similar to the well known Schur-Horn theorem that characterizes the relationship between the diagonal

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009 Preface The title of the book sounds a bit mysterious. Why should anyone read this

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS p. 2/4 Eigenvalues and eigenvectors Let A C n n. Suppose Ax = λx, x 0, then x is a (right) eigenvector of A, corresponding to the eigenvalue

More information