Motion of Electrons in Electric and Magnetic Fields & Measurement of the Charge to Mass Ratio of Electrons

Size: px
Start display at page:

Download "Motion of Electrons in Electric and Magnetic Fields & Measurement of the Charge to Mass Ratio of Electrons"

Transcription

1 n eperiment of the Electron topic Motion of Electrons in Electric nd Mgnetic Fields & Mesurement of the Chrge to Mss Rtio of Electrons Instructor: 梁生 Office: Emil: Purposes 1. To understnd the movement of electrons in electric nd mgnetic fields, to understnd the electric nd mgnetic focus nd deflection;. To lern the eperimentl method of the electric nd mgnetic focus nd deflection; 3. To mesure the chrge to mss rtio of electron. Apprtus Oscillogrphic Tube. Principle Electron hs certin mss nd electric chrge. Affected by the electric nd mgnetic fields, electron will focus or deflect when it moves in the electric or mgnetic field. According to the focusing nd deflection, we cn investigte some chrcters of electron, such s chrge to mss rtio (e/m). Furthermore, the oscillogrphic tube nd 1

2 television re bsed on electron focusing nd deflection. The structure of oscillogrphic tube SJ31 is shown in Fig. 1. Filment Cthode Accelerting nd Anode X Deflection Grid 1 st Anode Y Deflection Fig. 1. SJ31 oscillogrphic tube Brightness tune: Cthode K is metl cylinder covered by oide, which cn emit electrons when heted up. Due to the influence of electric field, electrons move in certin direction which depends on the direction of the electric field. Grid electrode G is cylinder with smll hole on the top, of which electric potentil is lower thn K. So electrons decelerte between K nd G. Therefore, electrons with lower initil velocity will be rejected bck to K, electrons with higher initil velocity cn pss through the hole of G, then move to the screen. We cn control the voltge of G so tht the number of electrons rech screen will be chnged, by which the brightness cn be tuned, ccordingly. Electric focusing: In n oscillogrphic tube, electrons re emitted from the cthode K. Then, electrons re ccelerted by the first node A1 nd move through the hole of G. Due to the potentil difference between G nd A1, there is n electric field. Due to the curvture of the electric field, it cn be utilized just like n opticl lens. The electrons from different points of the surfce of K cn be focused on the front of G, t which there is focus point. The imging of the focus point cn be shown t the screen due to the electric focusing system including the first nd second nodes A1 nd A. The electric focusing system is lso clled electron lens, which is just similr to the conventionl opticl lens.

3 Whether the electrons cn be focused on the screen only depends on the rtio of V A1 to V A, not the bsolute vlue of V A1 or V A. Therefore, the focus of the electron lens cn be tuned by chnging the rtio of V A1 to V A. By choosing the pproprite rtio, the electron cn be focused on the screen. In prcticl ppliction, the second node A is lso clled ccelerting electrode becuse of its function of ccelerting electrons. The first node A1 is clled focus electrode due to tht it is used for chnging the rtio of V A1 to V A. Actully, chnging V A cn lso tune the focus, so, A is lso clled ssistnt focus electrode. Mgnetic focusing: If the ccelerting electrode, the first nd second nodes nd both X nd Y deflection electrodes re connected together to high voltge compred to the cthode, the electrons from the first focus will move with constnt velocity in the zero electric field. The electrons cn not be focused on the second point without the focus electric field. If there is uniform mgnetic field with mgnetic induction intensity of B long the direction from G, electrons re ffected by the Lorentz force, which cn be epressed s: F=-e B (1) The velocity of electrons v could be little different from the is, then, v cn be decomposed into v nd v //. v // pproimtes to be v, nd Lorentz force hve no effect on electrons t this direction. At the verticl direction, electrons re ffected by the force F = ev B. The Lorentz force is verticl to v, so, it is centripetl force. By this centripetl force, electrons move s circulr motion with constnt velocity. Lorentz force is equl to centripetl force nd we cn obtin: v ev B = m () R The rdius of the circulr motion cn be clculted by: mv R = (3) eb The period is independent of velocity, nd cn be epressed s: 3

4 T π R π m = = (4) v eb Electrons move t constnt velocity long the is, besides, they move round the es. As result, their orbit is heli. After period, electrons displcements long the is re the sme. So they will be focused gin t the point s: h=v // T=πm v // /eb (5) where h is the thred pitch of the heli. Every integrl multiple of h is lso the focus. For n pproprite B kh (k is positive integer) is equl to l 0 (the distnce between the first focus nd screen).this is so clled mgnetic focusing. Mesuring chrge to mss rtio: The velocity of electrons depends on the ccelerting voltge U, s hve: 1 mv eu =. Becuse electrons re pril, then, we v // eu v= (6) m When focusing, we cn obtin: l The chrge to mss rtio of electron cn be clculted by: 0 π k mu = kh= (7) B e e m 8π U = k (8) l0 B The mgnetic field of oscillogrphic tube is produced by the solenoid round it. For solenoid with length L, dimeter d, circle number of ech unit length n, eciter current I, the mgnetic induction intensity of the mgnetic field induced t the center cn be epressed s: B= μ ni 0 d L + l (9) 4

5 Electric deflection: There re couple of deflection pltes, verticl Y nd horizontl X. If there is voltge V between the deflection pltes, electrons will turn to node. By DC voltge, we cn see bright spot shown on the screen. By AC voltge, we cn see bright line shown on the screen. It cn be proved tht lrger V leds to longer displcement nd they re with liner reltionship. Proportionlity constnt is equl to the number of displcement under unit deflection voltge. The scle constnt is clled deflection sensitivity S (cm/v). Reciprocl of S is the deflection fctor (V/cm). S nd 1/S t direction of X nd Y cn be epressed s: S = y, Sy V = V (10) y 1 V 1 V y =, = (11) S S y y Mgnetic deflection: When there is mgnetic field which is perpendiculr to is, electrons will deflect by the impct of Lorentz force. The orbit rdius of electrons is R=mv/eB. The deflection ngle θ is quite smll, then, tnθ=b/r=y/l, nd mv /=eu, so, we cn obtin the displcement of the bright point: e y = blb (1) mu There re severl wys to generte the B. For emple, in television, sddle like coil cn be used to generte the uniform mgnetic field. In this eperiment, the Helmholtz coils re hung up to the two sides of the long stright solenoid to generte the mgnetic field. The Helmholtz coils generted mgnetic induction intensity cn be epressed s B=k 0 I. Here I is the mgnetic generting current, k 0 is determined by the circle number nd geometricl prmeters of Helmholtz coil, which is presented by lb. The reltive lrger deflection ngle cn be relized by the mgnetic deflection, which is suitble to the using of huge screen nd is generlly employed for kinescopes. 5

6 However, there re reltive lrger inductnce nd cpcitnce, which is not suitble for high frequency pplictions. Therefore, the electric deflection is usully utilized in oscillogrphic tubes. Procedures (1) Operte nd observe tuning the brightness. () Operte nd observe tuning the electric focusing. (3) Operte nd observe tuning the mgnetic focusing. (4) Mesure the chrge to mss rtio of electron. Estblish the circuit. Choose the vlue of ccelerting voltge U in the rnge of 800~900 V. The brightness will be chnged when tuning the ccelerting voltge. The brightness should not be too high to void dmging screen, in ddition, pproprite brightness is necessry to mke n esier evluting the focusing. Increse the mgnetic generting current from 0 A. Mesure the first focus current I 1 6 times nd clculte the verge vlue. Use I 1 to clculte the chrge to mss rtio. Increse the mgnetic generting current to mesure the second nd third focus current I nd I 3 6 times nd clculte the verge vlue. Clculte the chrge to mss rtio by I nd I 3, respectively. Reverse the current of the solenoid nd repet the opertions described bove. (5) Mesure the deflection sensitivity S nd deflection fctor 1/S. Estblish the circuit. Choose vlue of ccelerting voltge. Mesure the deflection voltge in the cses of the bright line is 1 cm, cm,, 5 cm long, respectively. Clculte S nd 1/S. Mesure them t X nd Y (miml deflection is 4 cm) directions. Elective: Investigte the reltionship between the deflection sensitivity S nd ccelerting voltge U. Eperimentl Prmeters re s follow: distnce between the first focus nd screen l 0 =0.199 m 6

7 length of the coil of solenoid L=0.60 m circle number N=nL=1596 eternl dimeter is m internl dimeter is m The mgnetic induction intensity B cn be clculted by verge dimeter. Bsic Requirements 1. To operte nd observe the electric nd mgnetic focusing.. To Mesure the chrge to mss rtio. 3. To clculte the deflection sensitivity S nd deflection fctor 1/S. Attentions 1. Keep sfety during the eperiment by pying ttention to the high voltge between K nd G, etc. Do not mke short circuit between high voltge nd the ground; Do not feel free to chnge the dynmic rnge of the electricl meters;. The opertion during eperiment should be chieved by ONE HAND, do void touching object connected to the ground by the other hnd; 3. For the focus opertion, keep the screen sfe by void operting too high brightness. Discussions 1. Anlyze the reson tht cuses mesurement errors from instruments nd methods, propose the suggest.. Bsed on the electric deflection, mgnetic field is generted to be verticl to the electric field. Therefore, electrons will be deflected by the impct from both the electric nd mgnetic fields, which is the eperimentl method bsed on orthogonl electric nd mgnetic fields. In 1897, English physicist J. J. Thomson mesured the 7

8 chrge to mss rtio of electron by the eperimentl method described bove in Cvendish lbortory, by which he won the Nobel Prize for Physics in Try to present the formuls nd propose n eperimentl design. Elective Reding: derivtion of the electric deflection The length of deflection pltes is b. The distnce between the two pltes is d. Electrons re deflected due to the force ev/d between the two pltes. The ccelertion of electrons is b =ev/(md), nd the time for pssing b is t b =b/v //. So, the deflection distnce of electrons is b 1 1 ev b = btb = md v//. The X component of the velocity of electrons rriving t the edge of the plte is v = t b b. When leving the pltes there is no electric force ffecting the electron, s result of which, electrons move with constnt velocity t X direction. The time for pssing l is t l =l/v //. Therefore, the deflection distnce t X direction is l evb l = btbtl=. The totl deflection distnce mdv v // // cn be epressed s: When considering 1 // evb 1 = b + l = b+ l mdv mv = eu, we cn get // (13) bl = V (14) du The sitution t Y direction is similr to the nlysis bove, then, we cn obtin: bl = V, du bl y y y = Vy (15) du y 8

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

CAPACITORS AND DIELECTRICS

CAPACITORS AND DIELECTRICS Importnt Definitions nd Units Cpcitnce: CAPACITORS AND DIELECTRICS The property of system of electricl conductors nd insultors which enbles it to store electric chrge when potentil difference exists between

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

fractions Let s Learn to

fractions Let s Learn to 5 simple lgebric frctions corne lens pupil retin Norml vision light focused on the retin concve lens Shortsightedness (myopi) light focused in front of the retin Corrected myopi light focused on the retin

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

PHYSICS ASSIGNMENT-9

PHYSICS ASSIGNMENT-9 MPS/PHY-XII-11/A9 PHYSICS ASSIGNMENT-9 *********************************************************************************************************** 1. A wire kept long the north-south direction is llowed

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM)

AP Physics 1. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Circular Motion. Topics of Uniform Circular Motion (UCM) Slide 1 / 71 Slide 2 / 71 P Physics 1 irculr Motion 2015-12-02 www.njctl.org Topics of Uniform irculr Motion (UM) Slide 3 / 71 Kinemtics of UM lick on the topic to go to tht section Period, Frequency,

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION EMF Notes 9; Electromgnetic nduction EECTOMAGNETC NDUCTON (Y&F Chpters 3, 3; Ohnin Chpter 3) These notes cover: Motionl emf nd the electric genertor Electromgnetic nduction nd Frdy s w enz s w nduced electric

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Main topics for the Second Midterm

Main topics for the Second Midterm Min topics for the Second Midterm The Midterm will cover Sections 5.4-5.9, Sections 6.1-6.3, nd Sections 7.1-7.7 (essentilly ll of the mteril covered in clss from the First Midterm). Be sure to know the

More information

Problem Set 4: Mostly Magnetic

Problem Set 4: Mostly Magnetic University of Albm Deprtment of Physics nd Astronomy PH 102 / LeClir Summer 2012 nstructions: Problem Set 4: Mostly Mgnetic 1. Answer ll questions below. Show your work for full credit. 2. All problems

More information

IMPORTANT. Read these directions carefully:

IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Finl Exm, Secs. 506 510. 7 My. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

Physics 202, Lecture 13. Today s Topics

Physics 202, Lecture 13. Today s Topics Physics 202, Lecture 13 Tody s Topics Sources of the Mgnetic Field (Ch. 30) Clculting the B field due to currents Biot-Svrt Lw Emples: ring, stright wire Force between prllel wires Ampere s Lw: infinite

More information

Freely propagating jet

Freely propagating jet Freely propgting jet Introduction Gseous rectnts re frequently introduced into combustion chmbers s jets. Chemicl, therml nd flow processes tht re tking plce in the jets re so complex tht nlyticl description

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According

More information

Appendix 3, Rises and runs, slopes and sums: tools from calculus

Appendix 3, Rises and runs, slopes and sums: tools from calculus Appendi 3, Rises nd runs, slopes nd sums: tools from clculus Sometimes we will wnt to eplore how quntity chnges s condition is vried. Clculus ws invented to do just this. We certinly do not need the full

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

1. a) Describe the principle characteristics and uses of the following types of PV cell: Single Crystal Silicon Poly Crystal Silicon

1. a) Describe the principle characteristics and uses of the following types of PV cell: Single Crystal Silicon Poly Crystal Silicon 2001 1. ) Describe the principle chrcteristics nd uses of the following types of PV cell: Single Crystl Silicon Poly Crystl Silicon Amorphous Silicon CIS/CIGS Gllium Arsenide Multijunction (12 mrks) b)

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

Homework Assignment 9 Solution Set

Homework Assignment 9 Solution Set Homework Assignment 9 Solution Set PHYCS 44 3 Mrch, 4 Problem (Griffiths 77) The mgnitude of the current in the loop is loop = ε induced = Φ B = A B = π = π µ n (µ n) = π µ nk According to Lense s Lw this

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Simple Harmonic Motion I Sem

Simple Harmonic Motion I Sem Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A Time : hours 0 - Mthemtics - Mrch 007 Mrks : 100 Pg - 1 Instructions : 1. Answer ll questions.. Write your nswers ccording to the instructions given below with the questions.. Begin ech section on new

More information

Homework Assignment 6 Solution Set

Homework Assignment 6 Solution Set Homework Assignment 6 Solution Set PHYCS 440 Mrch, 004 Prolem (Griffiths 4.6 One wy to find the energy is to find the E nd D fields everywhere nd then integrte the energy density for those fields. We know

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Precalculus Spring 2017

Precalculus Spring 2017 Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015 Instructor(s): Acost/Woodrd PHYSICS DEPATMENT PHY 049, Fll 015 Midterm 1 September 9, 015 Nme (print): Signture: On m honor, I hve neither given nor received unuthorized id on this emintion. YOU TEST NUMBE

More information

Unique Solutions R. All about Electromagnetism. C h a p t e r. G l a n c e

Unique Solutions R. All about Electromagnetism. C h a p t e r. G l a n c e 5. C h p t e r t G l n c e When electric current is pssed through conductor, it produces mgnetic field round it. The first discovery of the connection between electricity nd mgnetism ws mde by H. C. Oersted.

More information

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5. PHY1 Electricity Topic 5 (Lectures 7 & 8) pcitors nd Dielectrics In this topic, we will cover: 1) pcitors nd pcitnce ) omintions of pcitors Series nd Prllel 3) The energy stored in cpcitor 4) Dielectrics

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8.

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8. 8.1 Kick off with S 8. Similr ojects 8. Liner scle fctors 8Similrity 8. re nd volume scle fctors 8. Review U N O R R E TE D P G E PR O O FS 8.1 Kick off with S Plese refer to the Resources t in the Prelims

More information

Flow in porous media

Flow in porous media Red: Ch 2. nd 2.2 PART 4 Flow in porous medi Drcy s lw Imgine point (A) in column of wter (figure below); the point hs following chrcteristics: () elevtion z (2) pressure p (3) velocity v (4) density ρ

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2 MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xy-plne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points

More information

ES.182A Topic 32 Notes Jeremy Orloff

ES.182A Topic 32 Notes Jeremy Orloff ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In

More information

1 Module for Year 10 Secondary School Student Logarithm

1 Module for Year 10 Secondary School Student Logarithm 1 Erthquke Intensity Mesurement (The Richter Scle) Dr Chrles Richter showed tht the lrger the energy of n erthquke hs, the lrger mplitude of ground motion t given distnce. The simple model of Richter

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Now, given the derivative, can we find the function back? Can we antidifferenitate it?

Now, given the derivative, can we find the function back? Can we antidifferenitate it? Fundmentl Theorem of Clculus. Prt I Connection between integrtion nd differentition. Tody we will discuss reltionship between two mjor concepts of Clculus: integrtion nd differentition. We will show tht

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1.

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( ) lim where lim f or lim f limg. c g = c limg( ) = c = c = c How to find it: Try nd find limits by

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16 CHAPTER 16 1. The number of electrons is N = Q/e = ( 30.0 10 6 C)/( 1.60 10 19 C/electrons) = 1.88 10 14 electrons.. The mgnitude of the Coulomb force is Q /r. If we divide the epressions for the two forces,

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

8Similarity ONLINE PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8.

8Similarity ONLINE PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8. 8.1 Kick off with S 8. Similr ojects 8. Liner scle fctors 8Similrity 8.4 re nd volume scle fctors 8. Review Plese refer to the Resources t in the Prelims section of your eookplus for comprehensive step-y-step

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

AB Calculus Review Sheet

AB Calculus Review Sheet AB Clculus Review Sheet Legend: A Preclculus, B Limits, C Differentil Clculus, D Applictions of Differentil Clculus, E Integrl Clculus, F Applictions of Integrl Clculus, G Prticle Motion nd Rtes This is

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

( ) as a fraction. Determine location of the highest

( ) as a fraction. Determine location of the highest AB Clculus Exm Review Sheet - Solutions A. Preclculus Type prolems A1 A2 A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f ( x). Set function equl to 0. Fctor or use qudrtic eqution if

More information

Graduate Students do all problems. Undergraduate students choose three problems.

Graduate Students do all problems. Undergraduate students choose three problems. OPTI 45/55 Midterm Due: Februr, Grdute Students do ll problems. Undergrdute students choose three problems.. Google Erth is improving the resolution of its globl mps with dt from the SPOT5 stellite. The

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS F. Tkeo 1 nd M. Sk 1 Hchinohe Ntionl College of Technology, Hchinohe, Jpn; Tohoku University, Sendi, Jpn Abstrct:

More information

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x). AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f

More information

A LEVEL TOPIC REVIEW. factor and remainder theorems

A LEVEL TOPIC REVIEW. factor and remainder theorems A LEVEL TOPIC REVIEW unit C fctor nd reminder theorems. Use the Fctor Theorem to show tht: ) ( ) is fctor of +. ( mrks) ( + ) is fctor of ( ) is fctor of + 7+. ( mrks) +. ( mrks). Use lgebric division

More information

Chapter 1 VECTOR ALGEBRA

Chapter 1 VECTOR ALGEBRA Chpter 1 VECTOR LGEBR INTRODUCTION: Electromgnetics (EM) m be regrded s the stud of the interctions between electric chrges t rest nd in motion. Electromgnetics is brnch of phsics or electricl engineering

More information

Table of Contents. 1. Limits The Formal Definition of a Limit The Squeeze Theorem Area of a Circle

Table of Contents. 1. Limits The Formal Definition of a Limit The Squeeze Theorem Area of a Circle Tble of Contents INTRODUCTION 5 CROSS REFERENCE TABLE 13 1. Limits 1 1.1 The Forml Definition of Limit 1. The Squeeze Theorem 34 1.3 Are of Circle 43. Derivtives 53.1 Eploring Tngent Lines 54. Men Vlue

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

Physics 202, Lecture 14

Physics 202, Lecture 14 Physics 202, Lecture 14 Tody s Topics Sources of the Mgnetic Field (Ch. 28) Biot-Svrt Lw Ampere s Lw Mgnetism in Mtter Mxwell s Equtions Homework #7: due Tues 3/11 t 11 PM (4th problem optionl) Mgnetic

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009 Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm-6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No

More information

INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD

INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD Gökçen ERYILMAZ TÜRKKAN, Serdr KORKMAZ Uludg University, Civil Engineering Deprtment, Burs, Turkey geryilmz@uludg.edu.tr,

More information

Practical exercise 7. Surge tank

Practical exercise 7. Surge tank Prcticl exercise 7. Surge tnk Introduction Surge tnk is used t hydro power plnts for reduction of wter hmmer tht occurs t closing of the turbine inlet vlve. In this exercise we will mesure mss osciltions

More information

Potential Formulation Lunch with UCR Engr 12:20 1:00

Potential Formulation Lunch with UCR Engr 12:20 1:00 Wed. Fri., Mon., Tues. Wed. 7.1.3-7.2.2 Emf & Induction 7.2.3-7.2.5 Inductnce nd Energy of 7.3.1-.3.3 Mxwell s Equtions 10.1 -.2.1 Potentil Formultion Lunch with UCR Engr 12:20 1:00 HW10 Generliztion of

More information

2A1A Vector Algebra and Calculus I

2A1A Vector Algebra and Calculus I Vector Algebr nd Clculus I (23) 2AA 2AA Vector Algebr nd Clculus I Bugs/queries to sjrob@robots.ox.c.uk Michelms 23. The tetrhedron in the figure hs vertices A, B, C, D t positions, b, c, d, respectively.

More information