Analytical air pollution modeling T. Tirabassi ABSTRACT

Size: px
Start display at page:

Download "Analytical air pollution modeling T. Tirabassi ABSTRACT"

Transcription

1 Analytical air pollution modeling T. Tirabassi ABSTRACT In this paper we present some advanced practical models that use solutions of the advection-diffusion equation that accept wind and eddy diffusivity profiles that are power functions of the height. The performance of these models has been assessed with success in cases of both ground level sources as well as elevated sources. INTRODUCTION Atmospheric-dispersion modelling usually takes accounts of atmospheric turbulence by means the method based on Pasquill-Gifford classes. These are utilised where the meteorological state of the atmospheric boundary layer is classified in a simple way based on surface measurements, and where the dispersion from a source is estimated by assuming simple formulae for concentration distribution, in which the dispersion parameters depend simply on downwind distance and the meteorological state of boundary layer. In the summary by Weil [1] of the American Meteorological Society and United State Environmental Protection Agency Workshop is suggested that similarity approach replaces the classical Pasquill-Gifford stability classification. Experimental work and modelling efforts have attempted to parameterized the surface fluxes of momentum, heat and moisture in terms of routinely measured meteorological parameters (e.g. Holtslag and van Ulden [2]; van Ulden and Holtslag 3]; Trombetti et al. [4]; Beljaars and Holtslag [5]). Various organisation word-wide are introducing advanced modelling techniques that make use of the above recent researches on the meteorological state of the boundary layer. These advanced modelling techniques (van Ulden [6]; Berkowicz et al. [7]; Tirabassi [8]; Hanna and Paine [9]; Carruthers [10]) contain algorithms for calculating the main factors that determine air pollution diffusion in terms of the fundamental

2 524 Computer Simulation parameters the Monin-Obukhov length scale. Within this framework, we have developed Several model codes that employ an analytical solution which is not Gaussian but it allows for variations in the wind and exchange coefficients with height. ANALYTICAL SOLUTION OF THE ADVECTION-DIFFFUSION EQUATION Roberts [11] presented a bidimensional solution, for ground level sources only, in cases where both the wind speed (u) and vertical diffusion coefficients (K, ) follow power laws as a function of height (z). That is: u = u, (z/z, ) = K, = K, (z/z, / where z, is the height where u, and K, are evaluated. Rounds [12] obtained a bidimensional solution valid for elevated sources, but only for linear profiles of K.. Smith [13] resolved the bidimensional equation of transport and diffusion with u and K. power functions of height with the exponents of these functions following the conjugate law of Schmidt (that is: 'wind exponent' = l-'k. exponent'). Smith [14] also presented a solution in the case of constant u, but K. following: ^=^*(#-z)* where K^isa constant and a and b can be: a > 0 and b = 0 a = 0 and b > 0 for 0 < z < H a = 1 and b > 0 for 0 < z < H a = 1 and b = 0 for 0 < z < H/2 ; a = 0 and b = 1 for H/2 < z < H where H is the height of the atmospheric boundary layer. Scriven and Fisher [15] proposed a solution with constant u and K. as: K, = z for 0 < z < z, K, = K, (z, ) for z, < z < H where z, is a predetermined height (generally, the height of the surface layer). This solution allows (as boundary conditions) a net flow of material towards the ground: where V^ is the deposition velocity. The solution of Scriven and Fisher has been widely used in the United Kingdom for long range transport of pollutant.

3 Computer Simulation 525 Yeh and Huang [16] and Berlyand [17] published bidimensional solutions for elevated sources with u and K. following power profiles, but for a unbound atmosphere. That is: K, ^ =0 atz = QO dz Demuth [18] put forward a solution with the same conditions, but for a vertically limited boundary layer. That is: *\^1 K. =0 atz = H By applying the Monin-Obukhov similarity theory to diffusion, van Ulden [6] derived a solution for vertical diffusion from continuous sources near the ground only with the assumption that u and K. follow power profiles. His results are similar to Roberts', but he provided a model for nonground level sources, but applicable to sources within the surface layer. Nieuwstadt [19] presented a solution which was a particular case of Smith's [14] solution noted above. Subsequently, Nieuwstadt and Haan [20] extended that solution to the case of a growing boundary layer height. Catalano [21], in turn, extended the latter solution to the case of non-zero mean vertical wind profiles. ANALYTICAL MODELS We have developed some models that utilise the two dimensional analytical solutions of the advection diffusion equation proposed by Yeh and Huang [16] and Berlyand [17] for a unbounded boundary layer and by Demuth [18] for a bounded one, while the cross-wind dispersion is simulated by a Gaussian term. That is: c\, C(x,y.z) = /= exp v27rcr. y~ (1) where Cy is the cross-wind integrated concentrations, y is the cross-wind axes and c^ is the lateral diffusion parameter. The solutions of Yeh and Huang [16] and Berlyand [17] can be written: C - while the Demuth' solutions [19] is:

4 526 Computer Simulation C =./%-'(&(,)) exp - where x is the along-wind direction, Q the source emission, h the source effective height, H the mixing height, A = a + /?-2, v=(l-/?)/2, r = (a+l)/a, r = p-a, R = h/h, p = (l-/?)/2, q = A/2, J, and I, represent the Bessel function and modified Bessel function of first kind and order y and v, p^ the roots of J^. Generally the models parameterize the wind profiles approximating actual profiles with power low which preserve the speed at the effective source height and the integral of the profile between ground level and effective height. That is, in mathematical terms: u/h) = u, (h) where u^is the power law fitting and u^ is the observed profile. From the above condition a single formula for the exponent of power law wind profile can be obtained: Similar conditions for the diffusion coefficient profile give: (4) If the effective height source h is less than the surface layer height then the latter is used instead of h. We have set up four different analytical model based on the above solutions: KAPPAG, KAPPAG-LT, CISP and MAOC.

5 Computer Simulation 527 The KAPPAG model The model can handle multiple sources and multiple receptors, simulating time-varying conditions in which each time interval (e.g., 1 hour) is treated as a stationary case. The model output is a statistical summary of the concentrations computed at each receptor, during each time step, and due to each source. Partial and total concentrations are computed for hourly and multi-hour averages. Highest and second- highest values are also evaluated. The performances of KAPPAG model has been assessed with success by comparing ground level concentration estimates with SO, relatively to ground level releases (Tagliazucca et al. [23] and with SF^ elevated releases (Tirabassi et al. [24]). data relative to The KAPPAG-LT model KAPPAG-LT is the long term version of KAPPAG and it estimates annual ground level concentrations. Its performance has been assessed with success against SO, data from heavily industrialised area (Tirabassi et al. [25]). The CISP model CISP (Tirabassi and Rizza, [26]) is a screen model that provides a method for estimating maximum ground level concentrations from a single point source as a function of stability and wind speed. In fact, it is designed for the lowcost, detailed screening of point sources to determine maximum one-hour concentrations and to decide whether use of one of the more sophisticated models is required. CISP model is regarded as a useful tool for a screen analysis, in that it is a relatively simple estimation technique providing conservative estimates of the air quality impact of a specific source or source category. CISP performance in evaluating maximum ground-level concentrations has been compared with that of the U.S.EPA Regulatory PTPLU2 Gaussian model (Tirabassi and Rizza [26]). The MAOC model MAOC is a model for elevated point sources in complex-terrain (Tirabassi and Rizza [27]). The simulation of terrain-induced distorsion of flow streamlines is accounted for by modifying the effective plume height. That is: h' = Hi + A h where Hi is the hill height at the receptor considered and A is an empirical factor. As the plume passes over the mountains and streamlines converge, that effective stack height decreases from h to a new value h'. In stable conditions, the plume may not have enough kinetic energy to climb the mountain. In this case, a critical height is defined so that, if h is less than the critical height, the plume will impinge on the mountain, otherwise it passes over the crest of the hill. Model performances have been evaluated using

6 528 Computer Simulation wind tunnel measurements of pollutant concentrations from elevated source in the presence of rough hills and a neutrally stable flow and have been compared with that of COMPLEX 1, the Gaussian model proposed by the U.S.EPA. CONCLUSIONS In practice most of the estimates of dispersion of gas and particulate in the boundary layer are based on the Gaussian approach. A basic assumption for the application of this approach is that the material is dispersed by homogenous turbulence. However, due to the presence of the ground, turbulence is usually not homogeneous in the vertical direction. In this paper we have presented some advanced practical models that use solutions of the advection-diffusion equation that accept wind and eddy diffusivity profiles that are power functions of the height, that is, based on more realistic assumptions. The performance of these models has been assessed with success in cases of both ground level sources as well as elevated sources. REFERENCES 1. Weil J.C. 'Updating applied diffusion models' J. Clim. AppL Meteor., Vol. 24, pp , Holtslag A.A.M. and van Ulden A.P. 'A simple scheme for daytime estimation of surface fluxes from routine weather data' J. dim. AppL Mfffor, Vol. 22, pp , Van Ulden A.P. and Holstlag A.A.M. 'Estimation of atmospheric boundary layer parameters for diffusion applications' J. dim. AppL Mf%w., Vol. 24, pp , Trombetti F.,Tagliazucca M., Tampieri F. and Tirabassi T. 'Evaluation of similarity scales in the stratified surface layer using wind speed and temperature gradient' Atmos. Environ., Vol 20, pp , Beljaars A.C.M. and Holtslag A,A.M. 'A software library for the calculation of surface fluxes over land and sea' Environ. Soft., Vol. 5, pp , Van Ulden A.P. 'Simple estimates for vertical diffusion from sources near the ground' Atmos. Environ., Vol. 12, pp , Berkowicz R.R., H.R. Olesen and U. Torp The Danish Gaussian air pollution model (OML): description, test and sensivity analysis in view of regulatory applications' Proceeding of NATO-CCMS 16th Int. Meeting on Air Poll. Modelling and Its Applications, C. De Wispelaere, F.A.

7 Computer Simulation 529 Schiermeier and N.V: Gillani Ed. (Plenum Press, New York, N.Y (USA), pp , Tirabassi T. 'Analytical air pollution advection and diffusion models' Wafer, Xz'r<W&%'/ /W/., Vol. 47, pp , Hanna S.R. and Paine R.J. 'Hybrid plume dispersion model (HPDM) development and evaluation' J. Appl Meteor., Vol.28, pp Carruthers D.J., Holroyd R.J., Hunt J.C.R., Weng W.S., Robins A.G., Apsley D.D., Smith F.B., Thomson D.J. and Hudson B. 'UK atmospheric dispersion modelling system' In Air Pollution Modeling and its Application IX (ed. van Dop H. and Kallos G.) pp , Proceeding Modeling and its Application, Greta, Greece, Sept 29 - Oct. 4, Plenum Press, New York, Roberts O.F.T. The theoretical scattering of smoke in a turbulent atmosphere' P/w. #oy. &;c., Vol. 104, pp , Rounds W. 'Solutions of the two -dimensional diffusion equation' Trans. )\y. CMo/?, Vol. 36, pp , Smith F.B. The diffusion of smoke from a continuous elevated point source into a turbulent atmosphere' J. Fluid Mech Vol 2 pp Smith F.B. Convection-diffusion processes below a stable layer. Meteorological Research Committee, N and 1073, London. IS.Scriven R.A. and Fisher B.A. The long range transport of airborne material and its removal by deposition and washout-ii. The effect of turbulent diffusion' Amos. Environ., Vol. 9, pp. 59-, Yeh G.T. and Huang C.H. Three-dimensional air pollutant modeling in the lower atmosphere' Bound. Layer Meteor., Vol. 9, pp , Berlyand M.Y. Contemporary problems of atmospheric diffusion and pollution of the atmosphere Translated version by NERC, US EPA Raleigh, NC, U.S.A., 1975, 18. Demuth C. 'A contribution to the analytical steady solution of the diffusion equation for line sources' Atmos. Environ., Vol 12 pp , 1978.

8 530 Computer Simulation 19. Nieuwsadt F.T.M. 'An analytical solution of the time-dependent, onedimensional diffusion equation in the atmospheric boundary layer' Armas. Environ., Vol. 14, pp , Nieuwstadt F.T.M. and de Haan B.J. 'An analytical solution of onedimensional diffusion equation in a non-stationary boundary layer with an application to inversion rise fumigation' Atmos. Environ., Vol. 15, pp , Catalano G.D. 'An analytical solution to the turbulent diffusion equation with mean vertical wind' Proceeding of 16t Southeastern Sem. Thermal. ScL, pp , Miami, Fl, U.S.A., April, Huang C.H. 'A theory of dispersion in turbulent shear flow' Atmos. %., Vol. 13, pp , Tagliazucca M., Nanni T. and Tirabassi T. 'An analytical dispersion model for sources in the surface layer' Nuovo Cimento, Vol. 8C, pp , Tirabassi T., Tagliazucca M. and Zannetti P. 'KAPPA-G, a non-gaussian plume dispersion model: description and evaluation against tracer measurements' JAPCA, vol. 36, pp , Tirabssi T., Tagliazucca M. and Paggi P. 'A climatological model of dispersion in an inhomogeneous boundary layer' Atmos. Environ., Vol. 23, pp , Tirabassi T. and Rizza U. 'An analytical model for a screen evaluation of the environmental impact from a single point source' Nuovo Cimento, Vol. 15C, pp , Tirabassi T. and Rizza U. 'An air pollution model for complex terrain' in Air Pollution (Ed. Zannetti P., Brebbia C.A., Garcia Gardea J.E. and Ayala Milian G.), pp , Proceeding of Air Pollution conference, Monterrey, Mexico, Computational Mechanics Pub. (Southampton) and Elsevier (Amsterdam), 1993.

Abstract. 1. Introduction

Abstract. 1. Introduction Evaluation of air pollution deposition in Venice lagoon T. Tirabassi,* P. Martino,* G. Catenacci,' C. Cavicchioli' "Institute offisbatofc.n.r., via Gobetti 101, Bologna, Italy *Institute oflsiata ofc.n.r.,

More information

BOUNDARY LAYER STRUCTURE SPECIFICATION

BOUNDARY LAYER STRUCTURE SPECIFICATION August 2017 P09/01X/17 BOUNDARY LAYER STRUCTURE SPECIFICATION CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and ADMS-Airport 4.1. Where information refers to a subset of

More information

Instituto di Fisica, Universitd 'La Sapienza', Rome, Italy

Instituto di Fisica, Universitd 'La Sapienza', Rome, Italy Development and application of a longterm atmospheric dispersion model for environmental impact assessment purposes F. Desiato", R. Inghilesi^ ^National Environmental Protection Agency Instituto di Fisica,

More information

Predicting concentration fluctuations with a puffparticle

Predicting concentration fluctuations with a puffparticle Int. J. Environment and Pollution, Vol. 16, Nos. 1 6, 2001 49 Predicting concentration fluctuations with a puffparticle model P. de Haan INFRAS, Muehlemattstr. 45, 3007 Bern, Switzerland e-mail: peter.dehaan@infras.ch

More information

Abstract. Introduction

Abstract. Introduction Evaluation of the ISCST2 model with measurements of SO^ concentrations in the greater Cape Town region D.A. Dracoulides, R.K. Dutkiewicz Energy Research Institute, University of Cape Town, P.O. Box 207,

More information

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 A puff-particle dispersion model P. de Haan and M. W. Rotach Swiss Federal Institute of Technology, GGIETH, Winterthurerstrasse 190, 8057 Zürich,

More information

A simple operative formula for ground level concentration from a point source

A simple operative formula for ground level concentration from a point source Air Pollution XX 3 A simple operative formula for ground level concentration from a point source T. Tirabassi, M. T. Vilhena & D. Buske 3 Institute of Atmospheric cience and Climate (IAC-CNR), Bologna,

More information

Boundary Layer Parametrization for Atmospheric Diffusion Models by Meteorological Measurements at Ground Level.

Boundary Layer Parametrization for Atmospheric Diffusion Models by Meteorological Measurements at Ground Level. IL NUOVO CIMENTO VOL. 17 C, N. 2 Marzo-Aprile 1994 Boundary Layer Parametrization for Atmospheric Diffusion Models by Meteorological Measurements at Ground Level. R. BELLASIO('), G. LANZANI('), M. TAMPONI(2)

More information

ADMS 5 Flat Terrain Validation Kincaid, Indianapolis and Prairie Grass

ADMS 5 Flat Terrain Validation Kincaid, Indianapolis and Prairie Grass ADMS 5 Flat Terrain Validation Kincaid, Indianapolis and Prairie Grass Cambridge Environmental Research Consultants November 2016 1 Introduction This document presents a summary of ADMS model results compared

More information

EVALUATION OF NEW GENERATION ATMOSPHERIC DISPERSION MODELS

EVALUATION OF NEW GENERATION ATMOSPHERIC DISPERSION MODELS EVALUATION OF NEW GENERATION ATMOSPHERIC DISPERSION MODELS D.J. Hall*, A.M. Spanton*, M. Bennett**, F. Dunkerley**, R.F. Griffiths**, B.E.A. Fisher***, R.J. Timmis****. *Envirobods Ltd, 13, Badminton Close

More information

On flow separation under stable conditions: results from flow visualization in MATERHORN-X

On flow separation under stable conditions: results from flow visualization in MATERHORN-X On flow separation under stable conditions: results from flow visualization in MATERHORN-X Michael Thompson September 6 th 2013 4:45pm McKenna Hall, Notre Dame University of Notre Dame Notre Dame Environmental

More information

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece INTER-COMPARISON AND VALIDATION OF AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE S. Andronopoulos 1, D.G.E. Grigoriadis 1, I. Mavroidis 2, R.F. Griffiths 3 and J.G.

More information

Department of Meteorology University of Nairobi. Laboratory Manual. Micrometeorology and Air pollution SMR 407. Prof. Nzioka John Muthama

Department of Meteorology University of Nairobi. Laboratory Manual. Micrometeorology and Air pollution SMR 407. Prof. Nzioka John Muthama Department of Meteorology University of Nairobi Laboratory Manual Micrometeorology and Air pollution SMR 407 Prof. Nioka John Muthama Signature Date December 04 Version Lab : Introduction to the operations

More information

Footprints: outline Üllar Rannik University of Helsinki

Footprints: outline Üllar Rannik University of Helsinki Footprints: outline Üllar Rannik University of Helsinki -Concept of footprint and definitions -Analytical footprint models -Model by Korman and Meixner -Footprints for fluxes vs. concentrations -Footprints

More information

1.18 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN

1.18 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN .8 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN Joseph Levitin, Jari Härkönen, Jaakko Kukkonen and Juha Nikmo Israel Meteorological Service (IMS),

More information

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain Pure appl. geophys. 160 (2003) 395 404 0033 4553/03/020395 10 Ó Birkhäuser Verlag, Basel, 2003 Pure and Applied Geophysics A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds

More information

Dispersion for point sources CE 524 February

Dispersion for point sources CE 524 February Dispersion for point sources CE 524 February 2011 1 Concentration Air pollution law in most industrial countries based on concentration of contaminants NAAQS in US Need method dto predict concentrations

More information

int-rpnet.ariadne-t.gr "Atmospheric Research Team, Institute of Meteorology and Physics of the Atmospheric Environment, National

int-rpnet.ariadne-t.gr Atmospheric Research Team, Institute of Meteorology and Physics of the Atmospheric Environment, National Atmospheric stability in Athens, Greece, during winter and summer B.M. Synodinou* & H.D. Kambezidis^ nstitute of Nuclear Technology and Radiation Protection, Email: vana@zeus. int-rpnet.ariadne-t.gr "Atmospheric

More information

5S: Atmospheric Diffusion Model

5S: Atmospheric Diffusion Model 1. Physical model experiment (wind tunnel experiment case) Wind tunnel experiment is one of the proven methods for the estimation of atmospheric diffusion. The topography/ buildings models are set up into

More information

AERMOD Technical Forum

AERMOD Technical Forum AERMOD Technical Forum Roger W. Brode MACTEC Federal Programs, Inc. Research Triangle Park, NC EPA R/S/L Modelers Workshop San Diego, California May 16, 2006 Presentation Outline Brief History of AERMOD

More information

Follow this and additional works at:

Follow this and additional works at: International Congress on Environmental Modelling and Software Brigham Young University BYU ScholarsArchive 6th International Congress on Environmental Modelling and Software - Leipzig, Germany - July

More information

A First Order Pertubative Analysis of the Advection-Diffusion Equation for Pollutant Dispersion in the Atmospheric Boundary Layer

A First Order Pertubative Analysis of the Advection-Diffusion Equation for Pollutant Dispersion in the Atmospheric Boundary Layer American Journal of Environmental Engineering 203, 3(): 48-55 DOI: 0.5923/j.ajee.203030.07 A First Order Pertubative Analysis of the Advection-Diffusion Equation for Pollutant Dispersion in the Atmospheric

More information

Worldwide Data Quality Effects on PBL Short-Range Regulatory Air Dispersion Models

Worldwide Data Quality Effects on PBL Short-Range Regulatory Air Dispersion Models Worldwide Data Quality Effects on PBL Short-Range Regulatory Air Dispersion Models Jesse L. Thé 1, Russell Lee 2, Roger W. Brode 3 1 Lakes Environmental Software, -2 Philip St, Waterloo, ON, N2L 5J2, Canada

More information

ROAD SOURCE MODEL INTERCOMPARISON STUDY USING NEW AND EXISTING DATASETS

ROAD SOURCE MODEL INTERCOMPARISON STUDY USING NEW AND EXISTING DATASETS ROAD SOURCE MODEL INTERCOMPARISON STUDY USING NEW AND EXISTING DATASETS Jenny Stocker 1, David Heist 2, Christina Hood 1, Vlad Isakov 2, David Carruthers 1, Steven Perry 2, Michelle Snyder 2, Akula Venkatram

More information

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By:

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By: AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution Paper No. 33252 Prepared By: Anthony J Schroeder, CCM Managing Consultant TRINITY CONSULTANTS 7330 Woodland Drive Suite 225

More information

Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions

Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions Boundary-Layer Meteorol (2011) 138:475 491 DOI 10.1007/s10546-010-9565-1 ARTICLE Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions Wenjun Qian Akula Venkatram Received: 19 May

More information

Part III: Modeling atmospheric convective boundary layer (CBL) Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, USA

Part III: Modeling atmospheric convective boundary layer (CBL) Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, USA Physical modeling of atmospheric boundary layer flows Part III: Modeling atmospheric convective boundary layer (CBL) Outline Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, USA

More information

MODEL EVALUATION OF RIMPUFF WITHIN COMPLEX TERRAIN USING AN 41 AR RADIOLOGICAL DATASET. Leisa L. Dyer 1 and Poul Astrup 2

MODEL EVALUATION OF RIMPUFF WITHIN COMPLEX TERRAIN USING AN 41 AR RADIOLOGICAL DATASET. Leisa L. Dyer 1 and Poul Astrup 2 MODEL EVALUATION OF RIMPUFF WITHIN COMPLEX TERRAIN USING AN 41 AR RADIOLOGICAL DATASET Leisa L. Dyer 1 and Poul Astrup 2 1 Australian Nuclear Science and Technology Organisation (ANSTO), Quality, Safety,

More information

Optimisation of 85 Kr environmental monitoring to provide a validation of atmospheric dispersion models

Optimisation of 85 Kr environmental monitoring to provide a validation of atmospheric dispersion models Optimisation of 85 Kr environmental monitoring to provide a validation of atmospheric dispersion models T.G. Parker, R. A. Hill 2, I. Lowles 2, N. Chambers 2 and I. Coleman 2 BNFL, Sellafield, Seascale,

More information

A VALIDATION EXERCISE ON THE SAFE-AIR VIEW SOFTWARE. Joint Research Centre NDFM Ispra, Italy 2

A VALIDATION EXERCISE ON THE SAFE-AIR VIEW SOFTWARE. Joint Research Centre NDFM Ispra, Italy 2 A VALIDATION EXERCISE ON THE SAFE-AIR VIEW SOFTWARE F. D Alberti 1, F. d Amati 1, E. Canepa 2, G. Triacchini 3 1 Joint Research Centre NDFM Ispra, Italy 2 CNR INFM CNISM Department of Physics, University

More information

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Detlev Heinemann ForWind Center for Wind Energy Research Energy Meteorology Unit, Oldenburg University Contents Model Physics

More information

The following files are available for the EPRI Kincaid Run Data Set:

The following files are available for the EPRI Kincaid Run Data Set: November 4, 2011 The following files are available for the EPRI Kincaid Run Data Set: Informational Files KincaidDiscussion.pdf: This file [42KB] Logic Behind Kincaid SF6-Arcs.pdf: This file describes

More information

CFD calculations of the test 2-4 experiments. Author: G. de With

CFD calculations of the test 2-4 experiments. Author: G. de With CFD calculations of the test 2-4 experiments Author: G. de With 34. Model setup and boundary conditions Dimensions CFD model: x=1000m / y=100m / z=2000m. CFD Model: Transient simulation, with steady-state

More information

An intercomparison of two turbulence closure schemes and four parameterizations for stochastic dispersion models (*)

An intercomparison of two turbulence closure schemes and four parameterizations for stochastic dispersion models (*) IL NUOVO CIMENTO VOL. 20 C, N. 3 Maggio-Giugno 1997 An intercomparison of two turbulence closure schemes and four parameterizations for stochastic dispersion models (*) E. FERRERO ( 1 ), D. ANFOSSI ( 2

More information

Meteorological Data Collection, X/Q and D/Q, Critical Receptors

Meteorological Data Collection, X/Q and D/Q, Critical Receptors Meteorological Data Collection, X/Q and D/Q, Critical Receptors Ken Sejkora Entergy Nuclear Northeast Pilgrim Station Presented at the 23rd Annual RETS-REMP Workshop Training Session Westminster, CO /

More information

ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS

ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS Radi Sadek 1, Lionel Soulhac 1, Fabien Brocheton 2 and Emmanuel Buisson 2 1 Laboratoire de Mécanique des Fluides et d Acoustique,

More information

The refinement of a meteorological preprocessor for the urban environment. Ari Karppinen, Sylvain M. Joffre and Jaakko Kukkonen

The refinement of a meteorological preprocessor for the urban environment. Ari Karppinen, Sylvain M. Joffre and Jaakko Kukkonen Int. J. Environment and Pollution, Vol. 14, No. 1-6, 000 1 The refinement of a meteorological preprocessor for the urban environment Ari Karppinen, Slvain M. Joffre and Jaakko Kukkonen Finnish Meteorological

More information

Cambridge Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires

Cambridge Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires Helen Webster, Robert Beare, Benjamin Devenish, James Haywood, Adrian Lock and David Thomson Crown copyright 2007 Page 1 Outline

More information

The parametrization of the planetary boundary layer May 1992

The parametrization of the planetary boundary layer May 1992 The parametrization of the planetary boundary layer May 99 By Anton Beljaars European Centre for Medium-Range Weather Forecasts Table of contents. Introduction. The planetary boundary layer. Importance

More information

COMMENTS ON "FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER" Zbigniew Sorbjan

COMMENTS ON FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER Zbigniew Sorbjan COMMENTS ON "FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER" Zbigniew Sorbjan Department of Physics, Marquette University, Milwaukee, WI 5301, U.S.A. A comment

More information

ABSTRACT WHY A LIBRARY OF METEOROLOGICAL ROUTINES?

ABSTRACT WHY A LIBRARY OF METEOROLOGICAL ROUTINES? PBLJVEET. A software library for advanced meteorological and air quality data processing D. Fraternal!, R. Sozzi 6erw'z2 jtern'fon'o acrf, mo GaHWdz, gjf ^OOgg Cm^e//o Balsamo (MI), Italy ABSTRACT Advanced

More information

USE OF A STATEWIDE MESOSCALE AUTOMATED WEATHER STATION NETWORK FOR REAL-TIME OPERATIONAL ASSESSMENT OF NEAR-SURFACE DISPERSION CONDITIONS

USE OF A STATEWIDE MESOSCALE AUTOMATED WEATHER STATION NETWORK FOR REAL-TIME OPERATIONAL ASSESSMENT OF NEAR-SURFACE DISPERSION CONDITIONS JP3.3 USE OF A STATEWIDE MESOSCALE AUTOMATED WEATHER STATION NETWORK FOR REAL-TIME OPERATIONAL ASSESSMENT OF NEAR-SURFACE DISPERSION CONDITIONS J. D. Carlson * Oklahoma State University, Stillwater, Oklahoma

More information

Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1. Cambridge TRC Environmental Corporation 1. Lowell, Massachusetts USA 2

Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1. Cambridge TRC Environmental Corporation 1. Lowell, Massachusetts USA 2 Application of MM5 and CALPUFF to a Complex Terrain Environment in Eastern Iceland Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1 TRC Environmental Corporation 1 Lowell, Massachusetts

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

MESOSCALE AIR POLLUTION DISPERSION MODELS-II. LAGRANGIAN PUFF MODEL AND COMPARISON WITH EULERIAN GRID MODEL

MESOSCALE AIR POLLUTION DISPERSION MODELS-II. LAGRANGIAN PUFF MODEL AND COMPARISON WITH EULERIAN GRID MODEL Armosphwtc Enkwwwnr Vol 17. No. 2. pp. 267-274. 1983 00046981 83 020267-08 $03.000 Pruned,n Great Bntam Pergamon Press Ltd. MESOSCALE AIR POLLUTION DISPERSION MODELS-II. LAGRANGIAN PUFF MODEL AND COMPARISON

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Urban air pollution forecast based on the Gaussian and regression models M. Zickus', K. Kvietkus^ ' Vilnius University, Sauletekio 9, 2600 Vilnius, Lithuania * Institute of Physics, A. Gostauto 12, 2600

More information

PLUME RISE MODEL SPECIFICATION

PLUME RISE MODEL SPECIFICATION August 2017 P11/02Q/17 PLUME RISE MODEL SPECIFICATION University of Surrey (A G Robins), National Power (D D Apsley) and CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and

More information

1.14 A NEW MODEL VALIDATION DATABASE FOR EVALUATING AERMOD, NRPB R91 AND ADMS USING KRYPTON-85 DATA FROM BNFL SELLAFIELD

1.14 A NEW MODEL VALIDATION DATABASE FOR EVALUATING AERMOD, NRPB R91 AND ADMS USING KRYPTON-85 DATA FROM BNFL SELLAFIELD 1.14 A NEW MODEL VALIDATION DATABASE FOR EVALUATING AERMOD, NRPB R91 AND ADMS USING KRYPTON-85 DATA FROM BNFL SELLAFIELD Richard Hill 1, John Taylor 1, Ian Lowles 1, Kathryn Emmerson 1 and Tim Parker 2

More information

A Reexamination of the Emergy Input to a System from the Wind

A Reexamination of the Emergy Input to a System from the Wind Emergy Synthesis 9, Proceedings of the 9 th Biennial Emergy Conference (2017) 7 A Reexamination of the Emergy Input to a System from the Wind Daniel E. Campbell, Laura E. Erban ABSTRACT The wind energy

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

AIRCRAFT MEASUREMENTS OF ROUGHNESS LENGTHS FOR SENSIBLE AND LATENT HEAT OVER BROKEN SEA ICE

AIRCRAFT MEASUREMENTS OF ROUGHNESS LENGTHS FOR SENSIBLE AND LATENT HEAT OVER BROKEN SEA ICE Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research AIRCRAFT

More information

Atmospheric Boundary Layers

Atmospheric Boundary Layers Lecture for International Summer School on the Atmospheric Boundary Layer, Les Houches, France, June 17, 2008 Atmospheric Boundary Layers Bert Holtslag Introducing the latest developments in theoretical

More information

A Real-Time Atmospheric Dispersion Modeling System

A Real-Time Atmospheric Dispersion Modeling System Preprint UCRL-JC-135120 A Real-Time Atmospheric Dispersion Modeling System J.S. Nasstrom, G. Sugiyama, J.M. Leone, Jr. and D.L. Ermak This article was submitted to 11 th Joint Conference on the Applications

More information

Part I: Dry Convection

Part I: Dry Convection Turbulent dispersion and chemical transformation in the atmospheric boundary layer: Part I: Dry Convection DISPERSION Thanks: Alessandro Dosio Jordi Vilà-Guerau de Arellano WA G E N I N G E N U N I VE

More information

SOME CHARACTERISTICS OF ATMOSPHERIC BOUNDARY LAYER OVER MAKASSAR

SOME CHARACTERISTICS OF ATMOSPHERIC BOUNDARY LAYER OVER MAKASSAR SPERMONDE (28) 4(): -6 ISSN: 246-56 EISSN: 264-549 SOME CHARACTERISTICS OF ATMOSPHERIC BOUNDARY LAYER OVER MAKASSAR ABSTRACT. Alimuddin Hamzah Assegaf *, Wasir Samad 2, Sakka Submitted: 4 January 28 Accepted:

More information

1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT

1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT 1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT Enrico Minguzzi 1 Marco Bedogni 2, Claudio Carnevale 3, and Guido Pirovano 4 1 Hydrometeorological Service of Emilia Romagna (SIM),

More information

Generating and Using Meteorological Data in AERMOD

Generating and Using Meteorological Data in AERMOD Generating and Using Meteorological Data in AERMOD June 26, 2012 Prepared by: George J. Schewe, CCM, QEP BREEZE Software 12770 Merit Drive Suite 900 Dallas, TX 75251 +1 (972) 661-8881 breeze-software.com

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Convective boundary layer height evaluations R. Stlibi, Ph. Tercier, Ch. Haberli Environmental Meteorology, Swiss Meteorological Institute, CH-1530Payerne, Switzerland Abstract The convective boundary

More information

Surface layer parameterization in WRF

Surface layer parameterization in WRF Surface layer parameteriation in WRF Laura Bianco ATOC 7500: Mesoscale Meteorological Modeling Spring 008 Surface Boundary Layer: The atmospheric surface layer is the lowest part of the atmospheric boundary

More information

The influence of surface-atmosphere exchange processes on ozone levels

The influence of surface-atmosphere exchange processes on ozone levels The influence of surface-atmosphere exchange processes on ozone levels A. D Allura 1,3, R. De Maria 2, M. Clemente 2, F. Lollobrigida 2, S. Finardi 3, C. Silibello 3 & G. Brusasca 3 1 Dipartimento di Scienze

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

4.4 INVESTIGATION OF CARBON MONOXIDE TIME EVOLUTION OVER THE CITY OF SÃO PAULO DURING THE NIGHTTIME USING LES MODEL

4.4 INVESTIGATION OF CARBON MONOXIDE TIME EVOLUTION OVER THE CITY OF SÃO PAULO DURING THE NIGHTTIME USING LES MODEL 4.4 INVESTIGATION OF CARBON MONOXIDE TIME EVOLUTION OVER THE CITY OF SÃO PAULO DURING THE NIGHTTIME USING LES MODEL Eduardo Barbaro *, Amauri P. Oliveira, Jacyra Soares Group of Micrometeorology, University

More information

Measuring the flux of dust from unpaved roads John M. Veranth and Eric Pardyjak University of Utah

Measuring the flux of dust from unpaved roads John M. Veranth and Eric Pardyjak University of Utah Measuring the flux of dust from unpaved roads John M. Veranth and Eric Pardyjak University of Utah Keywords: Dust flux, fugitive dust, road dust, wind erosion, atmospheric dust measurement, US EPA AP-42.

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Simulation of nocturnal drainage flows and dispersion of pollutants in a complex valley D. Boucoulava, M. Tombrou, C. Helmis, D. Asimakopoulos Department ofapplied Physics, University ofathens, 33 Ippokratous,

More information

5.07 THE CALCULATED MIXING HEIGHT IN COMPARISON WITH THE MEASURED DATA

5.07 THE CALCULATED MIXING HEIGHT IN COMPARISON WITH THE MEASURED DATA 5.7 THE CALCULATED MIXING HEIGHT IN COMPARISON WITH THE MEASURED DATA J. Burzynski, J. Godłowska, A. M. Tomaszewska, J. Walczewski Institute of Meteorology and Water Management Division for Remote Sensing

More information

Large-Eddy Simulation of Air Pollution Dispersion in the Nocturnal Cloud- Topped Atmospheric Boundary Layer

Large-Eddy Simulation of Air Pollution Dispersion in the Nocturnal Cloud- Topped Atmospheric Boundary Layer Large-Eddy Simulation of Air Pollution Dispersion in the Nocturnal Cloud- Topped Atmospheric Boundary Layer Zbigniew Sorbjan 1 and Marek Uliasz 2 1 Marquette University, Milwaukee, WI 53201, USA, e-mail:

More information

Development and validation of an operational model for air quality predictions SIRANE Salizzoni P., Garbero V., Soulhac L.,

Development and validation of an operational model for air quality predictions SIRANE Salizzoni P., Garbero V., Soulhac L., Ecole Centrale de Lyon Laboratoire de Mécanique des Fluides et d'acoustique Development and validation of an operational model for air quality predictions SIRANE Salizzoni P., Garbero V., Soulhac L., Flow

More information

Christophe DUCHENNE 1, Patrick ARMAND 1, Maxime NIBART 2, Virginie HERGAULT 3. Harmo 17 Budapest (Hungary) 9-12 May 2016

Christophe DUCHENNE 1, Patrick ARMAND 1, Maxime NIBART 2, Virginie HERGAULT 3. Harmo 17 Budapest (Hungary) 9-12 May 2016 Validation of a LPDM against the CUTE experiments of the COST ES1006 Action Comparison of the results obtained with the diagnostic and RANS versions of the flow model Christophe DUCHENNE 1, Patrick ARMAND

More information

STREET CANYON MODEL MISKAM AND

STREET CANYON MODEL MISKAM AND STREET CANYON MODEL MISKAM AND CONCENTRATION ESTIMATION COUPLING THE MICROMIXING LAGRANGIAN MODEL Giovanni Leuzzi 1, Márton Balczó 2, Andrea Amicarelli 3, Paolo Monti 1, Joachim Eichhorn 3 and David J.

More information

Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken during DYNAMO

Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken during DYNAMO DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken

More information

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST Peter Childs, Sethu Raman, and Ryan Boyles State Climate Office of North Carolina and

More information

P2.1 Scalar spectra in the near-dissipation range derived from structure functions

P2.1 Scalar spectra in the near-dissipation range derived from structure functions P2. Scalar spectra in the near-dissipation range derived from structure functions A.F. Moene and A. van Dijk,2 Meteorology and Air Quality Group, Wageningen University, The Netherlands 2 Alterra, Wageningen

More information

Pounding Nails with Shoes to Decide Which Shoes to Buy. By John S. Irwin Retired NOAA (2004)

Pounding Nails with Shoes to Decide Which Shoes to Buy. By John S. Irwin Retired NOAA (2004) Guideline on Air Quality Models March 19-21, 2013 Sheraton Raleigh Hotel, Raleigh, N.C Pounding Nails with Shoes to Decide Which Shoes to Buy By John S. Irwin Retired NOAA (2004) www.jsirwin.com 1. Title

More information

Tracking Atmospheric Plumes Using Stand-off Sensor Data

Tracking Atmospheric Plumes Using Stand-off Sensor Data DTRA CBIS2005.ppt Sensor Data Fusion Working Group 28 October 2005 Albuquerque, NM Tracking Atmospheric Plumes Using Stand-off Sensor Data Prepared by: Robert C. Brown, David Dussault, and Richard C. Miake-Lye

More information

VELOCITY AND CONCENTRATION MEASUREMENTS WITHIN ARRAYS OF OBSTACLES

VELOCITY AND CONCENTRATION MEASUREMENTS WITHIN ARRAYS OF OBSTACLES 109 Global Nest: the Int. J. Vol 2, No 1, pp 109-117, 2000 Copyright 2000 GLOBAL NEST Printed in Greece. All rights reserved VELOCITY AND CONCENTRATION MEASUREMENTS WITHIN ARRAYS OF OBSTACLES ILIAS MAVROIDIS

More information

Nicolas Duchene 1, James Smith 1 and Ian Fuller 2

Nicolas Duchene 1, James Smith 1 and Ian Fuller 2 A METHODOLOGY FOR THE CREATION OF METEOROLOGICAL DATASETS FOR LOCAL AIR QUALITY MODELLING AT AIRPORTS Nicolas Duchene 1, James Smith 1 and Ian Fuller 2 1 ENVISA, Paris, France 2 EUROCONTROL Experimental

More information

J3.7 MEASURING METEOROLOGY IN HIGHLY NON-HOMOGENEOUS AREAS. Ekaterina Batchvarova* 1 and Sven-Erik Gryning 2. Denmark ABSTRACT

J3.7 MEASURING METEOROLOGY IN HIGHLY NON-HOMOGENEOUS AREAS. Ekaterina Batchvarova* 1 and Sven-Erik Gryning 2. Denmark ABSTRACT J3.7 MEASURING METEOROLOGY IN HIGHLY NON-HOMOGENEOUS AREAS Ekaterina Batchvarova* 1 and Sven-Erik Gryning 2 1 National Institute of Meteorology and Hydrology, Sofia, Bulgaria, 2 Risø National Laboratory/DTU,

More information

VALIDATION OF THE URBAN DISPERSION MODEL (UDM)

VALIDATION OF THE URBAN DISPERSION MODEL (UDM) VALIDATION OF THE URBAN DISPERSION MODEL (UDM) D.R. Brook 1, N.V. Beck 1, C.M. Clem 1, D.C. Strickland 1, I.H. Griffits 1, D.J. Hall 2, R.D. Kingdon 1, J.M. Hargrave 3 1 Defence Science and Technology

More information

Sergej S. Zilitinkevich 1,2,3. Helsinki 27 May 1 June Division of Atmospheric Sciences, University of Helsinki, Finland 2

Sergej S. Zilitinkevich 1,2,3. Helsinki 27 May 1 June Division of Atmospheric Sciences, University of Helsinki, Finland 2 Atmospheric Planetary Boundary Layers (ABLs / PBLs) in stable, neural and unstable stratification: scaling, data, analytical models and surface-flux algorithms Sergej S. Zilitinkevich 1,2,3 1 Division

More information

"Modelling air quality in the city"

Modelling air quality in the city "Modelling air quality in the city" Diede Nijmeijer Master thesis University of Twente Applied Mathematics Specialization: Mathematical Physics and Computational Mechanics Chair: Multiscale Modelling and

More information

An intercomparison model study of Lake Valkea-Kotinen (in a framework of LakeMIP)

An intercomparison model study of Lake Valkea-Kotinen (in a framework of LakeMIP) Third Workshop on Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling Finnish Meteorological Insitute, Helsinki, September 18-20 2012 An intercomparison model study of Lake

More information

THE MET INPUT MODULE

THE MET INPUT MODULE August 2017 P05/01S/17 THE MET INPUT MODULE The Met. Office (D J Thomson) and CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and ADMS-Airport 4.1. Where information refers

More information

Lecture 2 Atmospheric Boundary Layer

Lecture 2 Atmospheric Boundary Layer Lecture Atmospheric Boundary Layer H. J. Fernando Ariona State niversity Region of the lower atmosphere where effects of the Earth surface are felt Surface fluxes of momentum, buoyancy.. Neutral, Convective,

More information

Analytical Model for Dispersion of Rocket Exhaust Source Size Impact Assessment

Analytical Model for Dispersion of Rocket Exhaust Source Size Impact Assessment American Journal of Environmental Engineering 28, 8(4): 35-39 DOI:.5923/j.ajee.2884.8 Analytical Model for Dispersion of Rocket Exhaust Source Size Impact Assessment Bruno K. Bainy,*, Bardo E. J. Bodmann

More information

POLLUTION DISPERSION MODELING AT CHANIA, GREECE, UNDER VARIOUS METEOROLOGICAL CONDITIONS

POLLUTION DISPERSION MODELING AT CHANIA, GREECE, UNDER VARIOUS METEOROLOGICAL CONDITIONS POLLUTION DISPERSION MODELING AT CHANIA, GREECE, UNDER VARIOUS METEOROLOGICAL CONDITIONS K. PHILIPPOPOULOS 1, D. DELIGIORGI 1, G. KARVOUNIS 1 and M. TZANAKOU 2 1 Department of Physics National and Kapodistrian

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

A THREE-DIMENSIONAL BACKWARD LAGRANGIAN FOOTPRINT MODEL FOR A WIDE RANGE OF BOUNDARY-LAYER STRATIFICATIONS. 1. Introduction

A THREE-DIMENSIONAL BACKWARD LAGRANGIAN FOOTPRINT MODEL FOR A WIDE RANGE OF BOUNDARY-LAYER STRATIFICATIONS. 1. Introduction A THREE-DIMENSIONAL BACKWARD LAGRANGIAN FOOTPRINT MODEL FOR A WIDE RANGE OF BOUNDARY-LAYER STRATIFICATIONS N. KLJUN 1,, M.W.ROTACH 1 and H. P. SCHMID 2 1 Institute for Atmospheric and Climate Science ETH,

More information

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013 WRF/Chem forecasting of boundary layer meteorology and O 3 Xiaoming Hu @ 湖南气象局 Nov. 22 th 2013 Importance of O 3, Aerosols Have adverse effects on human health and environments Reduce visibility Play an

More information

Dimensionality influence on energy, enstrophy and passive scalar transport.

Dimensionality influence on energy, enstrophy and passive scalar transport. Dimensionality influence on energy, enstrophy and passive scalar transport. M. Iovieno, L. Ducasse, S. Di Savino, L. Gallana, D. Tordella 1 The advection of a passive substance by a turbulent flow is important

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

Improving non-local parameterization of the convective boundary layer

Improving non-local parameterization of the convective boundary layer Boundary-Layer Meteorol DOI ORIGINAL PAPER Improving non-local parameterization of the convective boundary layer Zbigniew Sorbjan 1, 2, 3 Submitted on 21 April 2008 and revised on October 17, 2008 Abstract

More information

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions Joshua Hacker National Center for Atmospheric Research hacker@ucar.edu Topics The closure problem and physical parameterizations

More information

Pollutant dispersion in urban geometries

Pollutant dispersion in urban geometries Pollutant dispersion in urban geometries V. Garbero 1, P. Salizzoni 2, L. Soulhac 2 1 Politecnico di Torino - Department of Mathematics 2 Ecole Centrale de Lyon - Laboratoire de Méchaniques des Fluides

More information

Modeling, Source Attribution, and Data Broadcasting for BEE-TEX

Modeling, Source Attribution, and Data Broadcasting for BEE-TEX Modeling, Source Attribution, and Data Broadcasting for BEE-TEX Eduardo (Jay) Olaguer, Ph.D. Program Director, Air Quality Science Houston Advanced Research Center HARC Air Quality Model Neighborhood scale

More information

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Mesoscale meteorological models Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Outline Mesoscale and synoptic scale meteorology Meteorological models Dynamics Parametrizations and interactions

More information

Papers. Sea salt emission from the coastal zone. 1. Introduction

Papers. Sea salt emission from the coastal zone. 1. Introduction Papers Sea salt emission from the coastal zone OCEANOLOGIA, 42 (4), 2000. pp. 399 4. 2000, by Institute of Oceanology PAS. KEYWORDS Aerosol Sea salt Fluxes Emission Coastal zone Tomasz Petelski Maria Chomka

More information

Effects of different terrain on velocity standard deviations

Effects of different terrain on velocity standard deviations Atmospheric Science Letters (2001) doi:10.1006/asle.2001.0038 Effects of different terrain on velocity standard deviations M. H. Al-Jiboori 1,2, Yumao Xu 1 and Yongfu Qian 1 1 Department of Atmospheric

More information

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 1 University of Colorado Boulder, 2 National Renewable Energy Laboratory NORCOWE 2016, 14 16 Sept 2016, Bergen, Norway

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information