Electrostatic Charge Distribution (Charge Sensor)

Size: px
Start display at page:

Download "Electrostatic Charge Distribution (Charge Sensor)"

Transcription

1 65 Electrostatic Charge Distribution (Charge Sensor) E&M: Electrostatic charge distribution Equipment List DataStudio file: 65 Charge Distribution.ds Qty Items Part Numbers 1 PASCO Interface (for one sensor) 1 Charge Sensor CI Charge Producers and Proof Planes ES-9057A 1 Faraday Ice Pail ES-9024A 1 Conductive Spheres (set of 2) ES-9059B 1 Electrostatics Voltage Source ES-9077 Introduction The purpose of this activity is to investigate electric charge distribution on a conductive sphere. Use a charge sensor, proof plane, Faraday Ice Pail, and the DataStudio software to record and plot the distribution of charge on the sphere. Background Like electric charges repel and unlike charges attract. The distribution of electric charge on the surface of an object illustrates this principle. If electric charge is transferred to an object that is electrically neutral, the transferred charge will tend to distribute itself evenly over the surface of the object IF the surface is conductive and allows the charges to move freely. The transferred electric charges repel each other and move as far from each other as possible. However, if the surface is non-conductive, the charges cannot move as freely and won t distribute evenly. The arrangement of charges in a non-conductive surface tends to attract or hold the transferred charges to that part of the object where they were transferred. Prediction Will the charge distribution on a conductive sphere be uniform or not? e and a d) decompressor e this picture. SAFETY REMINDER Follow directions for using the equipment. Setup 1. Set up the PASCO Interface and the computer and start DataStudio. 2. Connect the Charge Sensor to the interface. Set the GAIN switch to Open the DataStudio file: 65 Distribution.ds The file opens with a Table display of Location on Sphere and Charge. It also has a graph display and a meter display. The sample rate is set at 10 Hz. PASCO of 5

2 65 Electrostatic Charge Distribution Physics Experiment Manual Connect the alligator clips of the sensor s cable assembly to the inner and outer baskets of the Faraday Ice Pail. 5. Connect the Electrostatic Voltage Source to a Conductive Sphere. Attach the spade plug end of the cable to the sphere and put the banana plug end into the V jack on the voltage source. 6. Plug a second cable into the COM jack on the voltage source, but don t connect it to anything. Preparing to Record Data Before starting any experiment using the Faraday Ice Pail, the pail must be momentarily grounded. To ground the pail, touch the inner pail and the shield at the same time with the finger of one hand. Procedure Measure the Charge at Several Locations on the Sphere NOTE: Have one person handle the apparatus and a second person handle the computer. 1. Ground the Ice Pail and press the ZERO button on the Charge Sensor to discharge the sensor. 2. Click Start in DataStudio to start recording data. The Start button changes to Keep ( ). 3. Touch the top of the Conductive Sphere with the Proof Plane. Without touching the Ice Pail, lower the Proof Plane into the Ice Pail about halfway down. Watch the Table display. 4. Click Keep to record the charge for position Remove the Proof Plane and ground it by touching it to the end of the cable that is connected to COM on the voltage source. 6. Press ZERO on the Charge Sensor. 7. Touch one side of the Conductive Sphere with the Proof Plane and then lower the Proof Plane into the Ice Pail. Click Keep to record the charge for position Ground the Proof Plane and ZERO the Charge Sensor again. 9. Touch the opposite side of the sphere and again click Keep to record the charge on the Proof Plane of PASCO

3 Physics Experiment Manual 65 Electrostatic Charge Distribution 10. Repeat the process for two other places on the Conductive Sphere. 11. Click Stop ( ) to end data recording. Analyze Examine the graph of Charge versus Location. Use the Note tool in the software to indicate the location for each data point on the graph. Answer the questions in the Lab Report section. PASCO of 5

4 65 Electrostatic Charge Distribution Physics Experiment Manual of PASCO

5 Physics Experiment Manual 65 Electrostatic Charge Distribution Lab Report: Electrostatic Charge Distribution Name: Prediction Will the charge distribution on a conductive sphere be uniform or not? Data Sketch your graph of Charge and Location: Questions 1. How do the measurements of charge at the different locations on the sphere compare to each other? 2. What happens to the charge on the Conductive Sphere when it is connected to a source of charge such as the Electrostatic Voltage Source? 3. How do your results compare to your prediction? PASCO of 5

Lab 6 Electrostatic Charge and Faraday s Ice Pail

Lab 6 Electrostatic Charge and Faraday s Ice Pail Lab 6 Electrostatic Charge and Faraday s Ice Pail Learning Goals to investigate the nature of charging an object by contact as compared to charging an object by induction to determine the polarity of two

More information

Electric Field Around a Conductor

Electric Field Around a Conductor 66 Electric Field Around a Conductor Equipment List Qty Items Part Numbers 1 Voltage Sensor CI-6503 1 Equipotential and Field Mapper Kit PK-9023 1 Power Supply, 15 VDC SE-9720 1 Silver (nonconductive)

More information

Activity P27: Speed of Sound in Air (Sound Sensor)

Activity P27: Speed of Sound in Air (Sound Sensor) Activity P27: Speed of Sound in Air (Sound Sensor) Concept Speed of sound DataStudio P27 Speed of Sound 1.DS Equipment Needed Qty Other Qty Sound Sensor (CI-6506B) 1 Tape, duct 1 roll Base and Support

More information

Name Class Date. RC Circuit Lab

Name Class Date. RC Circuit Lab RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge

More information

PHY 112L Activity 1 Electric Charges, Potentials, and Fields

PHY 112L Activity 1 Electric Charges, Potentials, and Fields PHY 112L Activity 1 Electric Charges, Potentials, and Fields Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Understand the basic properties, such as the magnitude and force, of electric

More information

Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition

Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition RC Circuits Experiment PH06_Todd OBJECTIVE To investigate how the voltage across a capacitor varies as it charges. To find the capacitive time constant. EQUIPMENT NEEDED Computer: Personal Computer with

More information

LAB 01 Electrostatic Charge

LAB 01 Electrostatic Charge LAB 01 Electrostatic Charge Group: (Lab section plus Group letter; for instance 01A for lab section 01, group A) Names: (Principle Coordinator) (Lab Partner) (Lab Partner) Directions: Everyone in your

More information

General Physics II Lab EM2 Capacitance and Electrostatic Energy

General Physics II Lab EM2 Capacitance and Electrostatic Energy Purpose General Physics II Lab General Physics II Lab EM2 Capacitance and Electrostatic Energy In this experiment, you will examine the relationship between charge, voltage and capacitance of a parallel

More information

Electrostatics x C.

Electrostatics x C. Electrostatics Name Section Theory The study of charges at rest is called electrostatics. You are no doubt aware that objects can acquire excess amounts of charge by contact. What happens when you walk

More information

Electrostatics x C.

Electrostatics x C. Electrostatics Theory The study of charges at rest is called electrostatics. You are no doubt aware that objects can acquire excess amounts of charge by contact. What happens when you walk across a carpeted

More information

Physics Labs with Computers, Vol. 1 P14: Simple Harmonic Motion - Mass on a Spring A

Physics Labs with Computers, Vol. 1 P14: Simple Harmonic Motion - Mass on a Spring A Activity P14: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P14 SHM.DS P19 SHM Mass on a Spring

More information

Physics Labs with Computers, Vol. 1 P23: Conservation of Angular Momentum A

Physics Labs with Computers, Vol. 1 P23: Conservation of Angular Momentum A Activity P23: Conservation of Angular Momentum (Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Rotational motion P23 Angular Momentum.DS (See end of activity) (See

More information

Electrostatics. Apparatus:

Electrostatics. Apparatus: Electrostatics Object: This experiment allows you to investigate the production of static charge, conservation of charge and the behavior of charges on conductors, which are interacting via Coulomb forces.

More information

RC Circuit (Power amplifier, Voltage Sensor)

RC Circuit (Power amplifier, Voltage Sensor) Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

More information

Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor)

Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P43-1 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED

More information

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P08 Constant Force.DS P11 Constant Force P11_CONF.SWS

More information

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 27-9 Apparatus:

More information

Newton s Third Law Tug-of-War

Newton s Third Law Tug-of-War Activity 8 PS-2826 Newton s Third Law Tug-of-War Mechanics: Newton s Third Law, action and reaction GLX setup file: tug of war Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 2 PASPORT

More information

Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate)

Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate) Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P15 Oscillation.DS P21 Harmonic Oscillation P21_HARM.SWS

More information

Demonstration 1: Faraday Ice Pail and Charge Production

Demonstration 1: Faraday Ice Pail and Charge Production Osservazioni e Misure Lezioni I e II Laboratorio di Elettromagnetismo Demonstration 1: Faraday Ice Pail and Charge Production Equipment Required: Electrometer (ES-9078) Charge Producers (ES-9057B) Earth

More information

Momentum in Collisions

Momentum in Collisions Activity 14 PS-2826 Momentum in Collisions Mechanics: momentum, impulse, conservation of momentum GLX setup file: momentum Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 2 PASPORT

More information

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate)

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate) Name Class Date Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P20 Mechanical Energy.DS P23 Cons. Mechanical

More information

Lab 10 Circular Motion and Centripetal Acceleration

Lab 10 Circular Motion and Centripetal Acceleration Lab 10 Circular Motion and Centripetal Equipment Calculator, Computer, PASCO 850 Universal Interface Partially-assembled Centripetal Force Apparatus Photogate Cable Pair of Banana Wires Objective Verify

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics Faraday's Law of Induction Page 1 of 6 Demonstrator: University number: The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS3450 Electromagnetism Experiment No. 3450-2:

More information

Activity P11: Collision Impulse and Momentum (Force Sensor, Motion Sensor)

Activity P11: Collision Impulse and Momentum (Force Sensor, Motion Sensor) Name Class Date Activity P11: Collision Impulse and Momentum (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P11 Impulse.DS P14 Collision P14_COLL.SWS

More information

PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole

PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole Print Your Name PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole Print Your Partners' Names Instructions January 23, 2015 Before lab, read the Introduction,

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton's Laws P10 Atwood s.ds P13 Atwood's Machine P13_ATWD.SWS Equipment

More information

Physics Labs with Computers, Vol. 1 P05: Free Fall (Picket Fence) A

Physics Labs with Computers, Vol. 1 P05: Free Fall (Picket Fence) A Name Class Date Lab 4: Acceleration of a Freely Falling Picket Fence (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P05 Free Fall.ds P06 Free Fall Picket Fence

More information

Lab 10: DC RC circuits

Lab 10: DC RC circuits Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

More information

Impulse and Change in Momentum

Impulse and Change in Momentum Activity 15 PS-2826 Impulse and Change in Momentum Mechanics: momentum, impulse, change in momentum GLX setup file: impulse Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT

More information

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual)

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual) Musical Acoustics Lab, C. Bertulani, 2012 PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual) A body is said to be in a position of stable equilibrium if, after displacement

More information

Physics 208 Fall 2008 Lab 4: Electric Fields and Electric Potentials

Physics 208 Fall 2008 Lab 4: Electric Fields and Electric Potentials Name Section Physics 208 Fall 2008 Lab 4: Electric Fields and Electric Potentials Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences

More information

Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET

Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET Figure 1: Lightning Exhibit, Boston Museum of Science http://www.mos.org/sln/toe/ Objective Students will explore the manifestation

More information

Activity P60: Inverse Square Law Nuclear (Nuclear Sensor, Rotary Motion Sensor)

Activity P60: Inverse Square Law Nuclear (Nuclear Sensor, Rotary Motion Sensor) Name Class Date Activity P60: Inverse Square Law Nuclear (Nuclear Sensor, Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Radioactivity P60 Nuclear Inv Sqr Law.DS P60

More information

Lab 6: Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section

Lab 6: Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section : Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly

More information

Experiment P13: Atwood's Machine (Smart Pulley)

Experiment P13: Atwood's Machine (Smart Pulley) PASCO scientific Physics Lab Manual: P13-1 Experiment P13: Atwood's Machine (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 500 or 700 P13 Atwood's Machine P13_ATWD.SWS

More information

Electric Field and Electric Potential

Electric Field and Electric Potential Electric Field and Electric Potential INTRODUCTION Physicists use the concept of a field 1 to explain the interaction of particles or bodies through space, i.e., the action-at-a-distance 2 force between

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1

More information

The Capacitor. +q -q

The Capacitor. +q -q The Capacitor I. INTRODUCTION A simple capacitor consists of two parallel plates separated by air or other insulation, and is useful for storing a charge. If a potential difference is placed across the

More information

PHYS320 ilab (O) Experiment 2 Instructions Conservation of Energy: The Electrical Equivalent of Heat

PHYS320 ilab (O) Experiment 2 Instructions Conservation of Energy: The Electrical Equivalent of Heat PHYS320 ilab (O) Experiment 2 Instructions Conservation of Energy: The Electrical Equivalent of Heat Objective: The purpose of this activity is to determine whether the energy dissipated by a heating resistor

More information

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System)

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Name Class Date Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Momentum P24 Linear Angular.DS P28 Cons

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors

RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors 1 RC Circuit Lab - Discovery PSI Physics Capacitors and Resistors Name Date Period Purpose The purpose of this lab will be to determine how capacitors behave in R-C circuits. The manner in which capacitors

More information

Question Sheet for Laboratory 3: E-1: Electrostatics

Question Sheet for Laboratory 3: E-1: Electrostatics Name Section Question Sheet for Laboratory 3: E-1: Electrostatics PART I. CHARGE OBJECTIVE: To build a qualitative model for charge by observing forces between charged objects. APPARATUS: 1. Tape, hard

More information

Physics experiments using the ScienceWorkshop or DataStudio program and interfaces from PASCO scientific

Physics experiments using the ScienceWorkshop or DataStudio program and interfaces from PASCO scientific ScienceWorkshop ScienceWorkshop Physics Labs with Computers Volume Physics experiments using the ScienceWorkshop or DataStudio program and interfaces from PASCO scientific 00 Foothills Boulevard Roseville,

More information

NE01 - Centripetal Force. Laboratory Manual Experiment NE01 - Centripetal Force Department of Physics The University of Hong Kong

NE01 - Centripetal Force. Laboratory Manual Experiment NE01 - Centripetal Force Department of Physics The University of Hong Kong Background Introduction Laboratory Manual Experiment Department of Physics The University of Hong Kong Circular Motion is one of the simplest forms of 2-dimensional motion in which the locus of the object

More information

Collisions Impulse and Momentum

Collisions Impulse and Momentum rev 06/2017 Collisions Impulse and Momentum Equipment Qty Items Part Number 1 Collision Cart ME-9454 1 Dynamics Track ME-9493 1 Force Sensor CI-6746 1 Motion Sensor II CI-6742A 1 Accessory Bracket CI-6545

More information

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m.

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. Newton s Second Law Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. F net = ma (1) It should come as no surprise that this force produces an

More information

Experiment P26: Rotational Inertia (Smart Pulley)

Experiment P26: Rotational Inertia (Smart Pulley) PASCO scientific Physics Lab Manual P26-1 Experiment P26: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file rotational motion 45 m 500 or 700 P26 P26_ROTA.SWS EQUIPMENT NEEDED Interface

More information

Physics Notes Chapter 17 Electric Forces and Fields

Physics Notes Chapter 17 Electric Forces and Fields Physics Notes Chapter 17 Electric Forces and Fields I. Basic rules and ideas related to electricity a. electricity is about charges or charged objects where they are and how they move electrostatics is

More information

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor General Physics Lab Department of PHYSICS YONSEI University Lab Manual (Lite) Magnetic Fields Ver.20181029 NOTICE This LITE version of manual includes only experimental procedures for easier reading on

More information

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley)

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley) PASCO scientific Physics Lab Manual: P09-1 Experiment P09: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P09 Cart Acceleration 1 P09_CAR1.SWS EQUIPMENT

More information

Electrostatics Experiments Experiment 1: Faraday Ice Pail and Charge Production

Electrostatics Experiments Experiment 1: Faraday Ice Pail and Charge Production Electrostatics Experiments Experiment 1: Faraday Ice Pail and Charge Production PURPOSE: To investigate charge production and charge transfer BACKGROUND: We will be using "charge producers" that consists

More information

LAB 3: Capacitors & RC Circuits

LAB 3: Capacitors & RC Circuits LAB 3: Capacitors & C Circuits Name: Circuits Experiment Board Wire leads Capacitors, esistors EQUIPMENT NEEDED: Two D-cell Batteries Multimeter Logger Pro Software, ULI Purpose The purpose of this lab

More information

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

Experiment 11: Rotational Inertia of Disk and Ring

Experiment 11: Rotational Inertia of Disk and Ring Experiment 11: Rotational Inertia of Disk and Ring Equipment Required ScienceWorkshop 750 Interface (CI- 6450 or CI-7599) Mini-Rotational Accessory (CI-6691) Base and Support Rod (ME-9355) Paper clips

More information

Lab 8: Magnetic Fields

Lab 8: Magnetic Fields Lab 8: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

More information

Theoretical Background Neglecting air resistance, an object falls a distance proportional to the square of the. d t 2

Theoretical Background Neglecting air resistance, an object falls a distance proportional to the square of the. d t 2 Experiment 1 - Measurement of the Acceleration of Gravity Purpsose The purpose of this activity is to determine the acceleration due to gravity by measuring the time of fall of a picket fence dropped through

More information

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law MECH-2: Newton's Second Law Page 1 of 5 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law 1 250 g Stackable Masses (set of 2) ME-6757A 1 Smart Cart Blue ME-1241 1 Mass

More information

Name: SNC1 Date: Investigation Electrostatic Series

Name: SNC1 Date: Investigation Electrostatic Series ACTIVITY #1 Purpose: To determine how charged objects respond to one another and what kind of charge is transferred when a charged object contacts an uncharged one. Pre Lab Questions 1. When acetate and

More information

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018)

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Equipment shallow glass pan pitcher for water masking tape graph paper (8.5 x14 ) colored pencils metal shapes sand paper paper towels DC power supply

More information

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System)

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System) Name Class Date Activity P21: Kinetic Friction (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P21 Kinetic Friction.DS P25 Kinetic Friction P25_KINE.SWS

More information

Experiment 19: The Current Balance

Experiment 19: The Current Balance Experiment 19: The Current Balance Figure 19.1: Current Balance Arrangement for Varying Current or Length From Left to Right: Power Supply, Current Balance Assembly, Ammeter (20A DCA scale, 20A jack).

More information

Coulomb Law. Purpose In this lab you will use the Coulomb Torsion Balance to show the inverse squared law for electrostatic force between charges.

Coulomb Law. Purpose In this lab you will use the Coulomb Torsion Balance to show the inverse squared law for electrostatic force between charges. Coulomb Law Purpose In this lab you will use the Coulomb Torsion Balance to show the inverse squared law for electrostatic force between charges. Equipment Coulomb Balance and accessories, kilovolt power

More information

Constant velocity and constant acceleration

Constant velocity and constant acceleration Constant velocity and constant acceleration Physics 110 Laboratory Introduction In this experiment we will investigate two rather simple forms of motion (kinematics): motion with uniform (non-changing)

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Consider the system shown below, which consistes of a cart of mass m on an angled track. If the cart is released from rest at Point 1 it will travel down the track, losing potential

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

LAB 5: Induction: A Linear Generator

LAB 5: Induction: A Linear Generator 1 Name Date Partner(s) OBJECTIVES LAB 5: Induction: A Linear Generator To understand how a changing magnetic field induces an electric field. To observe the effect of induction by measuring the generated

More information

Physics Demonstration Lab#6.6: The Impulse-Momentum and Work- Kinetic Energy Theorems For a Single Object on the Air Track

Physics Demonstration Lab#6.6: The Impulse-Momentum and Work- Kinetic Energy Theorems For a Single Object on the Air Track Physics Demonstration Lab#6.6: The Impulse-Momentum and Work- Kinetic Energy Theorems For a Single Object on the Air Track Name: Date: EQUIPMENT PASCO Scientific Air Track and Accessories PASCO Scientific

More information

The Ideal Gas Law INTRODUCTION DISCUSSION OF PRINCIPLES. Boyle s Law. Charles s Law. The Ideal Gas Law 10-1

The Ideal Gas Law INTRODUCTION DISCUSSION OF PRINCIPLES. Boyle s Law. Charles s Law. The Ideal Gas Law 10-1 The Ideal Gas Law 10-1 The Ideal Gas Law INTRODUCTION The volume of a gas depends on the pressure as well as the temperature of the gas. Therefore, a relation between these quantities and the mass of a

More information

Lab 7: EC-5, Faraday Effect Lab Worksheet

Lab 7: EC-5, Faraday Effect Lab Worksheet Lab 7: EC-5, Faraday Effect Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences

More information

In this experiment, the concept of electric field will be developed by

In this experiment, the concept of electric field will be developed by Physics Equipotential Lines and Electric Fields Plotting the Electric Field PURPOSE MATERIALS 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer In this experiment, the concept of electric

More information

Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics

Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics Name Section Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics OBJECTIVE: To understand the electroscope as an example of forces between charges, and to use it as a measuring device to explore charge

More information

tp03: The Ideal Gas Law

tp03: The Ideal Gas Law tp03: The Ideal Gas Law Jack Lyes 18/01/2014 The main objective of this experiment was to calculate a value for absolute zero, the temperature at which a gas exerts zero pressure. This was achieved by

More information

Electrostatics II. Introduction

Electrostatics II. Introduction Electrostatics II Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their separation

More information

Figure 1: Capacitor circuit

Figure 1: Capacitor circuit Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors

More information

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick. F = m a F = m a Newton s Second Law 1 Object To investigate, understand and verify the relationship between an object s acceleration and the net force acting on that object as well as further understand

More information

1. Electrostatic Lab [1]

1. Electrostatic Lab [1] 1. Electrostatic Lab [1] Purpose: To determine the charge and charge distribution on insulators charged by the triboelectric effects and conductors charged by an Electrostatic Voltage Source. Equipment:

More information

Experiment #2 Lab Electrostatics Pre-lab Questions

Experiment #2 Lab Electrostatics Pre-lab Questions Experiment #2 Lab Electrostatics Pre-lab Questions ** Disclaimer: This pre-lab is not to be copied, in whole or in part, unless a proper reference is made as to the source. (It is strongly recommended

More information

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date:

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date: /16 Points Lab: Phase Change Introduction Every substance has a characteristic freezing point and melting point. As you might expect, the substance changes phase at each of these temperatures. A pure substance

More information

Elastic Properties of Solids (One or two weights)

Elastic Properties of Solids (One or two weights) Elastic properties of solids Page 1 of 8 Elastic Properties of Solids (One or two weights) This is a rare experiment where you will get points for breaking a sample! The recommended textbooks and other

More information

OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence electric fields.

OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence electric fields. Name Section Question Sheet for Laboratory 4: EC-2: Electric Fields and Potentials OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence

More information

Physics 103 Laboratory Fall Lab #2: Position, Velocity and Acceleration

Physics 103 Laboratory Fall Lab #2: Position, Velocity and Acceleration Physics 103 Laboratory Fall 011 Lab #: Position, Velocity and Acceleration Introduction In this lab, we will study one-dimensional motion looking at position (x), velocity (v) and acceleration (a) which

More information

Measuring the time constant for an RC-Circuit

Measuring the time constant for an RC-Circuit Physics 8.02T 1 Fall 2001 Measuring the time constant for an RC-Circuit Introduction: Capacitors Capacitors are circuit elements that store electric charge Q according to Q = CV where V is the voltage

More information

TA guide Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics

TA guide Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics Name TA guide Physics 208 Spring 2008 Lab 3 (E-1): Electrostatics Section OBJECTIVE: To understand the electroscope as an example of forces between charges, and to use it as a measuring device to explore

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

Evaluation copy. First-Class Levers. computer OBJECTIVES MATERIALS

Evaluation copy. First-Class Levers. computer OBJECTIVES MATERIALS Dual-Range Force Sensor Name Date First-Class Levers Computer 30 A lever is a simple machine used to make work easier. It consists of a long, rigid bar with a support that allows the bar to pivot. The

More information

Possible Prelab Questions.

Possible Prelab Questions. Possible Prelab Questions. Read Lab 2. Study the Analysis section to make sure you have a firm grasp of what is required for this lab. 1) A car is travelling with constant acceleration along a straight

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information

Experiment 7 : Newton's Third Law

Experiment 7 : Newton's Third Law Experiment 7 : Newton's Third Law To every action there is always opposed an equal reaction, or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. If you

More information

PHY 123 Lab 9 Simple Harmonic Motion

PHY 123 Lab 9 Simple Harmonic Motion PHY 123 Lab 9 Simple Harmonic Motion (updated 11/17/16) The purpose of this lab is to study simple harmonic motion of a system consisting of a mass attached to a spring. You will establish the relationship

More information

= [1] Coulomb s Law. 1. Objective

= [1] Coulomb s Law. 1. Objective PHYS-102 LAB-01 Coulomb s Law 1. Objective The objective of this experiment is to demonstrate that the force between two stationary charges is directly proportional to the product of the charges and inversely

More information

Lab 1: Background and Useful Information

Lab 1: Background and Useful Information 3 Lab 1: Background and Useful Information Objective As a result of performing this lab, you will be able to: 1. measure an unknown capacitance by connecting it in parallel to a known capacitance and a

More information

Experiment 1 Solutions: Equipotential Lines and Electric Fields

Experiment 1 Solutions: Equipotential Lines and Electric Fields MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Experiment 1 Solutions: Equipotential Lines and Electric Fields IN-LAB ACTIVITIES EXPERIMENTAL SETUP 1. Download the LabView file from the

More information

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Right-angle clamp, Horizontal

More information

Electric Fields and Potential

Electric Fields and Potential General Physics Lab 2 Siena College Object Electric Fields and Potential This experiment further explores the electrostatic interaction between charged objects. The concepts of electric field and potential

More information

PHY 123 Lab 10-Simple Harmonic Motion

PHY 123 Lab 10-Simple Harmonic Motion 1 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 123 Lab 10-Simple Harmonic Motion The purpose of this lab is to study simple harmonic

More information

Developing a Scientific Theory

Developing a Scientific Theory Name Date Developing a Scientific Theory Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1 Universal Table Clamp (ME-9376B)

More information

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,

More information