6.1 Logic. Statements or Propositions. Negation. The negation of a statement, p, is not p and is denoted by p Truth table: p p

Size: px
Start display at page:

Download "6.1 Logic. Statements or Propositions. Negation. The negation of a statement, p, is not p and is denoted by p Truth table: p p"

Transcription

1 6.1 Logic Logic is not only the foundation of mathematics, but also is important in numerous fields including law, medicine, and science. Although the study of logic originated in antiquity, it was rebuilt and formalized in the 19 th and early 20 th century. George Boole (Boolean algebra) introduced mathematical methods to logic in 1847 while Georg Cantor did theoretical work on sets and discovered that there are many different sizes of infinite sets. Statements or Propositions A proposition or statement is a declaration which is either true or false. Some examples: 2+2 = 5 is a statement because it is a false declaration. Orange juice contains vitamin C is a statement that is true. Open the door. This is not considered a statement since we cannot assign a true or false value to this sentence. It is a command, but not a statement or proposition. Negation The negation of a statement, p, is not p and is denoted by p Truth table: p p T F F T If p is true, then its negation is false. If p is false, then its negation is true. 1

2 Disjunction A disjunction is of the form p V q and is read p or q. Truth table for disjunction: p q p V q T T T T F T F T T F F F A disjunction is true in all cases except when both p and q are false. Conjunction A conjunction is only true when both p and q are true. Otherwise, a conjunction of two statements will be false: Truth table: p q p q T T T T F F F T F F F F Conditional statement To understand the logic behind the truth table for the conditional statement, consider the following statement. If you get an A in the class, I will give you five bucks. Let p = statement You get an A in the class Let q = statement I will give you five bucks. Now, if p is true (you got an A) and I give you the five bucks, the truth value of p q is true. The contract was satisfied and both parties fulfilled the agreement. Now, suppose p is true (you got the A) and q is false (you did not get the five bucks). You fulfilled your part of the bargain, but weren t rewarded with the five bucks. So p q is false since the contract was broken by the other party. Now, suppose p is false. You did not get an A but received five bucks anyway. (q is true) No contract was broken. There was no obligation to receive 5 bucks, so truth value of p q cannot be false, so it must be true. Finally, if both p and q are false, the contract was not broken. You did not receive the A and you did not receive the 5 bucks. So p q is true in this case. 2

3 Truth table for conditional p q p q T T T T F F F T T F F T Variations of the conditional Converse: The converse of p q is q p Contrapositive: The contrapositive of p q p q is Examples Let p = you receive 90% Let q = you receive an A in the course p q? If you receive 90%, then you will receive an A in the course. Converse: q p If you receive an A in the course, then you receive 90% Is the statement true? No. What about the student who receives a score greater than 90? That student receives an A but did not achieve a score of exactly 90%. 3

4 Example 2 State the contrapositive in an English sentence: Let p = you receive 90% Let q = you receive an A in the course p q? If you receive 90%, then you will receive an A in the course q p If you don t receive an A in the course, then you didn t receive 90%. The contrapositive is true not only for these particular statements but for all statements, p and q. Logical equivalent statements p q p q Show that is logically equivalent to We will construct the truth tables for both sides and determine that the truth values for each statement are identical. The next slide shows that both statements are logically equivalent. The red columns are identical indicating the final truth values of each statement. 4

5 6.2 Sets This section will discuss the symbolism and concepts of set theory Set properties and set notation Definition of set: A set is any collection of objects specified in such a way that we can determine whether or not an object is or is not in the collection. Example 1. Set A is the set of all the letters in the alphabet. Notation: A = { a, b, c, d, e, z) We use capital letters to represent sets. We list the elements of the set within braces. The three dots indicate that the pattern continues. We can determine that an object is or is not in the collection. For example. e A stands for e is an element of, or e belongs to set A. This statement is true. The statement 3 A is false, since the number 3 is not an element of set A. The statement 3 A is true. Null set Example. What are the real number solutions of the equation? 2 x + 1= 0 Answer: There are no real number solutions of this equation since no real number squared added to one can ever equal 0. We represent the solution as the null set { } or Ø 1

6 Set builder notation Sometimes it is convenient to represent sets using what is called set-builder notation. For example, instead of representing the set A, letters in the alphabet by the roster method, we can use set builder notation: { x x is letter of the English alphabet} means the same as { a, b, c, d, e, z} 2 Example two. { x l x =9 } = {3, -3}. This is read as the set of all such that the square of x equals 9. The solution set consists of the two numbers 3 and -3. Subsets A B means A is a subset of B. A is a subset of A if every element of A is also contained in B. For example, the set of integers denoted by { -3, -2, -1, 0, 1, 2, 3, } is a subset of the set of real numbers. Formal definition of subset: A B means if x A, the x B (null set )is a subset of every set. To verify this statement, let s use the definition of subset. if x, then x is an element of A. But since the null set contains no elements, the statement x is an element of the null set is false. Hence, we have a conditional statement in which the premise is false. We know that p q is true if p is false. Since p is false, we conclude that the conditional statement is true. That is if x belongs to the null set, then x belongs to set A is true, which implies that the null set must be a member of every set. Therefore, the null set is a subset of every set. Number of subsets List all the subsets of set A = {bird, cat, dog} For convenience, we will use the notation A = {b, c, d} to represent set A. Solution: is a subset of A. We also know that every set is a subset of itself so A = {b, c, d } is a subset of set A since every element of set A is contained within set A. How many two-element subsets are there? We have {b, c}, {b, d}, {c, d} How many one-element subsets? { b}, {c} and {d}. There is a total of 8 subsets of set A if you count all the listed subsets. 2

7 Set operations The union of two sets is the set of all elements formed by combining all the elements of set A and all the elements of set B into one set. The symbolism used is The Venn Diagram representing the union of A and B is the entire region shaded yellow. A B A B= { x x Aor x B} Example of Union The union of the rational numbers with the set of irrational numbers is the set of real numbers. Rational numbers are those numbers that can be expressed as fractions, while irrational numbers are numbers that cannot be represented exactly as fractions, such as 2 Rational numbers a/b, ¾, 2/3, 0.6 Irrational numbers such as square root of two, Pi, square root of 3 Real numbers: represented by shaded blue-green region Intersection of sets A and B The intersection of sets A and B is the set of elements that is common to both sets A and B. It is symbolized as A B = { x l x A and x B } Represented by Venn Diagrams: A B Intersection 3

8 Complement of a set To understand the complement of a set, we must first define the universal set. The set of all elements under consideration is called the universal set. For example, when discussing numbers, the universal set may consist of the set of real numbers. All other types of numbers (integers, rational numbers, irrational numbers ) are subsets of the universal set of real numbers. Complement of set A: The complement of a set A is defined as the set of elements that are contained in U, the universal set, but not contained in set A. The symbolism for the complement of set A follows: A = { x U x A} Venn Diagram for complement of set A Yellow region= all The complement of set A is elements in U that represented by the regions are neither in A or A that are colored blue and B. yellow. The complement of set A is the region outside of the white circle representing set A. Elements of set B that are not in A A A B 4

9 6.3 Basic Counting Principles In this section, we will see how set operations play an important role in counting techniques. Opening example To see how sets play a role in counting, consider the following example. In a certain class, there are 23 majors in Psychology, 16 majors in English and 7 students who are majoring in both Psychology and English. If there are 50 students in the class, how many students are majoring in neither of these subjects? B) How many students are majoring in Psychology alone? Solution: We introduce the following principle of counting that can be illustrated using a Venn-Diagram. N( A U B) = n(a) + n(b) n(a B) A B This statement says that the number of elements in the union of two sets A and B is the number of elements of A added to the number of elements of B minus the number of elements that are in both A and B. 1

10 Do you see how the numbers of each region are obtained from the given information in the problem? We start with the region represented by the intersection of Psych. And English majors (7). Then, because there must be 23 Psych. Majors, there must be 16 Psych majors remaining in the rest of the set. A similar argument will convince you that there are 9 students who are majoring in English alone. 7 students in this region Both Psych and English 9 students in this region N(P U E) = n(p)+n(e)-n(p E) = 32 Psychology majors English majors 16 students here A second problem A survey of 100 college faculty who exercise regularly found that 45 jog, 30 swim, 20 cycle, 6 jog and swim, 1 jogs and cycles, 5 swim and cycle, and 1 does all three. How many of the faculty members do not do any of these three activities? How many just jog? We will solve this problem using a three-circle Venn Diagram in the accompanying slides. We will start with the intersection of all three circles. This region represents the number of faculty who do all three activities (one). Then, we will proceed to determine the number of elements in each intersection of exactly two sets J =joggers 1 does all 3 S=swimmers C=Cyclists 2

11 Solution: Starting with the intersection of all three circles, we place a 1 in that region (1 does all three). Then we know that since 6 jog and swim so 5 faculty remain in the region representing those who just jog and swim. Five swim and cycle, so 4 faculty just swim and cycle but do not do all three. Since 1 faculty is in the intersection region of joggers and cyclists, and we already have one that does all three activities, there must be no faculty who just jog and cycle. Multiplication principle dressed. The tree diagram illustrates the 24 ways to get To illustrate this principle, let s start with an example. Suppose you have 4 pairs of trousers in your closet, 3 different shirts and 2 pairs of shoes. Assuming that you must wear trousers (we hope so!), a shirt and shoes, how many different ways can you get dressed? Let s assume the colors of your pants are black, grey, rust, olive. You have four choices here. The shirt colors are green, marine blue and dark blue. For each pair of pants chosen (4) you have (3) options for shirts. You have 12 = 4*3 options for wearing a pair of trousers and a shirt. Now, each of these twelve options, you have two pair of shoes to choose from (Black or brown). Thus, you have a total of 4*3*2 = 24 options to get dressed. Generalized multiplication principle Suppose that a task can be performed using two or more consecutive operations. If the first operation can be accomplished in m ways and the second operation can be done in n ways, the third operation in p ways and so on, then the complete task can be performed in m n p ways.. 3

12 More problems How many different ways can a team consisting of 28 players select a captain and an assistant captain? Solution: Operation 1: select the captain. If all team members are eligible to be a captain, there are 28 ways this can be done. Operation 2. Select the assistant captain. Assuming that a player cannot be both a captain and assistant captain, there are 27 ways this can be done, since there are 27 team members left who are eligible to be the assistant captain. Then, using the multiplication principle there are (28)(27) ways to select both a captain and an assistant captain. This number turns out to be 756. Final example A sportswriter is asked to rank 8 teams in the NBA from first to last. How many rankings are possible? Solution: We will use 8 slots that need to be filled. In the first slot, we will determine how many ways to choose the first place team, the second slot is the number of ways to choose the second place team and so on until we get to the 8 th place team. There are 8 choices that can be made for the first place team since all teams are eligible. That leaves 7 choices for the second place team. The third place team is determined from the 6 remaining choices and so on Total is the product of 8(7) 1 =

13 6.4 Permutations and combinations For more complicated problems, we will need to develop two important concepts: permutations and combinations. Both of these concepts involve what is called the factorial of a number. Definition of n factorial (!) n! = n(n-1)(n-2)(n-3) 1 For example, 5! = 5(4)(3)(2)(1)=120 0! = 1 by definition. How it is used in counting: Example. The simplest protein molecule in biology is called vasopressin and is composed of 8 amino acids that are chemically bound together in a particular order. The order in which these amino acids occur is of vital importance to the proper functioning of vasopressin. If these 8 amino acids were placed in a hat and drawn out randomly one by one, how many different arrangements of these 8 amino acids are possible? Solution: Let A,B,C,D,E,F,G,H symbolize the 8 amino acids. They must fill 8 slots:. There are 8 choices for the first position, leaving 7 choices for the second slot, 6 choices for the third slot and so on. The number of different orderings is 8(7)(6)(5)(4)(3)(2)(1)=8! =40,320. Example continued: Of the 40,320 possible orderings of the 8 amino acids, the human body can use just one. What is the probability that, by random chance alone with no outside interference, the correct order occurs. We will discuss probability in the next chapter, but here is the answer: Probability of correct order is 1, an extremely unlikely event. 40,320 For more complicated biological molecules, such as hemoglobin, with many more amino acids, the probability that the correct order occurs by random chance alone is extremely small (close to zero!) which raises questions in some scientists minds of just how such molecules came to be formed by random chance. Some have concluded that their creation was not due to random chance but by intelligent design which raises still more questions that cannot be completely answered. 1

14 Two problems illustrating combinations and permutations. Consider the following two problems: 1) Consider the set { p, e, n} How many two-letter words (including nonsense words) can be formed from the members of this set? We will list all possibilities: pe, pn, en, ep, np, ne, a total of 6. 2) Now consider the set consisting of three males: {Paul, Ed, Nick} For simplicity, we will denote the set { p, e, n} How many two-man crews can be selected from this set? 3) Answer: pe (Paul, Ed), pn (Paul, Nick) and en (Ed, Nick) and that is all! Difference between permutations and combinations The difference between the two problems is this: Both problems involved counting the numbers of arrangements of the same set {p, e, n}, taken 2 elements at a time, without allowing repetition. However, in the first problem, the order of the arrangements mattered since pe and ep are two different words. In the second problem, the order did not matter since pe and ep represented the same two-man crew. So we counted this only once. The first example was concerned with counting the number of permutations of 3 objects taken 2 at a time. The second example was concerned with the number of combinations of 3 objects taken 2 at a time Permutations The notation P(n,r) represents the number of permutations (arrangements) of n objects taken r at a time when r is less than or equal to n. In a permutation, the order is important. In our example, we have P(3,2) which represents the number of permutations of 3 objects taken 2 at a time. In our case, P(3,2) = 6 = (3)(2) In general, P(n,r) = n(n-1)(n-2)(n-3) (n-r+1) 2

15 More examples Use the definition P(n,r) = n(n-1)(n-2)(n-3) (n-r+1) Find P(5,3) Here, n = 5 and r = 3 so we have P(5,3) = (5)(5-1)5-3+1) = 5(4)3 = 60. This means there are 60 arrangements of 5 items taken 3 at a time. Application: How many ways can 5 people sit on a park bench if the bench can only seat 3 people? Solution: Think of the bench as three slots. There are five people that can sit in the first slot, leaving four remaining people to sit in the second position and finally 3 people eligible for the third slot. Thus, there are 5(4)(3)=60 ways the people can sit. The answer could have been found using the permutations formula: P(5,3) = 60, since we are finding the number of ways of arranging 5 objects taken 3 at a time. P(n,n)= n(n-1)(n-2) 1 Find P(5,5), the number of arrangements of 5 objects taken 5 at a time. Answer: P(5,5) = 5(5-1) (5-5+1) = 5(4)(3)(2)(1)=120. Application: A bookshelf has space for exactly 5 books. How many different ways can 5 books be arranged on this bookshelf? Think of 5 slots, again. There are five choices for the first slot, 4 for the second and so on until there is only 1 choice for the final slot. The answer is 5(4)(3)(2)(1) which is the same as P(5,5) = 120. Combinations In the second problem, the number of 2 man crews that can be selected from {p,e,n} was found to be 6. This corresponds to the number of combinations of 3 objects taken 2 at a time or C(3,2). We will use a variation of the formula for permutations to derive a formula for combinations. Consider the six permutations of { p, e, n} which are grouped in three pairs of 2. Each pair corresponds to one combination of 2. pe pn en ep np ne, so if we want to find the number of combinations of 3 objects taken 2 at a time, we simply divide the number of permutations of 3 objects taken 2 at a time by 2 (or 2!) P(3,2) We have the following result: C(3,2) = 2! 3

16 Generalization General result: This formula gives the number of subsets of size r that can be taken from a set of n objects. The order of the items in each subset does not matter. Pnr (, ) nn ( 1)( n 2)...( n r+ 1) Cnr (, ) = = r! r( r 1)( r 2)...1 Examples Find C(8,5) Solution: C(8,5) = P(8,5) 8(7)(6)(5)(4) 8(7)(6) = = = 8(7) = 56 5! 5(4)(3)(2)(1) 3(2)(1) 2. Find C(8,8) Solution: C(8,8) = P(8,8) 8(7)(6)(5)(4)(3)(2)(1) = = 1 8! 8(7)(6)(5)(4)(3)(2)(1) Combinations or Permutations? 1. In how many ways can you choose 5 out of 10 friends to invite to a dinner party? Solution: Does the order of selection matter? If you choose friends in the order A,B,C,D,E or A,C,B,D,E the same set of 5 was chosen, so we conclude that the order of selection does not matter. We will use the formula for combinations since we are concerned with how many subsets of size 5 we can select from a set of 10. C(10,5) = P(10,5) 10(9)(8)(7)(6) 10(9)(8)(7) = = = 2(9)(2)(7) = 252 5! 5(4)(3)(2)(1) (5)(4) 4

17 Permutations or Combinations? How many ways can you arrange 10 books on a bookshelf that has space for only 5 books? Does order matter? The answer is yes since the arrangement ABCDE is a different arrangement of books than BACDE. We will use the formula for permutations. We need to determine the number of arrangements of 10 objects taken 5 at a time so we have P(10,5) = 10(9)(8)(7)(6)=30,240 Lottery problem A certain state lottery consists of selecting a set of 6 numbers randomly from a set of 49 numbers. To win the lottery, you must select the correct set of six numbers. How many possible lottery tickets are there? Solution. The order of the numbers is not important here as long as you have the correct set of six numbers. To determine the total number of lottery tickets, we will use the formula for combinations and find C(49, 6), the number of combinations of 49 items taken 6 at a time. Using our calculator, we find that C(49,6) = 13,983,816 5

With Question/Answer Animations. Chapter 2

With Question/Answer Animations. Chapter 2 With Question/Answer Animations Chapter 2 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Sequences and Summations Types of

More information

Exclusive Disjunction

Exclusive Disjunction Exclusive Disjunction Recall A statement is a declarative sentence that is either true or false, but not both. If we have a declarative sentence s, p: s is true, and q: s is false, can we rewrite s is

More information

In this initial chapter, you will be introduced to, or more than likely be reminded of, a

In this initial chapter, you will be introduced to, or more than likely be reminded of, a 1 Sets In this initial chapter, you will be introduced to, or more than likely be reminded of, a fundamental idea that occurs throughout mathematics: sets. Indeed, a set is an object from which every mathematical

More information

SETS. Chapter Overview

SETS. Chapter Overview Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3)

Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3) 1 Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3) On this exam, questions may come from any of the following topic areas: - Union and intersection of sets - Complement of

More information

CISC-102 Fall 2017 Week 1 David Rappaport Goodwin G-532 Office Hours: Tuesday 1:30-3:30

CISC-102 Fall 2017 Week 1 David Rappaport Goodwin G-532 Office Hours: Tuesday 1:30-3:30 Week 1 Fall 2017 1 of 42 CISC-102 Fall 2017 Week 1 David Rappaport daver@cs.queensu.ca Goodwin G-532 Office Hours: Tuesday 1:30-3:30 Homework Homework every week. Keep up to date or you risk falling behind.

More information

Intro to Logic and Proofs

Intro to Logic and Proofs Intro to Logic and Proofs Propositions A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both. Examples: It is raining today. Washington

More information

Homework every week. Keep up to date or you risk falling behind. Quizzes and Final exam are based on homework questions.

Homework every week. Keep up to date or you risk falling behind. Quizzes and Final exam are based on homework questions. Week 1 Fall 2016 1 of 25 CISC-102 Fall 2016 Week 1 David Rappaport daver@cs.queensu.ca Goodwin G-532 Office Hours: Monday 1:00-3:00 (or by appointment) Homework Homework every week. Keep up to date or

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

Discrete Mathematics. (c) Marcin Sydow. Sets. Set operations. Sets. Set identities Number sets. Pair. Power Set. Venn diagrams

Discrete Mathematics. (c) Marcin Sydow. Sets. Set operations. Sets. Set identities Number sets. Pair. Power Set. Venn diagrams Contents : basic definitions and notation A set is an unordered collection of its elements (or members). The set is fully specified by its elements. Usually capital letters are used to name sets and lowercase

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Spring

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Spring c Dr Oksana Shatalov, Spring 2015 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

Discrete Basic Structure: Sets

Discrete Basic Structure: Sets KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) Discrete Basic Structure: Sets Discrete Math Team 2 -- KS091201 MD W-07 Outline What is a set? Set properties Specifying a set Often used sets The universal

More information

PSU MATH RELAYS LOGIC & SET THEORY 2017

PSU MATH RELAYS LOGIC & SET THEORY 2017 PSU MATH RELAYS LOGIC & SET THEORY 2017 MULTIPLE CHOICE. There are 40 questions. Select the letter of the most appropriate answer and SHADE in the corresponding region of the answer sheet. If the correct

More information

1. SET 10/9/2013. Discrete Mathematics Fajrian Nur Adnan, M.CS

1. SET 10/9/2013. Discrete Mathematics Fajrian Nur Adnan, M.CS 1. SET 10/9/2013 Discrete Mathematics Fajrian Nur Adnan, M.CS 1 Discrete Mathematics 1. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon

More information

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory

More information

The Nature of Mathematics 13th Edition, Smith Notes. Korey Nishimoto Math Department, Kapiolani Community College October

The Nature of Mathematics 13th Edition, Smith Notes. Korey Nishimoto Math Department, Kapiolani Community College October Mathematics 13th Edition, Smith Notes Korey Nishimoto Math Department, Kapiolani Community College October 9 2017 Expanded Introduction to Mathematical Reasoning Page 3 Contents Contents Nature of Logic....................................

More information

Section L.1- Introduction to Logic

Section L.1- Introduction to Logic Section L.1- Introduction to Logic Definition: A statement, or proposition, is a declarative sentence that can be classified as either true or false, but not both. Example 1: Which of the following are

More information

SET THEORY. 1. Roster or Tabular form In this form the elements of the set are enclosed in curly braces { } after separating them by commas.

SET THEORY. 1. Roster or Tabular form In this form the elements of the set are enclosed in curly braces { } after separating them by commas. SETS: set is a well-defined collection of objects. SET THEORY The objects in a set are called elements or members of the set. If x is an object of set, we write x and is read as x is an element of set

More information

CSCI Homework Set 1 Due: September 11, 2018 at the beginning of class

CSCI Homework Set 1 Due: September 11, 2018 at the beginning of class CSCI 3310 - Homework Set 1 Due: September 11, 2018 at the beginning of class ANSWERS Please write your name and student ID number clearly at the top of your homework. If you have multiple pages, please

More information

CM10196 Topic 2: Sets, Predicates, Boolean algebras

CM10196 Topic 2: Sets, Predicates, Boolean algebras CM10196 Topic 2: Sets, Predicates, oolean algebras Guy McCusker 1W2.1 Sets Most of the things mathematicians talk about are built out of sets. The idea of a set is a simple one: a set is just a collection

More information

Discrete Mathematics Exam File Spring Exam #1

Discrete Mathematics Exam File Spring Exam #1 Discrete Mathematics Exam File Spring 2008 Exam #1 1.) Consider the sequence a n = 2n + 3. a.) Write out the first five terms of the sequence. b.) Determine a recursive formula for the sequence. 2.) Consider

More information

Lecture 4: Proposition, Connectives and Truth Tables

Lecture 4: Proposition, Connectives and Truth Tables Discrete Mathematics (II) Spring 2017 Lecture 4: Proposition, Connectives and Truth Tables Lecturer: Yi Li 1 Overview In last lecture, we give a brief introduction to mathematical logic and then redefine

More information

Read ahead and use your textbook to fill in the blanks. We will work the examples together.

Read ahead and use your textbook to fill in the blanks. We will work the examples together. Math 1312 Section 1.1 : Sets, Statements, and Reasoning Read ahead and use your textbook to fill in the blanks. We will work the examples together. A set is any. hese objects are called the of the set.

More information

Section 1: Sets and Interval Notation

Section 1: Sets and Interval Notation PART 1 From Sets to Functions Section 1: Sets and Interval Notation Introduction Set concepts offer the means for understanding many different aspects of mathematics and its applications to other branches

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Evaluate which proof technique(s) is appropriate for a given proposition Direct proof Proofs by contraposition

More information

HANDOUT AND SET THEORY. Ariyadi Wijaya

HANDOUT AND SET THEORY. Ariyadi Wijaya HANDOUT LOGIC AND SET THEORY Ariyadi Wijaya Mathematics Education Department Faculty of Mathematics and Natural Science Yogyakarta State University 2009 1 Mathematics Education Department Faculty of Mathematics

More information

Example: Use a direct argument to show that the sum of two even integers has to be even. Solution: Recall that an integer is even if it is a multiple

Example: Use a direct argument to show that the sum of two even integers has to be even. Solution: Recall that an integer is even if it is a multiple Use a direct argument to show that the sum of two even integers has to be even. Solution: Recall that an integer is even if it is a multiple of 2, that is, an integer x is even if x = 2y for some integer

More information

Sets. your school. A group of odd natural numbers less than 25.

Sets. your school. A group of odd natural numbers less than 25. 1 Sets The set theory was developed by German Mathematician Georg Cantor (1845-1918). He first encountered sets while working on problems on trigonometric series. This concept is used in every branch of

More information

Circles & Interval & Set Notation.notebook. November 16, 2009 CIRCLES. OBJECTIVE Graph a Circle given the equation in standard form.

Circles & Interval & Set Notation.notebook. November 16, 2009 CIRCLES. OBJECTIVE Graph a Circle given the equation in standard form. OBJECTIVE Graph a Circle given the equation in standard form. Write the equation of a circle in standard form given a graph or two points (one being the center). Students will be able to write the domain

More information

Chapter 8 Sequences, Series, and Probability

Chapter 8 Sequences, Series, and Probability Chapter 8 Sequences, Series, and Probability Overview 8.1 Sequences and Series 8.2 Arithmetic Sequences and Partial Sums 8.3 Geometric Sequences and Partial Sums 8.5 The Binomial Theorem 8.6 Counting Principles

More information

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook)

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook) Lecture 2 Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits Reading (Epp s textbook) 2.1-2.4 1 Logic Logic is a system based on statements. A statement (or

More information

CHAPTER 1. Preliminaries. 1 Set Theory

CHAPTER 1. Preliminaries. 1 Set Theory CHAPTER 1 Preliminaries 1 et Theory We assume that the reader is familiar with basic set theory. In this paragraph, we want to recall the relevant definitions and fix the notation. Our approach to set

More information

Chapter-2 SETS In Mathematics, Set theory was developed by George Cantor ( ).

Chapter-2 SETS In Mathematics, Set theory was developed by George Cantor ( ). Chapter-2 SETS In Mathematics, Set theory was developed by George Cantor (1845 1918). Set: A well defined collections of objects is called a Set. Well defined means that (i) (ii) All the objects in the

More information

Logic and Proofs. (A brief summary)

Logic and Proofs. (A brief summary) Logic and Proofs (A brief summary) Why Study Logic: To learn to prove claims/statements rigorously To be able to judge better the soundness and consistency of (others ) arguments To gain the foundations

More information

Implications, Quantifiers, and Venn Diagrams. Implications Logical Quantifiers Venn Diagrams. Different Ways of Stating Implications

Implications, Quantifiers, and Venn Diagrams. Implications Logical Quantifiers Venn Diagrams. Different Ways of Stating Implications E6 PPENDIX E Introduction to Logic E.2 Implications, Quantifiers, and Venn Diagrams Implications Logical Quantifiers Venn Diagrams Implications statement of the form If p, then q is called an implication

More information

4. Sets The language of sets. Describing a Set. c Oksana Shatalov, Fall

4. Sets The language of sets. Describing a Set. c Oksana Shatalov, Fall c Oksana Shatalov, Fall 2017 1 4. Sets 4.1. The language of sets Set Terminology and Notation Set is a well-defined collection of objects. Elements are objects or members of the set. Describing a Set Roster

More information

Discrete Mathematical Structures. Chapter 1 The Foundation: Logic

Discrete Mathematical Structures. Chapter 1 The Foundation: Logic Discrete Mathematical Structures Chapter 1 he oundation: Logic 1 Lecture Overview 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Quantifiers l l l l l Statement Logical Connectives Conjunction

More information

CISC 1100: Structures of Computer Science

CISC 1100: Structures of Computer Science CISC 1100: Structures of Computer Science Chapter 2 Sets and Sequences Fordham University Department of Computer and Information Sciences Fall, 2010 CISC 1100/Fall, 2010/Chapter 2 1 / 49 Outline Sets Basic

More information

Topics in Logic and Proofs

Topics in Logic and Proofs Chapter 2 Topics in Logic and Proofs Some mathematical statements carry a logical value of being true or false, while some do not. For example, the statement 4 + 5 = 9 is true, whereas the statement 2

More information

Math 1312 Lesson 1: Sets, Statements, and Reasoning. A set is any collection of objects. These objects are called the elements of the set.

Math 1312 Lesson 1: Sets, Statements, and Reasoning. A set is any collection of objects. These objects are called the elements of the set. Math 1312 Lesson 1: Sets, Statements, and Reasoning A set is any collection of objects. hese objects are called the elements of the set. A is a subset of B, if A is "contained" inside B, that is, all elements

More information

PREFACE. Synergy for Success in Mathematics 7 is designed for Grade 7 students. The textbook

PREFACE. Synergy for Success in Mathematics 7 is designed for Grade 7 students. The textbook Synergy for Success in Mathematics 7 is designed for Grade 7 students. The textbook contains all the required learning competencies and is supplemented with some additional topics for enrichment. Lessons

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Symbolic Logic Outline

Symbolic Logic Outline Symbolic Logic Outline 1. Symbolic Logic Outline 2. What is Logic? 3. How Do We Use Logic? 4. Logical Inferences #1 5. Logical Inferences #2 6. Symbolic Logic #1 7. Symbolic Logic #2 8. What If a Premise

More information

Chapter 2. Reasoning and Proof

Chapter 2. Reasoning and Proof Chapter 2 Reasoning and Proof 2.1 Inductive Reasoning 2.2 Analyze Conditional Statements 2.3 Apply Deductive Reasoning 2.4 Use Postulates and Diagrams 2.5 Algebraic Proofs 2.6 Segments and Angles Proofs

More information

CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC

CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC 1 Motivation and History The origins of the classical propositional logic, classical propositional calculus, as it was, and still often is called,

More information

CIS 2033 Lecture 5, Fall

CIS 2033 Lecture 5, Fall CIS 2033 Lecture 5, Fall 2016 1 Instructor: David Dobor September 13, 2016 1 Supplemental reading from Dekking s textbook: Chapter2, 3. We mentioned at the beginning of this class that calculus was a prerequisite

More information

1.1 Introduction to Sets

1.1 Introduction to Sets Math 166 Lecture Notes - S. Nite 8/29/2012 Page 1 of 5 1.1 Introduction to Sets Set Terminology and Notation A set is a well-defined collection of objects. The objects are called the elements and are usually

More information

Introduction to Set Operations

Introduction to Set Operations Introduction to Set Operations CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 21 st October 2011 Outline 1 Recap 2 Introduction to sets 3 Class Exercises

More information

Note: The area of logic that deals with propositions is called the propositional calculus or propositional logic.

Note: The area of logic that deals with propositions is called the propositional calculus or propositional logic. Ch. 1.1 Logic Logic 1 Def. A Proposition is a statement that is either true or false. Example 1: Which of the following are propositions? Statement Proposition (yes or no) UHD is a University 1 + 3 = 0

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary An Algebra on Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing Spring, 2018 Alice E. Fischer... 1/37 An Algebra on 1 Definitions and Notation Venn Diagrams 2 An Algebra on 3 Alice E. Fischer...

More information

LOGIC CONNECTIVES. Students who have an ACT score of at least 30 OR a GPA of at least 3.5 can receive a college scholarship.

LOGIC CONNECTIVES. Students who have an ACT score of at least 30 OR a GPA of at least 3.5 can receive a college scholarship. LOGIC In mathematical and everyday English language, we frequently use logic to express our thoughts verbally and in writing. We also use logic in numerous other areas such as computer coding, probability,

More information

SET THEORY. Disproving an Alleged Set Property. Disproving an Alleged Set. Example 1 Solution CHAPTER 6

SET THEORY. Disproving an Alleged Set Property. Disproving an Alleged Set. Example 1 Solution CHAPTER 6 CHAPTER 6 SET THEORY SECTION 6.3 Disproofs, Algebraic Proofs, and Boolean Algebras Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Disproving an Alleged

More information

Step-by-step and detailed demonstrations of how a specific concept or technique is applied in solving problems.

Step-by-step and detailed demonstrations of how a specific concept or technique is applied in solving problems. PREFACE Synergy for Success in Mathematics 7 contains all the required learning competencies and is supplemented with some additional topics for enrichment. Lessons are presented using effective Singapore

More information

CHAPTER 1 SETS AND EVENTS

CHAPTER 1 SETS AND EVENTS CHPTER 1 SETS ND EVENTS 1.1 Universal Set and Subsets DEFINITION: set is a well-defined collection of distinct elements in the universal set. This is denoted by capital latin letters, B, C, If an element

More information

CS100: DISCRETE STRUCTURES. Lecture 5: Logic (Ch1)

CS100: DISCRETE STRUCTURES. Lecture 5: Logic (Ch1) CS100: DISCREE SRUCURES Lecture 5: Logic (Ch1) Lecture Overview 2 Statement Logical Connectives Conjunction Disjunction Propositions Conditional Bio-conditional Converse Inverse Contrapositive Laws of

More information

Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning. Mathematical Proof and Proving (MPP)

Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning. Mathematical Proof and Proving (MPP) Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning Terminology, Notations, Definitions, & Principles: Mathematical Proof and Proving (MPP) 1. A statement

More information

WUCT121. Discrete Mathematics. Logic. Tutorial Exercises

WUCT121. Discrete Mathematics. Logic. Tutorial Exercises WUCT11 Discrete Mathematics Logic Tutorial Exercises 1 Logic Predicate Logic 3 Proofs 4 Set Theory 5 Relations and Functions WUCT11 Logic Tutorial Exercises 1 Section 1: Logic Question1 For each of the

More information

MATH 120. Test 1 Spring, 2012 DO ALL ASSIGNED PROBLEMS. Things to particularly study

MATH 120. Test 1 Spring, 2012 DO ALL ASSIGNED PROBLEMS. Things to particularly study MATH 120 Test 1 Spring, 2012 DO ALL ASSIGNED PROBLEMS Things to particularly study 1) Critical Thinking Basic strategies Be able to solve using the basic strategies, such as finding patterns, questioning,

More information

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }

Chapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, } Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using

More information

Contents. 4. Principle of Mathematical Induction Introduction Motivation The Principle of Mathematical Induction 88

Contents. 4. Principle of Mathematical Induction Introduction Motivation The Principle of Mathematical Induction 88 Foreword Contents. Sets. Introduction. Sets and their Representations.3 The Empty Set 5.4 Finite and Infinite Sets 6.5 Equal Sets 7.6 Subsets 9.7 Power Set.8 Universal Set.9 Venn Diagrams 3.0 Operations

More information

Austin is the capital of Texas, and Texas shares a border with Louisiana. is true because p is true and r is true. 2-2 Logic

Austin is the capital of Texas, and Texas shares a border with Louisiana. is true because p is true and r is true. 2-2 Logic Use the following statements and figure to write a compound statement for each conjunction or disjunction. Then find its truth value. Explain your reasoning. p : is the angle bisector of. q: Points C,

More information

Discrete Mathematical Structures: Theory and Applications

Discrete Mathematical Structures: Theory and Applications Chapter 1: Foundations: Sets, Logic, and Algorithms Discrete Mathematical Structures: Theory and Applications Learning Objectives Learn about sets Explore various operations on sets Become familiar with

More information

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York CS 250/251 Discrete Structures I and II Section 005 Fall/Winter 2013-2014 Professor York Practice Quiz March 10, 2014 CALCULATORS ALLOWED, SHOW ALL YOUR WORK 1. Construct the power set of the set A = {1,2,3}

More information

Discrete Mathematics for M.Sc.CS

Discrete Mathematics for M.Sc.CS Discrete Mathematics Page 1 CONTENTS UNIT-1 : SETS & RELATIONS 4-11 1. Discrete Mathematics Introduction... 4 2. Sets Set Definition... 4 Representation of a Set... 4 Cardinality of a Set... 5 Types of

More information

Total score: /100 points

Total score: /100 points Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 710 (Tarnoff) Discrete Structures TEST for Spring Semester,

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

Sets and Logic Linear Algebra, Spring 2012

Sets and Logic Linear Algebra, Spring 2012 Sets and Logic Linear Algebra, Spring 2012 There is a certain vocabulary and grammar that underlies all of mathematics, and mathematical proof in particular. Mathematics consists of constructing airtight

More information

A set is an unordered collection of objects.

A set is an unordered collection of objects. Section 2.1 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

= A. Example 2. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {4, 6, 7, 9, 10}, and B = {2, 6, 8, 9}. Draw the sets on a Venn diagram.

= A. Example 2. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {4, 6, 7, 9, 10}, and B = {2, 6, 8, 9}. Draw the sets on a Venn diagram. MATH 109 Sets A mathematical set is a well-defined collection of objects A for which we can determine precisely whether or not any object belongs to A. Objects in a set are formally called elements of

More information

Theorem. For every positive integer n, the sum of the positive integers from 1 to n is n(n+1)

Theorem. For every positive integer n, the sum of the positive integers from 1 to n is n(n+1) Week 1: Logic Lecture 1, 8/1 (Sections 1.1 and 1.3) Examples of theorems and proofs Theorem (Pythagoras). Let ABC be a right triangle, with legs of lengths a and b, and hypotenuse of length c. Then a +

More information

Introduction to Metalogic

Introduction to Metalogic Philosophy 135 Spring 2008 Tony Martin Introduction to Metalogic 1 The semantics of sentential logic. The language L of sentential logic. Symbols of L: Remarks: (i) sentence letters p 0, p 1, p 2,... (ii)

More information

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics CSC 224/226 Notes Packet #2: Set Theory & Predicate Calculus Barnes Packet #2: Set Theory & Predicate Calculus Applied Discrete Mathematics Table of Contents Full Adder Information Page 1 Predicate Calculus

More information

Logic and Propositional Calculus

Logic and Propositional Calculus CHAPTER 4 Logic and Propositional Calculus 4.1 INTRODUCTION Many algorithms and proofs use logical expressions such as: IF p THEN q or If p 1 AND p 2, THEN q 1 OR q 2 Therefore it is necessary to know

More information

Math 3201 Unit 1 Set Theory

Math 3201 Unit 1 Set Theory Math 3201 Unit 1 Set Theory Overview In this unit, we will organize information into. We will use diagrams to illustrate between sets and subsets and use to describe sets. We will determine the in each

More information

Logic Overview, I. and T T T T F F F T F F F F

Logic Overview, I. and T T T T F F F T F F F F Logic Overview, I DEFINITIONS A statement (proposition) is a declarative sentence that can be assigned a truth value T or F, but not both. Statements are denoted by letters p, q, r, s,... The 5 basic logical

More information

Logic. Def. A Proposition is a statement that is either true or false.

Logic. Def. A Proposition is a statement that is either true or false. Logic Logic 1 Def. A Proposition is a statement that is either true or false. Examples: Which of the following are propositions? Statement Proposition (yes or no) If yes, then determine if it is true or

More information

Section 2.1: Introduction to the Logic of Quantified Statements

Section 2.1: Introduction to the Logic of Quantified Statements Section 2.1: Introduction to the Logic of Quantified Statements In the previous chapter, we studied a branch of logic called propositional logic or propositional calculus. Loosely speaking, propositional

More information

MA103 STATEMENTS, PROOF, LOGIC

MA103 STATEMENTS, PROOF, LOGIC MA103 STATEMENTS, PROOF, LOGIC Abstract Mathematics is about making precise mathematical statements and establishing, by proof or disproof, whether these statements are true or false. We start by looking

More information

Counting Methods. CSE 191, Class Note 05: Counting Methods Computer Sci & Eng Dept SUNY Buffalo

Counting Methods. CSE 191, Class Note 05: Counting Methods Computer Sci & Eng Dept SUNY Buffalo Counting Methods CSE 191, Class Note 05: Counting Methods Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 48 Need for Counting The problem of counting

More information

cse541 LOGIC FOR COMPUTER SCIENCE

cse541 LOGIC FOR COMPUTER SCIENCE cse541 LOGIC FOR COMPUTER SCIENCE Professor Anita Wasilewska Spring 2015 LECTURE 2 Chapter 2 Introduction to Classical Propositional Logic PART 1: Classical Propositional Model Assumptions PART 2: Syntax

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 26 Why Study Logic?

More information

STRATEGIES OF PROBLEM SOLVING

STRATEGIES OF PROBLEM SOLVING STRATEGIES OF PROBLEM SOLVING Second Edition Maria Nogin Department of Mathematics College of Science and Mathematics California State University, Fresno 2014 2 Chapter 1 Introduction Solving mathematical

More information

MATH 13 FINAL EXAM SOLUTIONS

MATH 13 FINAL EXAM SOLUTIONS MATH 13 FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers. T F

More information

The statement calculus and logic

The statement calculus and logic Chapter 2 Contrariwise, continued Tweedledee, if it was so, it might be; and if it were so, it would be; but as it isn t, it ain t. That s logic. Lewis Carroll You will have encountered several languages

More information

Introduction to Metalogic 1

Introduction to Metalogic 1 Philosophy 135 Spring 2012 Tony Martin Introduction to Metalogic 1 1 The semantics of sentential logic. The language L of sentential logic. Symbols of L: (i) sentence letters p 0, p 1, p 2,... (ii) connectives,

More information

Logic and Proofs. (A brief summary)

Logic and Proofs. (A brief summary) Logic and Proofs (A brief summary) Why Study Logic: To learn to prove claims/statements rigorously To be able to judge better the soundness and consistency of (others ) arguments To gain the foundations

More information

Deductive and Inductive Logic

Deductive and Inductive Logic Deductive Logic Overview (1) Distinguishing Deductive and Inductive Logic (2) Validity and Soundness (3) A Few Practice Deductive Arguments (4) Testing for Invalidity (5) Practice Exercises Deductive and

More information

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin Chapter 0 Introduction Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin October 2014 Automata Theory 2 of 22 Automata theory deals

More information

Unit 1 Day 1. Set Operations & Venn Diagrams

Unit 1 Day 1. Set Operations & Venn Diagrams Unit 1 Day 1 Set Operations & Venn Diagrams Honors ICM Get out your signed syllabus form Get out paper and a pencil for notes! Has everyone accessed the website? Math Riddles Mr. Smith has 4 daughters.

More information

Fundamentals of Mathematics

Fundamentals of Mathematics Fundamentals of Mathematics Darrin Doud and Pace P. Nielsen Darrin Doud Department of Mathematics Brigham Young University Provo, UT 84602 doud@math.byu.edu Pace P. Nielsen Department of Mathematics Brigham

More information

PROBLEM SOLVING. (2n +1) 3 =8n 3 +12n 2 +6n +1=2(4n 3 +6n 2 +3n)+1.

PROBLEM SOLVING. (2n +1) 3 =8n 3 +12n 2 +6n +1=2(4n 3 +6n 2 +3n)+1. CONTENTS PREFACE PROBLEM SOLVING. PROOF BY CONTRADICTION: GENERAL APPROACH 5. INDUCTION. ROTATIONS 4 4. BARYCENTRIC COORDINATES AND ORIENTED (SIGNED) AREA 6 5. INVARIANTS 9 vii PROBLEM SOLVING The Art

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations Strand One: Number Sense and Operations Concept 1: Number Sense Understand and apply numbers, ways of representing numbers, the relationships among numbers, and different number systems. Justify with examples

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

SETS. JEE-Mathematics

SETS. JEE-Mathematics STS J-Mathematics ST : A set is a collection of well defined objects which are distinct from each other Set are generally denoted by capital letters A, B, C,... etc. and the elements of the set by a, b,

More information