star crusts M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 November 24, 2016

Size: px
Start display at page:

Download "star crusts M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 November 24, 2016"

Transcription

1 Dark M. Cermeño 1, M. A. Pérez-García 1, J. Silk 2 1 Department of Fundamental Physics, University of Salamanca, Spain 2 Institute d Astrophysique, Paris, France November 24, 2016 (University of Salamanca) November 24, / 11

2 Dark Interaction: fermionic light dark (LDM) particles χ and nuclei A in periodically arranged nuclei in the neutron star outer crust (ρ g/cm 3 ) Neutron stars (NS) provide a gravitational boost to DM particles, using R NS = 12 km and M NS = 1.5M, β NS = v c = 2GMNS R NS 0.6 Effect of LDM the production of acoustic phonons (momentum k, linear dispersion relation ω k = c l k, c l the sound speed) in the outer NS crust. We calculate the single phonon R (0) k the change in the ion κ ii impact on cooling behavior of NSs. (University of Salamanca) November 24, / 11

3 Dark particle-nucleon L I = g s,n χχnn + g v,n χγ µ χnγ µ N N=n,p N, pn N, p N Dark p N = (E N, p N ), p N = (E N, p N ) p χ = (E χ, p χ), p χ = (E χ, p χ) q = p N p N = p χ p χ q 0 = E N E N = E χ E χ χ, pχ χ, p χ g s,n m q /Λ s MeV 2 and g v,n 1/Λ v MeV 2 are the effective scalar and vector coupling constants, with Λ s 100 GeV and Λ v 1 TeV the suppression mass scales for scalar and vector cases and m q the quark mass. M χn 2 =4g 2 s,n [(p Np N + m2 N )(p χp χ + m 2 χ)]+ 8g 2 v,n [2m2 N m2 χ m 2 N p χp χ m 2 χp N p χ + (p χp N )(p Np χ ) + (p N p χ)(p N p χ)]+ 8g s,n g v,n [m N m χ (p N + p N )(p χ + p χ)] Density dependence is retained using p N p N p FN (3π 2 n 0 Y N ) 1/3 with Y p = Z/A, Y n = (A Z)/A and n 0 = 0.17 fm 3 the saturation density. (University of Salamanca) November 24, / 11

4 Dark Our aim is to obtain the single acoustic phonon per mode R (0) k,λ Fermi golden rule R (0) k,λ = 2πδ(E f E i ) f V i 2 V( r) = j δ 3 ( r r j ) 2πa m χ potential felt by an interacting DM particle when approaching a nucleus in the periodic lattice being a the scattering length Using the Born approximation ( ( p χ p χ). r 1, r a typical target size) σ χa 4πa 2 in the center of mass frame for this potential dσ χa dω CM = M χa 2 64π 2 s, with M χa 2 the spin-averaged scattering amplitude calculated summing coherently over protons and neutrons matrix elements M N 2, and s = (p A + p χ ) 2 where p A is the nucleus four-momenta σ A,χ = 4πa 2 = m 2 A ( Zmp M p 2 + (A Z) mn where M N πd(cos θ χ) M χn 2 ) 2 M n 2 16π(m χ+m A ) 2, taking p χ << m χ and p A << m A, (University of Salamanca) November 24, / 11

5 Dark The single acoustic phonon per unit volume R (0) k = f χ ( p χ ) = 8π 4 n 2 A (2π) 6 m 2 χm A c l µ 1+ pχ 2 n χµ 4πm 3 e m 2 χ χk 2 (µ) 0 p χ d p χ f χ ( p χ ) E χ k c l a 2 Maxwell-Jüttner distribution function for relativistic incoming χ, µ = mχ k B T 6.7 for < v 2 > 0.6, K 2 (µ) the modified Bessel function of second kind, and n χ the DM number density ω c l = p/3 (6π 2 n A ) 1/3 the sound speed in a bbc lattice, being ω 4πn p = A Z 2 e 2 k B 2 m the A plasma frequency associated to a medium of ions with number density n A, baryonic number A, electric charge Ze and mass m A ( From kinematical restrictions 0 k 2 c l E χ pχ (c 2 + 1) l c 2 l 1 ) (University of Salamanca) November 24, / 11

6 Powered by TCPDF ( Results: M. Cermeño, M. A. Pérez-García, and J. Silk, Phys. Rev. D 94 (2016) Dark For m χ = 500, 100 and 5 MeV, n χ /n 0,χ = 10, where n 0,χ = 0.3 GeV/cm 3 is the galactic local DM mass density. Neutrino contribution at k 0, R ν0, is also shown for m ν = 0.1, 1 ev, being R (0) ν ( k) = R ν0 e a k 1eV where a is a constant which depends on neutrino masses. (University of Salamanca) November 24, / 11

7 Dark Global is given by κ = κ e + κ i Ion κi 1 = κii 1 + κie 1 κ ii κ ph and κ ie are ion-ion and ion-electron partial conductivities κ ii = 1 3 k BC A n A c l L ph C A = 9 ( T TD ) 3 TD /T 0 x 4 e x dx (e x 1) 2 is the phonon (dimensionless) heat capacity per ion L ph is the effective phonon mean free path At temperature T standard contribution gives L ph 1/N 0,kλ where N 0,kλ = (e ω kλ/k B T 1) 1 Contribution from DM can be obtained by the net number of phonons N kλ that results from the competition of and scattering excitation and stimulated emission N kλ N 0,kλ + R (0) d 3 k δvδt p f χ ( p) R (0) ω k,λ + k. v n k N (γ( pχ) 1)mχ 0,kλe δvδt χ where R (0) is the single phonon for each particular momentum k 1 value, γ( p χ ) = ( ) pχ 2 is the Lorentz factor and v 10 2 the NS galactic drift 1 Eχ velocity. (University of Salamanca) November 24, / 11

8 Results: Ion-ion Dark κ ph (10 15 erg cm -1 s -1 K -1 ) m χ =65MeV m χ =100 MeV m χ =500 MeV k (10-3 fm -1 ) At T = 10 8 K and n χ /n 0,χ = 100. Solid lines for 118 Kr (ρ = g/cm 3 ) and dashed lines for 120 Sr (ρ = g/cm 3 ). (University of Salamanca) November 24, / 11

9 Results: Ion-ion Dark κ ph (10 14 erg cm -1 s -1 K -1 ) T= K T= K M. Cermeño, M. A. Pérez-García, and J. Silk, Phys. Rev. D 94 (2016) ρ 10 κ ph (10 15 erg cm -1 s -1 K -1 ) m χ =65 MeV κ e perp B=10 15 G κ e perp B=10 14 G ρ 10 m χ = 100 MeV. Solid, dash-dotted and dashed lines depict the cases with no DM and with LDM for n χ /n 0χ = 10, 100. We use a fixed value for k. T = 10 8 K and m χ = 65 MeV. Solid, dot-dashed and dashed lines correspond to cases with no DM, n χ /n 0,χ = 10, 100. We use a fixed value for k. (University of Salamanca) November 24, / 11

10 Dark We calculate the single phonon R (0) in the outer crust of a NS due k to scattering from LDM particles gravitationally boosted into the star. LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard result. R (0) is constant with the phonon momentum and much larger than for k cosmological neutrinos at finite k. We estimate the contribution of LDM particles to the ion-ion in the outer crust and find that it is enhanced at small k for small DM particle masses at densities > g/cm 3, whereas for larger m χ remains mostly constant. can be significantly enhanced at large densities compared to the standard result without DM. The electronic contribution to the for magnetized realistic scenarios in the perpendicular direction to a magnetic field B falls below the enhanced DM value for large densities. Since the global is κ = κ e + κ ph, the obtained result is expected to contribute to the reduction of the difference in heat conduction in both directions and thus to the isotropization of the NS surface temperature pattern. (University of Salamanca) November 24, / 11

11 Dark THANKS FOR YOUR ATTENTION. (University of Salamanca) November 24, / 11

12 Powered by TCPDF ( Temperature anisotropies Dark Theoretical models predict anisotropies in the surface temperature produced by high magnetic fields. Under the presence of a strong field, the becomes anisotropic, due to the fact that the electrons move more easily along the field lines than across them. R. Perna, D. Viganò, J. A. Pons, N. Rea, MNRAS, 434 (2013) The spectra and pulse profiles expected for different magnetic fields are computed in the bibliography (R. Perna, D. Viganò, J. A. Pons, N. Rea, MNRAS, 434 (2013) 2362 and MNRAS, 443 (2014) 31). Features of the spectra and pulse profiles predicted by theoretical models are observed in some dense objects (SNR Kes 79, SGR J , SGR , RX J etc). These observations support the idea of anisotropic surface temperature distributions. (University of Salamanca) November 24, / 11

arxiv: v1 [astro-ph.he] 22 Jul 2016

arxiv: v1 [astro-ph.he] 22 Jul 2016 Light dark matter scattering in outer neutron star crusts Marina Cermeño 1 a, M. Ángeles Pérez-García1 b and Joseph Silk 2,3,4 c 1 Department of Fundamental Physics, University of Salamanca, Plaza de la

More information

Superfluid Heat Conduction in the Neutron Star Crust

Superfluid Heat Conduction in the Neutron Star Crust Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:0807.4754 Thermal Conduction

More information

Neutrino Interactions in Dense Matter

Neutrino Interactions in Dense Matter Neutrino Interactions in Dense Matter 7th RESCEU International Symposium, Tokyo 11-14 November, 2008 C. J. Pethick Nordita and Niels Bohr International Academy Messages: Rates of neutrino processes important

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Lecture 12. Dark Matter. Part II What it could be and what it could do

Lecture 12. Dark Matter. Part II What it could be and what it could do Dark Matter Part II What it could be and what it could do Theories of Dark Matter What makes a good dark matter candidate? Charge/color neutral (doesn't have to be though) Heavy We know KE ~ kev CDM ~

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Final Exam Practice Solutions

Final Exam Practice Solutions Physics 390 Final Exam Practice Solutions These are a few problems comparable to those you will see on the exam. They were picked from previous exams. I will provide a sheet with useful constants and equations

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust

An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust Journal of Physics: Conference Series PAPER OPEN ACCESS An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust To cite this article: D D Ofengeim et

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

14 Lecture 14: Early Universe

14 Lecture 14: Early Universe PHYS 652: Astrophysics 70 14 Lecture 14: Early Universe True science teaches us to doubt and, in ignorance, to refrain. Claude Bernard The Big Picture: Today we introduce the Boltzmann equation for annihilation

More information

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1

COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1 COLD DARK MATTER DETECTION VIA THE LSP-NUCLEUS ELASTIC SCATTERING 1 J.D. VERGADOS and T.S. KOSMAS Theoretical Physics Section, University of Ioannina, GR 451 1, Greece Abstract The momentum transfer dependence

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Detecting Dipolar Dark Matter in Beam Dump Experiments

Detecting Dipolar Dark Matter in Beam Dump Experiments Detecting Dipolar Dark Matter in Beam Dump Experiments Soumya Rao ARC CoEPP, School of Physical Sciences, University of Adelaide, Adelaide. September 9, 2015 Beam Dump Experiments Direct and indirect searches

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

The Magnificent Seven : Strong Toroidal Fields?

The Magnificent Seven : Strong Toroidal Fields? 1 Basic Neutron Star Cooling Troubles: Surface Effects and Pairing Minimal Cooling The Magnificent Seven : Strong Toroidal Fields? Conclusions 2 Basic Neutron Star Cooling Troubles: Surface Effects and

More information

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering 22.101 Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering References: M. A. Preston, Physics of the Nucleus (Addison-Wesley, Reading, 1962). E. Segre, Nuclei and Particles

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Direct detection detection of recoil nuclei after interaction of DM particle in large underground scale detector. DAMA, CDMS, ZENON... experiments.

Direct detection detection of recoil nuclei after interaction of DM particle in large underground scale detector. DAMA, CDMS, ZENON... experiments. Direct detection in micromegas. Direct detection detection of recoil nuclei after interaction of DM particle in large underground scale detector. DAMA, CDMS, ZENON... experiments. DM velocities are about

More information

Quark Nugget Dark Matter. Kyle Lawson May 15, 2017

Quark Nugget Dark Matter. Kyle Lawson May 15, 2017 Quark Nugget Dark Matter Kyle Lawson May 15, 2017 Outline High density QCD and quark matter Compact composite dark matter Baryogenesis as separation of charges Observational constraints High density QCD

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Authors: Kingman Cheung, Po-Yan Tseng, Tzu-Chiang Yuan Physics Department, NTHU Physics Division, NCTS Institute

More information

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216 Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Powering Anomalous X-ray Pulsars by Neutron Star Cooling Powering Anomalous X-ray Pulsars by Neutron Star Cooling Jeremy S. Heyl Lars Hernquist 1 Lick Observatory, University of California, Santa Cruz, California 95064, USA ABSTRACT Using recently calculated

More information

Prospects for the Direct Detection of the Cosmic Neutrino Background

Prospects for the Direct Detection of the Cosmic Neutrino Background Prospects for the Direct Detection of the Cosmic Neutrino Background Andreas Ringwald http://www.desy.de/ ringwald DESY PANIC 2008 November 9 14, 2008, Eilat, Israel Prospects for the Direct Detection

More information

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section Scattering Processes General Consideration Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section The form factor Mott scattering Nuclear charge distributions and radii

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology PHY49: Nuclear & Particle Physics Lecture 3 Homework 1 Nuclear Phenomenology Measuring cross sections in thin targets beam particles/s n beam m T = ρts mass of target n moles = m T A n nuclei = n moles

More information

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA)

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA) Introduction to Dense Matter C. J. Pethick (U. of Copenhagen and NORDITA) Astro-Solids, Dense Matter, and Gravitational Waves INT, Seattle, April 16, 2018 Bottom lines Exciting time for neutron star studies:

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

Ph 136: Solution for Chapter 2 3.6 Observations of Cosmic Microwave Radiation from a Moving Earth [by Alexander Putilin] (a) let x = hν/kt, I ν = h4 ν 3 c 2 N N = g s h 3 η = 2 η (for photons) h3 = I ν

More information

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Previously we considered interactions from the standpoint of photons: a photon travels along, what happens

More information

DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER

DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER 1 DI-NEUTRON CORRELATIONS IN LOW-DENSITY NUCLEAR MATTER B. Y. SUN School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, People s Republic of China E-mail: sunby@lzu.edu.cn Based

More information

Deconfinement of quark content in Neutron Stars due to cosmic external agents

Deconfinement of quark content in Neutron Stars due to cosmic external agents Deconfinement of quark content in Neutron Stars due to cosmic external agents M Ángeles Pérez-García Fundamental Physics Department & IUFFyM, University of Salamanca Spain 1 Neutron star EOS: from nuclear

More information

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering Journal of the Korean Physical Society, Vol. 66, No. 12, June 2015, pp. 1936 1941 Brief Reports Density Dependence of Parity Violation in Electron Quasi-elastic Scattering K. S. Kim School of Liberal Arts

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

Currents and scattering

Currents and scattering Chapter 4 Currents and scattering The goal of this remaining chapter is to investigate hadronic scattering processes, either with leptons or with other hadrons. These are important for illuminating the

More information

Coherency in Neutrino-Nucleus Elastic Scattering

Coherency in Neutrino-Nucleus Elastic Scattering Coherency in Neutrino-Nucleus Elastic Scattering S. Kerman, V. Sharma, M. Deniz, H. T. Wong, J.-W. Chen, H. B. Li, S. T. Lin, C.-P. Liu and Q. Yue (TEXONO Collaboration) Institute of Physics, Academia

More information

Direct Detection of the Dark Mediated DM

Direct Detection of the Dark Mediated DM Direct Detection of the Dark Mediated DM Yuhsin Tsai In collaboration with David Curtin, Ze ev Surujon, and Yue Zhao 1312.2618 and 1402.XXXX UC Davis Jan 16 2014 Main questions χ χ How does the direct

More information

Cooling Neutron Stars. What we actually see.

Cooling Neutron Stars. What we actually see. Cooling Neutron Stars What we actually see. The Equilibrium We discussed the equilibrium in neutron star cores through this reaction (direct Urca). nëp + e à + ö e ö n = ö p + ö e + ö öe Does the reaction

More information

SUPERFLUID MAGNETARS AND QPO SPECTRUM

SUPERFLUID MAGNETARS AND QPO SPECTRUM SUPERFLUID MAGNETARS AND QPO SPECTRUM Andrea Passamonti Osservatorio Astronomico di Roma INAF. In collaboration with L. Stella, S. Lander SAIt Bologna 9/5/23 Magnetars Neutron stars with a strong magnetic

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

arxiv:nucl-th/ v1 27 Nov 2002

arxiv:nucl-th/ v1 27 Nov 2002 1 arxiv:nucl-th/21185v1 27 Nov 22 Medium effects to the N(1535) resonance and η mesic nuclei D. Jido a, H. Nagahiro b and S. Hirenzaki b a Research Center for Nuclear Physics, Osaka University, Ibaraki,

More information

ATLAS Missing Energy Signatures and DM Effective Field Theories

ATLAS Missing Energy Signatures and DM Effective Field Theories ATLAS Missing Energy Signatures and DM Effective Field Theories Theoretical Perspectives on New Physics at the Intensity Frontier, Victoria, Canada James D Pearce, University of Victoria Sept 11, 014 1

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

arxiv: v1 [hep-ph] 20 Dec 2018

arxiv: v1 [hep-ph] 20 Dec 2018 New Analysis of Neutron Star Constraints on Asymmetric Dark Matter Raghuveer Garani, Yoann Genolini, and Thomas Hambye Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe,

More information

SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY

SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY This introductory section covers some standard notation and definitions, and includes a brief survey of nuclear and particle properties along with the major

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

DM direct detection predictions from hydrodynamic simulations

DM direct detection predictions from hydrodynamic simulations DM direct detection predictions from hydrodynamic simulations Nassim Bozorgnia GRAPPA Institute University of Amsterdam Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arxiv:

More information

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter, March 8, 2017. arxiv:1612.02793, with Anirban Biswas. Aritra Gupta Why Non-Thermal? 1 / 31 The most widely studied

More information

Renormalization Group Methods for the Nuclear Many-Body Problem

Renormalization Group Methods for the Nuclear Many-Body Problem Renormalization Group Methods for the Nuclear Many-Body Problem A. Schwenk a,b.friman b and G.E. Brown c a Department of Physics, The Ohio State University, Columbus, OH 41 b Gesellschaft für Schwerionenforschung,

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Asymmetric Neutrino Emissions and Magnetic Structures of Magnetars in Relativistic Quantum Approach

Asymmetric Neutrino Emissions and Magnetic Structures of Magnetars in Relativistic Quantum Approach Asymmetric Neutrino Emissions and Magnetic Structures of Magnetars in Relativistic Quantum Approach College of Bioresource Sciences, Nihon University, Fujisawa 252-8510, Japan E-mail: maruyama.tomoyuki@nihon-u.ac.jp

More information

7 Relic particles from the early universe

7 Relic particles from the early universe 7 Relic particles from the early universe 7.1 Neutrino density today (14 December 2009) We have now collected the ingredients required to calculate the density of relic particles surviving from the early

More information

Photon splitting in a strongly magnetized plasma

Photon splitting in a strongly magnetized plasma Photon splitting in a strongly magnetized plasma M. V. Chistyakov, D. A. Rumyantsev Division of Theoretical Physics, Yaroslavl State (P.G. Demidov) University, Sovietskaya 4, 50000 Yaroslavl, Russian Federation

More information

Part II Particle and Nuclear Physics Examples Sheet 1

Part II Particle and Nuclear Physics Examples Sheet 1 T. Potter Lent/Easter Terms 2017 Part II Particle and Nuclear Physics Examples Sheet 1 Matter and Forces 1. (A) Explain the meaning of the terms quark, lepton, hadron, nucleus and boson as used in the

More information

arxiv: v4 [hep-ph] 21 Dec 2016

arxiv: v4 [hep-ph] 21 Dec 2016 Fermionic Dark Matter through a Light Pseudoscalar Portal: Hints from the DAMA Results Kwei-Chou Yang 1, 1 Department of Physics and Center for High Energy Physics, Chung Yuan Christian University, Taoyuan

More information

arxiv:astro-ph/ v1 20 Sep 2006

arxiv:astro-ph/ v1 20 Sep 2006 Formation of Neutrino Stars from Cosmological Background Neutrinos M. H. Chan, M.-C. Chu Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China arxiv:astro-ph/0609564v1

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

INDIRECT DARK MATTER DETECTION

INDIRECT DARK MATTER DETECTION INDIRECT DARK MATTER DETECTION http://www.mpi-hd.mpg.de/lin/research_dm.en.html Ivone Freire Mota Albuquerque IFUSP Inνisibles School - Durham - July 2013 Outline Lecture 1 1. DM indirect searches 2. DM

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

X-ray Observations of Rotation Powered Pulsars

X-ray Observations of Rotation Powered Pulsars X-ray Observations of Rotation Powered Pulsars George Pavlov (Penn State) Oleg Kargaltsev (George Washington Univ.) Martin Durant (Univ. of Toronto) Bettina Posselt (Penn State) Isolated neutron stars

More information

AY127 Problem Set 3, Winter 2018

AY127 Problem Set 3, Winter 2018 California Institute of Technology AY27 Problem Set 3, Winter 28 Instructor: Sterl Phinney & Chuck Steidel TA: Guochao (Jason) Sun February 7, 28 Problem Detailed Solution : (a) We work in natural units

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

On the GCR/EGCR transition and UHECR origin

On the GCR/EGCR transition and UHECR origin UHECR 2014 13 15 October 2014 / Springdale (Utah; USA) On the GCR/EGCR transition and UHECR origin Etienne Parizot 1, Noémie Globus 2 & Denis Allard 1 1. APC Université Paris Diderot France 2. Tel Aviv

More information

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

High energy events in IceCube: hints of decaying leptophilic Dark Matter? High energy events in IceCube: hints of decaying leptophilic Dark Matter? 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich 26/10/2015 Messengers from space Messengers from

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12 Big Bang Nucleosynthesis introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12.1 The Early Universe According to the accepted cosmological theories: The Universe has cooled during its expansion

More information

Observational Prospects for Quark Nugget Dark Matter

Observational Prospects for Quark Nugget Dark Matter Observational Prospects for Quark Nugget Dark Matter Kyle Lawson University of British Columbia Partially based on material reviewed in http://arxiv.org/abs/1305.6318 Outline Baryogenesis (matter/antimatter

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Role of the N (2080) resonance in the γp K + Λ(1520) reaction Role of the N (2080) resonance in the γp K + Λ(1520) reaction Ju-Jun Xie ( ) IFIC, University of Valencia, Spain Collaborator: Juan Nieves Phys. Rev. C 82, 045205 (2010). @ Nstar2011, Jlab, USA, 05/19/2011

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates.

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates. September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 Chapter 5 Noninteracting Fermi gas The consequences of the Pauli principle for an assembly of fermions that is localized in space has been discussed

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Lecture 14. Dark Matter. Part IV Indirect Detection Methods Dark Matter Part IV Indirect Detection Methods WIMP Miracle Again Weak scale cross section Produces the correct relic abundance Three interactions possible with DM and normal matter DM Production DM Annihilation

More information

1 Stellar Energy Generation Physics background

1 Stellar Energy Generation Physics background 1 Stellar Energy Generation Physics background 1.1 Relevant relativity synopsis We start with a review of some basic relations from special relativity. The mechanical energy E of a particle of rest mass

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

PHY326/426:Lecture 11

PHY326/426:Lecture 11 PHY326/426:Lecture 11 Towards WIMP direct detection WIMP Cross Sections and Recoil Rates (1) Introduction to SUSY dark matter WIMP-nucleon collision kinematics Recoil energy in the CM frame Probability

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information