Design Theory Notes 1:

Size: px
Start display at page:

Download "Design Theory Notes 1:"

Transcription

1 Math 6023 Topics in Discrete Math: Design and Graph Theory Fall Design Theory Notes 1: The purpose of these notes is to supplement the text by providing comments, examples and alternate proofs of some statements. They are meant to be used in conjunction with the text and are not a substitute for it. All numerical references are to statements and formulae in, P.J. Cameron and J.H. van Lint, Designs, Graphs, Codes and their Links, Cambridge University Press, (1.1) DEFINITION. A t-design with parameters (v,k, ) (or a t-(v,k, ) design) is a pair D = (X, B), where X is a set of "points" of cardinality v, and B is a collection of k-element subsets of X called "blocks", with the property that any t points of X are contained in precisely blocks. Example: A 3-(8,4,1) design is given by X = {1,2,...,8} and the collection B of 4-subsets: {1,2,5,6} {3,4,7,8} {1,3,5,7} {2,4,6,8} {1,4,5,8} {2,3,6,7} {1,2,3,4} {5,6,7,8} {1,2,7,8} {3,4,5,6} {1,3,6,8} {2,4,5,7} {1,4,6,7} {2,3,5,8} since any 3-set of points of X is contained in exactly 1 block. You may also verify that this same design is a 2-(8,4,3) design, since every pair of elements of X appear in exactly 3 blocks. Comment: The non-degeneracy condition given in the text ( v k t ) is considerably weaker than what is generally presented in the literature ( v > k > t > 0). The cases of equality are noninteresting designs. If v = k then every block contains all of the elements of X, and with the further restriction of no repeated blocks, there would be only one block. If k = t then every t-subset of X would have to be a block, this type of design, in which all the k-sets are blocks, is called a full combinatorial design and it is generally excluded from consideration. For example, in Proposition (1.2), the condition "not every k-set of points is incident with a block" excludes only the full combinatorial designs. Notation: It is nearly universal that the number of blocks in a t-design is denoted by b and the number of blocks containing a particular point, which is the same for any point and called the replication number, is denoted by r. However, it is useful to have a notation for the number of blocks containing a particular set of i points (with i t) since, as we shall see, this number does not depend upon the set chosen. Thus, we define i to be the number of blocks containing an i- set, for 0 i t. It then follows that 0 = b, 1 = r, and t =. The constancy of these parameters is proved in the next proposition. (1.4) Proposition. Let (S) be the number of blocks containing a given set S of s points in a t- (v,k, ) design, where 0 s t. Then S k s t s = v s t s.

2 Pf. Consider the set of ordered pairs (B, Z) where B is a block of the design containing S and Z is a set of t-s points of B not in S. We will count the number of such ordered pairs in two ways. First, the number of first coordinates is (S) and for each of these we can obtain an appropriate Z by choosing t-s points from the k-s points of B that are not in S. We thus obtain the LHS of the formula. On the other hand, we can first choose a set Z by selecting t-s points from the points of the design which are not in S (there are v-s of these). We now count the number of blocks that contain both S and Z. Since S Z = t, there are exactly blocks containing the union, giving the count on the RHS. Notice that in the above proof only the size of the set S was used, so (S) does not depend upon S, only on its size, s. Thus, (S) = s and is a constant for each s, 0 s t. Here is a computational alternative to the proof of: (1.12) Lemma. If I and J are the identity and all-1 matrices of order n, then det( xi + yj) = (x + yn)x n-1. Pf. We are trying to determine the determinant x y y y y y y x y y y y det x I y J = det y y x y y y y y y x y y y y y y x y We can evaluate this by subtracting the first column from each of the other columns and then adding each row to the first row to obtain the following: x ny y x det x I y J = det y 0 x 0 0. y 0 0 x 0 y x The result now follows. Notation: 2-designs were the basis for the definition of t-designs and have a long history. These are the most studied designs and have gone under a number of different names; block designs, BIBD's( Balanced Incomplete Block Design), or just designs. More is known about 2-designs than any other type of t-design, so notice the specialization that occurs starting with theorem (1.14). (1.14) Theorem. (Fisher's Inequality) In a 2-design with k < v, we have b v. (1.17) DEFINITION. A 2-design is called square if b = v (and thus r = k).

3 Comment: The term square is highly non-standard. The authors are trying to get the community of design theorists to give up some poorly chosen terminology and replace it by reasonable choices. This has been tried in the past with no avail. The term that they are trying to displace here is "symmetric", but this is well entrenched in the literature even though there is very little symmetry in a symmetric design. Examples: A square 2-(7,3,1) design is given by X = {1,2,...,7} and B consisting of the blocks: {1,2,4} {2,3,5} {3,4,6} {4,5,7} {5,6,1} {6,7,2} {7,1,3}. A square 2-(4,3,2) design is given by X = {1,2,3,4} and B consisting of the blocks: {1,2,3} {2,3,4} {3,4,1} {4,1,2}. (1.18) DEFINITION. A duality of a square design D is an isomorphism from D to its dual. It can be described as a pair of bijections : X B and : B X such that x B if and only if B x, for all x X and B B. Note the corrections in the above definition. Example: In the square 2-(4,3,2) design above, we can label the blocks as follows: A = {1,2,3} B = {2,3,4} C = {3,4,1} and D = {4,1,2}. Now we can define a duality by: : X B : B X 1 B A 4 2 C B 1 3 D C 2 4 A D 3 It is easily verified that the condition is valid, and this pair of bijections defines a duality. What's more, since = -1 this duality is a polarity. Comment: The non-existence of the 2-(111,11,1) design, also known as the projective plane of order 10, was proved in 1989 by the most computer intensive combinatorial search that has been done to date. It required over a year of CPU time on a Cray (time and machine donated by NSA) to finish the search. Special Classes of Square Designs Definition: A projective plane of order n is a symmetric 2-(n2+n+1, n+1,1) design. They are known to exist whenever n is a prime power. A special type of projective plane is obtained as a restriction to 2 dimensions of the following construction. Definition: Projective Geometries PG(n,q). Let V be an (n+1)-dimensional vector space over the finite field GF(q). PG(n,q) is the set of all non-trivial vector subspaces of V. An i-flat is a subspace of vector space dimension i+1. 0-flats, 1-flats, 2-flats and (n-1)-flats are called points,

4 lines, planes and hyperplanes respectively. The points and i-flats of PG(n,q) for 1 i n-1 form 2-designs. The points and lines design is a 2-((q n+1 1)/(q-1), q+1,1) design (a Steiner system), and the points and hyperplanes form a 2- ((q n+1 1)/(q-1), (q n 1)/(q-1), (q n-1 1)/(q-1)) symmetric design. When n = 2, this last design is a projective plane. (1.23) Theorem. For a finite projective plane D, the following conditions are equivalent: (a) D is the point-line design of PG(2,q) for some prime power q; (b) D satisfies Desargues' Theorem; (c) D satisfies Pappus' Theorem; (d) Aut(D) is 2-transitive on the points of D. Comment: The finiteness assumption is necessary, and is missing from the statement in the text. In infinite projective planes, the Desargues and Pappus theorems are not equivalent, while Pappus implies Desargues the converse is not true (but it is true for finite planes, a consequence of Wedderburn's Theorem on finite division rings). Desargues' Theorem: In a projective plane, two triangles are said to be perspective from a point if the three lines joining corresponding vertices of the triangles meet at a common point called the center. Two triangles are said to be perspective from a line if the three points of intersection of corresponding lines all lie on a common line, called the axis. Desargues' theorem states that two triangles are perspective from a point if and only if they are perspective from a line. The diagram, called a Desargues Configuration should make this clear. This theorem is valid in the real projective plane. In other projective planes it may not hold universally, when it does the plane is called a Desarguesian plane.

5 Pappus' Theorem: If points A, B and C are on one line and A', B' and C' are on another line then the points of intersection of the lines AC' and CA', AB' and BA', and BC' and CB' lie on a common line called the Pappus line of the configuration. This theorem is valid in the real projective plane, but may not be valid universally in other projective planes. When it is universally valid, the plane is called a Pappian plane. Every pappian plane is also Desarguesian. We have a few theorems which characterize the designs coming from projective geometries. Definition: A line through points a and b in a t-design is the intersection of all the blocks containing a and b. For this to be a reasonable definition, we insist that t 2. For a 2-design with λ = 1, this amounts to the unique block containing a and b. (1.24) Theorem. (Veblen & Young) For a 2-(v,k,1) design D with v > k > 2, which is not a projective plane (i.e., not symmetric) the following conditions are equivalent: (a) D is the point-line design of PG(n,q) for some prime power q and n 3; (b) whenever a,b,c,d are four points such that the lines ab and cd meet, then the lines ac and bd also meet. (1.25) Theorem. (Dembowski & Wagner). Let D be a square 2-design with λ > 1. Then the following are equivalent: (a) D is the point-hyperplane design of some PG(n,q); (b) every line meets every block; (c) the number of blocks containing three non-collinear points is constant. Def: A subplane of a projective plane of order n is a subset of the points and lines which is itself a projective plane of order m. We have that n = m 2 or n m 2 + m. In the case of n = m 2, every line of the plane contains a point of the subplane and the subplane is called a Baer subplane.

6 The blanks in the table correspond to 0's in the matrix. Example: The 2-(7,3,1) design given earlier is the projective plane of order 2. The above is an incidence matrix for the 2-(21,5,1) design which is the projective plane of order 4. The points and lines in large red type form a Baer subplane of order 2.

Square 2-designs/1. 1 Definition

Square 2-designs/1. 1 Definition Square 2-designs Square 2-designs are variously known as symmetric designs, symmetric BIBDs, and projective designs. The definition does not imply any symmetry of the design, and the term projective designs,

More information

1. A brief introduction to

1. A brief introduction to 1. A brief introduction to design theory These lectures were given to an audience of design theorists; for those outside this class, the introductory chapter describes some of the concepts of design theory

More information

--------------------------------------------------------------------------------------------- Math 6023 Topics: Design and Graph Theory ---------------------------------------------------------------------------------------------

More information

LINEAR SPACES. Define a linear space to be a near linear space in which any two points are on a line.

LINEAR SPACES. Define a linear space to be a near linear space in which any two points are on a line. LINEAR SPACES Define a linear space to be a near linear space in which any two points are on a line. A linear space is an incidence structure I = (P, L) such that Axiom LS1: any line is incident with at

More information

Lattice Theory Lecture 4. Non-distributive lattices

Lattice Theory Lecture 4. Non-distributive lattices Lattice Theory Lecture 4 Non-distributive lattices John Harding New Mexico State University www.math.nmsu.edu/ JohnHarding.html jharding@nmsu.edu Toulouse, July 2017 Introduction Here we mostly consider

More information

Combinatorial Designs: Balanced Incomplete Block Designs

Combinatorial Designs: Balanced Incomplete Block Designs Combinatorial Designs: Balanced Incomplete Block Designs Designs The theory of design of experiments came into being largely through the work of R.A.Fisher and F.Yates in the early 1930's. They were motivated

More information

MORE EXERCISES FOR SECTIONS II.1 AND II.2. There are drawings on the next two pages to accompany the starred ( ) exercises.

MORE EXERCISES FOR SECTIONS II.1 AND II.2. There are drawings on the next two pages to accompany the starred ( ) exercises. Math 133 Winter 2013 MORE EXERCISES FOR SECTIONS II.1 AND II.2 There are drawings on the next two pages to accompany the starred ( ) exercises. B1. Let L be a line in R 3, and let x be a point which does

More information

1 Fields and vector spaces

1 Fields and vector spaces 1 Fields and vector spaces In this section we revise some algebraic preliminaries and establish notation. 1.1 Division rings and fields A division ring, or skew field, is a structure F with two binary

More information

11 Block Designs. Linear Spaces. Designs. By convention, we shall

11 Block Designs. Linear Spaces. Designs. By convention, we shall 11 Block Designs Linear Spaces In this section we consider incidence structures I = (V, B, ). always let v = V and b = B. By convention, we shall Linear Space: We say that an incidence structure (V, B,

More information

On two-intersection sets with respect to hyperplanes in projective spaces

On two-intersection sets with respect to hyperplanes in projective spaces with respect to hyperplanes in projective spaces Aart Blokhuis Technische Universiteit Eindhoven, Postbox 513, 5600 MB Eindhoven, The Netherlands and Michel Lavrauw Technische Universiteit Eindhoven, Postbox

More information

Characterizations of the finite quadric Veroneseans V 2n

Characterizations of the finite quadric Veroneseans V 2n Characterizations of the finite quadric Veroneseans V 2n n J. A. Thas H. Van Maldeghem Abstract We generalize and complete several characterizations of the finite quadric Veroneseans surveyed in [3]. Our

More information

Quasimultiples of Geometric Designs

Quasimultiples of Geometric Designs Quasimultiples of Geometric Designs G. L. Ebert Department of Mathematical Sciences University of Delaware Newark, DE 19716 ebert@math.udel.edu Dedicated to Curt Lindner on the occasion of his 65th birthday

More information

What Do Lattice Paths Have To Do With Matrices, And What Is Beyond Both?

What Do Lattice Paths Have To Do With Matrices, And What Is Beyond Both? What Do Lattice Paths Have To Do With Matrices, And What Is Beyond Both? Joseph E. Bonin The George Washington University These slides are available at blogs.gwu.edu/jbonin Some ideas in this talk were

More information

Subplanes of projective planes

Subplanes of projective planes Subplanes of projective planes Cafer Caliskan Department of Mathematical Sciences Florida Atlantic University ccaliska@fau.edu and Spyros S. Magliveras Department of Mathematical Sciences Florida Atlantic

More information

Latin Squares and Projective Planes Combinatorics Seminar, SPRING, 2010

Latin Squares and Projective Planes Combinatorics Seminar, SPRING, 2010 Latin Squares and Projective Planes Combinatorics Seminar, SPRING, 2010 1 CHAPTER 1 Finite Fields F 4 (x 2 + x + 1 is irreducable) x x + 1 x x + 1 1 x + 1 1 x 1. Examples F 4 = {(a, b) a, b Z 2 } (a,

More information

Synthetic Geometry. 1.4 Quotient Geometries

Synthetic Geometry. 1.4 Quotient Geometries Synthetic Geometry 1.4 Quotient Geometries Quotient Geometries Def: Let Q be a point of P. The rank 2 geometry P/Q whose "points" are the lines of P through Q and whose "lines" are the hyperplanes of of

More information

The geometry of projective space

The geometry of projective space Chapter 1 The geometry of projective space 1.1 Projective spaces Definition. A vector subspace of a vector space V is a non-empty subset U V which is closed under addition and scalar multiplication. In

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

Every SOMA(n 2, n) is Trojan

Every SOMA(n 2, n) is Trojan Every SOMA(n 2, n) is Trojan John Arhin 1 Marlboro College, PO Box A, 2582 South Road, Marlboro, Vermont, 05344, USA. Abstract A SOMA(k, n) is an n n array A each of whose entries is a k-subset of a knset

More information

The Witt designs, Golay codes and Mathieu groups

The Witt designs, Golay codes and Mathieu groups The Witt designs, Golay codes and Mathieu groups 1 The Golay codes Let V be a vector space over F q with fixed basis e 1,..., e n. A code C is a subset of V. A linear code is a subspace of V. The vector

More information

The minimum weight of dual codes from projective planes

The minimum weight of dual codes from projective planes The minimum weight of dual codes from projective planes J. D. Key Department of Mathematical Sciences Clemson University, University of Wales Aberystwyth, University of the Western Cape and University

More information

THE THEOREM OF DESARGUES

THE THEOREM OF DESARGUES THE THEOREM OF DESARGUES TIMOTHY VIS 1. Introduction In this worksheet we will be exploring some proofs surrounding the Theorem of Desargues. This theorem plays an extremely important role in projective

More information

Combinatorial and physical content of Kirchhoff polynomials

Combinatorial and physical content of Kirchhoff polynomials Combinatorial and physical content of Kirchhoff polynomials Karen Yeats May 19, 2009 Spanning trees Let G be a connected graph, potentially with multiple edges and loops in the sense of a graph theorist.

More information

On Projective Planes

On Projective Planes C-UPPSATS 2002:02 TFM, Mid Sweden University 851 70 Sundsvall Tel: 060-14 86 00 On Projective Planes 1 2 7 4 3 6 5 The Fano plane, the smallest projective plane. By Johan Kåhrström ii iii Abstract It was

More information

Order of Operations. Real numbers

Order of Operations. Real numbers Order of Operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply and divide from left to right. 4. Add

More information

Blocking sets of tangent and external lines to a hyperbolic quadric in P G(3, q), q even

Blocking sets of tangent and external lines to a hyperbolic quadric in P G(3, q), q even Manuscript 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 Blocking sets of tangent and external lines to a hyperbolic quadric in P G(, q), q even Binod Kumar Sahoo Abstract Bikramaditya Sahu Let H be a fixed hyperbolic

More information

On the structure of the directions not determined by a large affine point set

On the structure of the directions not determined by a large affine point set On the structure of the directions not determined by a large affine point set Jan De Beule, Peter Sziklai, and Marcella Takáts January 12, 2011 Abstract Given a point set U in an n-dimensional affine space

More information

Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q)

Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q) Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q) M. Lavrauw L. Storme G. Van de Voorde October 4, 2007 Abstract In this paper, we study the p-ary linear code C k (n, q),

More information

ON LINEAR CODES WHOSE WEIGHTS AND LENGTH HAVE A COMMON DIVISOR. 1. Introduction

ON LINEAR CODES WHOSE WEIGHTS AND LENGTH HAVE A COMMON DIVISOR. 1. Introduction ON LINEAR CODES WHOSE WEIGHTS AND LENGTH HAVE A COMMON DIVISOR SIMEON BALL, AART BLOKHUIS, ANDRÁS GÁCS, PETER SZIKLAI, AND ZSUZSA WEINER Abstract. In this paper we prove that a set of points (in a projective

More information

SOME DESIGNS AND CODES FROM L 2 (q) Communicated by Alireza Abdollahi

SOME DESIGNS AND CODES FROM L 2 (q) Communicated by Alireza Abdollahi Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 3 No. 1 (2014), pp. 15-28. c 2014 University of Isfahan www.combinatorics.ir www.ui.ac.ir SOME DESIGNS AND CODES FROM

More information

BASIC MATHEMATICAL TECHNIQUES

BASIC MATHEMATICAL TECHNIQUES CHAPTER 1 ASIC MATHEMATICAL TECHNIQUES 1.1 Introduction To understand automata theory, one must have a strong foundation about discrete mathematics. Discrete mathematics is a branch of mathematics dealing

More information

Characterizing Geometric Designs

Characterizing Geometric Designs Rendiconti di Matematica, Serie VII Volume 30, Roma (2010), 111-120 Characterizing Geometric Designs To Marialuisa J. de Resmini on the occasion of her retirement DIETER JUNGNICKEL Abstract: We conjecture

More information

A general Stone representation theorem

A general Stone representation theorem arxiv:math/0608384v1 [math.lo] 15 Aug 2006 A general Stone representation theorem Mirna; after a paper by A. Jung and P. Sünderhauf and notes by G. Plebanek September 10, 2018 This note contains a Stone-style

More information

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs Colleen M. Swanson Computer Science & Engineering Division University of Michigan Ann Arbor, MI 48109,

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture http://www.ee.washington.edu/people/faculty/bilmes/classes/eeb_spring_0/ Prof. Jeff Bilmes University of

More information

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups Journal of Algebraic Combinatorics 12 (2000), 123 130 c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Tactical Decompositions of Steiner Systems and Orbits of Projective Groups KELDON

More information

Normed Vector Spaces and Double Duals

Normed Vector Spaces and Double Duals Normed Vector Spaces and Double Duals Mathematics 481/525 In this note we look at a number of infinite-dimensional R-vector spaces that arise in analysis, and we consider their dual and double dual spaces

More information

Latin squares: Equivalents and equivalence

Latin squares: Equivalents and equivalence Latin squares: Equivalents and equivalence 1 Introduction This essay describes some mathematical structures equivalent to Latin squares and some notions of equivalence of such structures. According to

More information

Journal of Combinatorial Theory, Series A

Journal of Combinatorial Theory, Series A Journal of Combinatorial Theory, Series A 118 (2011) 623 633 Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A www.elsevier.com/locate/jcta Characterizing geometric designs,

More information

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 49 (2008), No. 2, 341-368. Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems Ma lgorzata

More information

DUAL LINEAR SPACES GENERATED BY A NON-DESARGUESIAN CONFIGURATION

DUAL LINEAR SPACES GENERATED BY A NON-DESARGUESIAN CONFIGURATION DUAL LINEAR SPACES GENERATED BY A NON-DESARGUESIAN CONFIGURATION J.B. NATION AND JIAJIA Y.G. SEFFROOD Abstract. We describe a method to try to construct non-desarguesian projective planes of a given finite

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mathematics SKE, Strand J STRAND J: TRANSFORMATIONS, VECTORS and MATRICES J4 Matrices Text Contents * * * * Section J4. Matrices: Addition and Subtraction J4.2 Matrices: Multiplication J4.3 Inverse Matrices:

More information

Systems of distinct representatives/1

Systems of distinct representatives/1 Systems of distinct representatives 1 SDRs and Hall s Theorem Let (X 1,...,X n ) be a family of subsets of a set A, indexed by the first n natural numbers. (We allow some of the sets to be equal.) A system

More information

A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q)

A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q) A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q) Joris De Kaey and Hendrik Van Maldeghem Ghent University, Department of Pure Mathematics and Computer

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg Undefined Terms: Point, Line, Incident, Between, Congruent. Incidence Axioms:

More information

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces J. A. Thas H. Van Maldeghem 1 Introduction Definition 1.1 A (finite) generalized quadrangle (GQ) S = (P, B, I) is a point-line incidence

More information

An analytic proof of the theorems of Pappus and Desargues

An analytic proof of the theorems of Pappus and Desargues Note di Matematica 22, n. 1, 2003, 99 106. An analtic proof of the theorems of Pappus and Desargues Erwin Kleinfeld and Tuong Ton-That Department of Mathematics, The Universit of Iowa, Iowa Cit, IA 52242,

More information

Boolean Inner-Product Spaces and Boolean Matrices

Boolean Inner-Product Spaces and Boolean Matrices Boolean Inner-Product Spaces and Boolean Matrices Stan Gudder Department of Mathematics, University of Denver, Denver CO 80208 Frédéric Latrémolière Department of Mathematics, University of Denver, Denver

More information

Definition. Example: In Z 13

Definition. Example: In Z 13 Difference Sets Definition Suppose that G = (G,+) is a finite group of order v with identity 0 written additively but not necessarily abelian. A (v,k,λ)-difference set in G is a subset D of G of size k

More information

Power Round: Geometry Revisited

Power Round: Geometry Revisited Power Round: Geometry Revisited Stobaeus (one of Euclid s students): But what shall I get by learning these things? Euclid to his slave: Give him three pence, since he must make gain out of what he learns.

More information

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract Permutation groups Whatever you have to do with a structure-endowed entity Σ try to determine its group of automorphisms... You can expect to gain a deep insight into the constitution of Σ in this way.

More information

Generalized Veronesean embeddings of projective spaces, Part II. The lax case.

Generalized Veronesean embeddings of projective spaces, Part II. The lax case. Generalized Veronesean embeddings of projective spaces, Part II. The lax case. Z. Akça A. Bayar S. Ekmekçi R. Kaya J. A. Thas H. Van Maldeghem Abstract We classify all embeddings θ : PG(n, K) PG(d, F),

More information

α-flokki and Partial α-flokki

α-flokki and Partial α-flokki Innovations in Incidence Geometry Volume 00 (XXXX), Pages 000 000 ISSN 1781-6475 α-flokki and Partial α-flokki W. E. Cherowitzo N. L. Johnson O. Vega Abstract Connections are made between deficiency one

More information

β α : α β We say that is symmetric if. One special symmetric subset is the diagonal

β α : α β We say that is symmetric if. One special symmetric subset is the diagonal Chapter Association chemes. Partitions Association schemes are about relations between pairs of elements of a set Ω. In this book Ω will always be finite. Recall that Ω Ω is the set of ordered pairs of

More information

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS M. N. ELLINGHAM AND JUSTIN Z. SCHROEDER In memory of Mike Albertson. Abstract. A distinguishing partition for an action of a group Γ on a set

More information

A Course in Combinatorics

A Course in Combinatorics A Course in Combinatorics J. H. van Lint Technical Universüy of Eindhoven and R. M. Wilson California Institute of Technology H CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface xi 1. Graphs 1 Terminology of

More information

A. Incorrect! Replacing is not a method for solving systems of equations.

A. Incorrect! Replacing is not a method for solving systems of equations. ACT Math and Science - Problem Drill 20: Systems of Equations No. 1 of 10 1. What methods were presented to solve systems of equations? (A) Graphing, replacing, and substitution. (B) Solving, replacing,

More information

Some open conjectures on codes from planes

Some open conjectures on codes from planes Some open conjectures on codes from planes J. D. Key keyj@clemson.edu www.math.clemson.edu/ keyj - ICM 2014 Satellite Conference Algebraic Coding Theory Aug. 11 - Aug. 12 J. D. Key (keyj@clemson.edu) Codes

More information

THE NUMBER OF POINTS IN A COMBINATORIAL GEOMETRY WITH NO 8-POINT-LINE MINORS

THE NUMBER OF POINTS IN A COMBINATORIAL GEOMETRY WITH NO 8-POINT-LINE MINORS THE NUMBER OF POINTS IN A COMBINATORIAL GEOMETRY WITH NO 8-POINT-LINE MINORS JOSEPH E. BONIN AND JOSEPH P. S. KUNG ABSTRACT. We show that when n is greater than 3, the number of points in a combinatorial

More information

MULTIPLICITIES OF MONOMIAL IDEALS

MULTIPLICITIES OF MONOMIAL IDEALS MULTIPLICITIES OF MONOMIAL IDEALS JÜRGEN HERZOG AND HEMA SRINIVASAN Introduction Let S = K[x 1 x n ] be a polynomial ring over a field K with standard grading, I S a graded ideal. The multiplicity of S/I

More information

SUMS PROBLEM COMPETITION, 2000

SUMS PROBLEM COMPETITION, 2000 SUMS ROBLEM COMETITION, 2000 SOLUTIONS 1 The result is well known, and called Morley s Theorem Many proofs are known See for example HSM Coxeter, Introduction to Geometry, page 23 2 If the number of vertices,

More information

Welsh s problem on the number of bases of matroids

Welsh s problem on the number of bases of matroids Welsh s problem on the number of bases of matroids Edward S. T. Fan 1 and Tony W. H. Wong 2 1 Department of Mathematics, California Institute of Technology 2 Department of Mathematics, Kutztown University

More information

Math 121 Homework 5: Notes on Selected Problems

Math 121 Homework 5: Notes on Selected Problems Math 121 Homework 5: Notes on Selected Problems 12.1.2. Let M be a module over the integral domain R. (a) Assume that M has rank n and that x 1,..., x n is any maximal set of linearly independent elements

More information

Introduction to Block Designs

Introduction to Block Designs School of Electrical Engineering and Computer Science University of Ottawa lucia@eecs.uottawa.ca Winter 2017 What is Design Theory? Combinatorial design theory deals with the arrangement of elements into

More information

Relative Hemisystems on the Hermitian Surface

Relative Hemisystems on the Hermitian Surface Relative Hemisystems on the Hermitian Surface Author: Melissa Lee School of Mathematics and Statistics Supervisors: Dr. John Bamberg Dr. Eric Swartz School of Mathematics and Statistics This thesis is

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2009-03-26) Logic Rule 0 No unstated assumptions may be used in a proof.

More information

Flag-Transitive Linear Spaces and Line Spreads of Projective Spaces. Michael Pauley

Flag-Transitive Linear Spaces and Line Spreads of Projective Spaces. Michael Pauley Flag-Transitive Linear Spaces and Line Spreads of Projective Spaces Michael Pauley April 28, 2006 Abstract A linear space is an incidence structure of points and lines having the property that there is

More information

Mathematics Review for Business PhD Students Lecture Notes

Mathematics Review for Business PhD Students Lecture Notes Mathematics Review for Business PhD Students Lecture Notes Anthony M. Marino Department of Finance and Business Economics Marshall School of Business University of Southern California Los Angeles, CA 90089-0804

More information

D-bounded Distance-Regular Graphs

D-bounded Distance-Regular Graphs D-bounded Distance-Regular Graphs CHIH-WEN WENG 53706 Abstract Let Γ = (X, R) denote a distance-regular graph with diameter D 3 and distance function δ. A (vertex) subgraph X is said to be weak-geodetically

More information

arxiv: v2 [math.ho] 10 May 2018

arxiv: v2 [math.ho] 10 May 2018 Constructive Harmonic Conjugates Mark Mandelkern arxiv:1805.00978v2 [math.ho] 10 May 2018 Abstract In the study of the real projective plane, harmonic conjugates have an essential role, with applications

More information

0.2 Vector spaces. J.A.Beachy 1

0.2 Vector spaces. J.A.Beachy 1 J.A.Beachy 1 0.2 Vector spaces I m going to begin this section at a rather basic level, giving the definitions of a field and of a vector space in much that same detail as you would have met them in a

More information

Two Remarks on Blocking Sets and Nuclei in Planes of Prime Order

Two Remarks on Blocking Sets and Nuclei in Planes of Prime Order Designs, Codes and Cryptography, 10, 9 39 (1997) c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Two Remarks on Blocking Sets and Nuclei in Planes of Prime Order ANDRÁS GÁCS

More information

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively.

This class will demonstrate the use of bijections to solve certain combinatorial problems simply and effectively. . Induction This class will demonstrate the fundamental problem solving technique of mathematical induction. Example Problem: Prove that for every positive integer n there exists an n-digit number divisible

More information

Planar and Affine Spaces

Planar and Affine Spaces Planar and Affine Spaces Pýnar Anapa İbrahim Günaltılı Hendrik Van Maldeghem Abstract In this note, we characterize finite 3-dimensional affine spaces as the only linear spaces endowed with set Ω of proper

More information

Fundamentals of Pure Mathematics - Problem Sheet

Fundamentals of Pure Mathematics - Problem Sheet Fundamentals of Pure Mathematics - Problem Sheet ( ) = Straightforward but illustrates a basic idea (*) = Harder Note: R, Z denote the real numbers, integers, etc. assumed to be real numbers. In questions

More information

Chapter 10 Combinatorial Designs

Chapter 10 Combinatorial Designs Chapter 10 Combinatorial Designs BIBD Example (a,b,c) (a,b,d) (a,c,e) (a,d,f) (a,e,f) (b,c,f) (b,d,e) (b,e,f) (c,d,e) (c,d,f) Here are 10 subsets of the 6 element set {a, b, c, d, e, f }. BIBD Definition

More information

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( )

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg ( ) Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg (2005-02-16) Logic Rules (Greenberg): Logic Rule 1 Allowable justifications.

More information

A Characterization of (3+1)-Free Posets

A Characterization of (3+1)-Free Posets Journal of Combinatorial Theory, Series A 93, 231241 (2001) doi:10.1006jcta.2000.3075, available online at http:www.idealibrary.com on A Characterization of (3+1)-Free Posets Mark Skandera Department of

More information

* 8 Groups, with Appendix containing Rings and Fields.

* 8 Groups, with Appendix containing Rings and Fields. * 8 Groups, with Appendix containing Rings and Fields Binary Operations Definition We say that is a binary operation on a set S if, and only if, a, b, a b S Implicit in this definition is the idea that

More information

Lacunary polynomials and finite geometry

Lacunary polynomials and finite geometry Tamás Szőnyi ELTE, CAI HAS June 24th, 2013, Lille, France Fully reducible, and lacunary polynomials Definition A polynomial over a field F is called fully reducible if it factors into linear factors over

More information

Topics Related to Combinatorial Designs

Topics Related to Combinatorial Designs Postgraduate notes 2006/07 Topics Related to Combinatorial Designs 1. Designs. A combinatorial design D consists of a nonempty finite set S = {p 1,..., p v } of points or varieties, and a nonempty family

More information

Neutral Geometry. October 25, c 2009 Charles Delman

Neutral Geometry. October 25, c 2009 Charles Delman Neutral Geometry October 25, 2009 c 2009 Charles Delman Taking Stock: where we have been; where we are going Set Theory & Logic Terms of Geometry: points, lines, incidence, betweenness, congruence. Incidence

More information

Combinatorics for algebraic geometers

Combinatorics for algebraic geometers Combinatorics for algebraic geometers Calculations in enumerative geometry Maria Monks March 17, 214 Motivation Enumerative geometry In the late 18 s, Hermann Schubert investigated problems in what is

More information

Partial cubes: structures, characterizations, and constructions

Partial cubes: structures, characterizations, and constructions Partial cubes: structures, characterizations, and constructions Sergei Ovchinnikov San Francisco State University, Mathematics Department, 1600 Holloway Ave., San Francisco, CA 94132 Abstract Partial cubes

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

T ((x 1, x 2,..., x n )) = + x x 3. , x 1. x 3. Each of the four coordinates in the range is a linear combination of the three variables x 1

T ((x 1, x 2,..., x n )) = + x x 3. , x 1. x 3. Each of the four coordinates in the range is a linear combination of the three variables x 1 MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Orthogonal Arrays & Codes

Orthogonal Arrays & Codes Orthogonal Arrays & Codes Orthogonal Arrays - Redux An orthogonal array of strength t, a t-(v,k,λ)-oa, is a λv t x k array of v symbols, such that in any t columns of the array every one of the possible

More information

Matrices. A matrix is a method of writing a set of numbers using rows and columns. Cells in a matrix can be referenced in the form.

Matrices. A matrix is a method of writing a set of numbers using rows and columns. Cells in a matrix can be referenced in the form. Matrices A matrix is a method of writing a set of numbers using rows and columns. 1 2 3 4 3 2 1 5 7 2 5 4 2 0 5 10 12 8 4 9 25 30 1 1 Reading Information from a Matrix Cells in a matrix can be referenced

More information

Generalised quadrangles with a group of automorphisms acting primitively on points and lines

Generalised quadrangles with a group of automorphisms acting primitively on points and lines Generalised quadrangles with a group of automorphisms acting primitively on points and lines John Bamberg a, Michael Giudici a, Joy Morris b, Gordon F. Royle a, Pablo Spiga a a The Centre for the Mathematics

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

a 2 + b 2 = (p 2 q 2 ) 2 + 4p 2 q 2 = (p 2 + q 2 ) 2 = c 2,

a 2 + b 2 = (p 2 q 2 ) 2 + 4p 2 q 2 = (p 2 + q 2 ) 2 = c 2, 5.3. Pythagorean triples Definition. A Pythagorean triple is a set (a, b, c) of three integers such that (in order) a 2 + b 2 c 2. We may as well suppose that all of a, b, c are non-zero, and positive.

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

CMA Geometry Unit 1 Introduction Week 2 Notes

CMA Geometry Unit 1 Introduction Week 2 Notes CMA Geometry Unit 1 Introduction Week 2 Notes Assignment: 9. Defined Terms: Definitions betweenness of points collinear points coplanar points space bisector of a segment length of a segment line segment

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

STEINER 2-DESIGNS S(2, 4, 28) WITH NONTRIVIAL AUTOMORPHISMS. Vedran Krčadinac Department of Mathematics, University of Zagreb, Croatia

STEINER 2-DESIGNS S(2, 4, 28) WITH NONTRIVIAL AUTOMORPHISMS. Vedran Krčadinac Department of Mathematics, University of Zagreb, Croatia GLASNIK MATEMATIČKI Vol. 37(57)(2002), 259 268 STEINER 2-DESIGNS S(2, 4, 28) WITH NONTRIVIAL AUTOMORPHISMS Vedran Krčadinac Department of Mathematics, University of Zagreb, Croatia Abstract. In this article

More information

Unless otherwise specified, V denotes an arbitrary finite-dimensional vector space.

Unless otherwise specified, V denotes an arbitrary finite-dimensional vector space. MAT 90 // 0 points Exam Solutions Unless otherwise specified, V denotes an arbitrary finite-dimensional vector space..(0) Prove: a central arrangement A in V is essential if and only if the dual projective

More information

MODEL ANSWERS TO HWK #3

MODEL ANSWERS TO HWK #3 MODEL ANSWERS TO HWK #3 1. Suppose that the point p = [v] and that the plane H corresponds to W V. Then a line l containing p, contained in H is spanned by the vector v and a vector w W, so that as a point

More information

Lacunary Polynomials over Finite Fields Course notes

Lacunary Polynomials over Finite Fields Course notes Lacunary Polynomials over Finite Fields Course notes Javier Herranz Abstract This is a summary of the course Lacunary Polynomials over Finite Fields, given by Simeon Ball, from the University of London,

More information

Automorphism Groups of Some Designs of Steiner Triple Systems and the Automorphism Groups of their Block Intersection Graphs.

Automorphism Groups of Some Designs of Steiner Triple Systems and the Automorphism Groups of their Block Intersection Graphs. Automorphism Groups of Some Designs of Steiner Triple Systems and the Automorphism Groups of their Block Intersection Graphs. by Sunday Vodah a thesis submitted in fulfillment of the requirements for the

More information