rotate H o = Approximate Gauche Energy (kcal/mole) isopropyl = i-pr

Size: px
Start display at page:

Download "rotate H o = Approximate Gauche Energy (kcal/mole) isopropyl = i-pr"

Transcription

1 alculating confmational energies in open chain compounds. 0 o 0 o 0 o 0 o 0 o (0 o ) (0 o ) (80 o ) (0 o ) (00 o ) 0 o (0 o ) repeat o = o = o = o = o = o = pproximate Eclipsing Energy Values pproximate Gauche Energy (/) Values (/) Me Et i-pr t-u Ph Me Et i-pr t-u Ph G K eq =0 --.RT Me Et i-pr Me Et i-pr t-u t-u Ph Ph bbreviations f substituent groups in Newman projections. hydrogen methyl = Me ethyl = Et isopropyl = i-pr t-butyl = t-u phenyl = Ph Draw all of the Newman projections f rotations around each of the indicated bonds in the structures below and calculate the confmational energies f each confmation using the tables above. tart with the confmation. You can use the above abbreviations in your structures. alculate the ratios of the two lowest confmational energies and the two farthest apart energies.,-dimethylhexane (use the bond) Youhavetodrawthis. 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 80 o 0 o 00 o y:\files\classes\\ pecial andouts\ confmational energies.doc

2 Possible answer: onfmational energies of,-dimethylhexane front dot = =, Me, Et back circle = =,, i-pr o 0 o 0 o 0 o 0 o total =. total =. total =. total =.8 total =.7 total = o 0 o 0 o 80 o 0 o 00 o,,-triimethyl--phenylhexane (use the bond) Youhavetodrawthis. 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 80 o 0 o 00 o y:\files\classes\\ pecial andouts\ confmational energies.doc

3 -methyl--phenylpentane (use the bond) You have to draw this. 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 80 o 0 o 00 o -phenyl--methylpentane (use the bond) R R R R Ph Ph Ph Ph D enantiomers enantiomers diastereomers = (,) (,D) (,) (,D) 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 80 o 0 o 00 o y:\files\classes\\ pecial andouts\ confmational energies.doc

4 alculating confmational energies in substituted cyclohexane s. equatial Use Trends to compare. = substituent group (table of values below) axial Use PE equatial G o = axial - - O r F. -( ). -O. -( ) >.0 -O 0.9 -F 0. -O 0. -l r I =.7 -O. -==. -O e.0 -N 0. -Te (phenyl).9 -N.( ),.7( O) - (benzyl).7 -N( ). ( ),.( O) -O 0. -NO. -O.0 -gr -=O 0.7 -gl -0. -Mgr ( ). -( ) >.0 -=.7 -==. - (phenyl).9 - (benzyl) (benzyl) e.0 -Te 0.9 ubstituent G o ( value) -N.( ), -N.7( O) -O 0. -O.0 -F 0. -l 0. -r 0. -I 0. -=.7 -=O N 0. y:\files\classes\\ pecial andouts\ confmational energies.doc

5 Disubstituted yclohexanes awth Projections - s are drawn flat and substituents are written in with straight lines on the top bottom. R R - -- cis-- -- trans-- -- cis-- -- trans-- -- cis-- -- trans-- -- There are two chair confmations f each cyclohexane example above. One axial group increases the by an amount listed in the table f that substituent. If two axial substituents are on the same side (cis), add an additional / to the sum of their axial energies (arbitrary value f our course). If two substituents are, gauche increase the by an additional 0.8 / (arbitrary value f our course). In some cases the two confmations are equivalent in if =, (,, cis-,, trans-, and cis-,), but in the other cases one confmation is preferred because it has lower. cis trans cis trans cis trans same if = same if = same if = same if = One axial group increases the by an amount listed in the table f that substituent, If two axial substituents are on the same side (cis), add an additional / to the sum of their axial energies (arbitrary value f our course), If two substituents are, gauche increase the by an additional 0.8 / (arbitrary value f our course). Or, you can use the table of open chain 'gauche' values. We need a systematic method of analysis we will quickly become hopelessly lost in the wilderness of flipflopping cyclohexane s. I recommend the following strategy f every cyclohexane analysis. Possible systematic approach to nalyze yclohexane onfmations. Draw the cyclohexane framewk as a bond-line fmula (chair).. dd both axial and equatial positions. xial positions point straight up down in alternating fashion (the points to the axial positions). Equatials are off to the side (use the axial positions to guide you as to top and bottom positions). oth alternate on top bottom of the face of the as you move around the. Use parallel bonds in the to guide you where to draw the equatial bonds.. dd in the necessary substituents accding to the name of the structure (fill in the blank). It is generally easier to visualize substituents drawn on the extreme left extreme right carbon atoms of the because those bonds will be in the plane of the paper, so these are good places to draw your first substituent.. Draw the other confmation by flipping one side up and flip the other side down. ll of the axial and equatial positions will interchange, but the top will still be the top and the bottom will still be the bottom.. If required, draw Newman projections of any specified compounds accding to the indicated perspective.. In addition to,-diaxial interactions look f an extra gauche interactions when substituents are substituted, (vicinal substitution). We will use 0.8 / f all gauche interactions of side groups, which is sometimes increct ( you can use the table of open chain gauche values.. y:\files\classes\\ pecial andouts\ confmational energies.doc

6 Evaluate which is the preferred confmation with the available values. Use the following equation to estimate the ratio between the two confmations.,-disubstituted (If > then is the preferred confmation.) Use Use Use same if = cis-,-disubstituted (If > then is the preferred confmation.) trans-,-disubstituted ( is always the preferred confmation.) cis-,-disubstituted ( is always the preferred confmation.) trans-,-disubstituted (If > then is the preferred confmation.) cis-,-disubstituted (If > then is the preferred confmation.) Use same if = Use Use y:\files\classes\\ pecial andouts\ confmational energies.doc

7 trans-,-disubstituted ( is always the preferred confmation.) Use Use Use Example: cis--isopropyl--methylcyclohexane Use the gauche table f open chain confmations to calculate relative costs from each perspective and add them to find the total cost f each chair confmation. me stable confmation = perspectives f each 's substituents (from all possible views) total strain 0. view. view 0.8 view total =. view view view perspectives f each 's substituents (from all possible views) less stable confmation = total strain. view. view view total =. view view view from above total = Full Newman projection of me stable confmation... Full Newman projection of me less stable confmation. from above.. total =. K = 0 - G.RT.RT = 80 cal/mol when R = cal / (mol-k) and T = 00 K. y:\files\classes\\ pecial andouts\ confmational energies.doc

(1) Recall the different isomers mentioned in this tutorial.

(1) Recall the different isomers mentioned in this tutorial. DAT Organic Chemistry - Problem Drill 08: Conformational Analysis Question No. 1 of 10 Question 1. Isomers that differ by rotation about a single bond are called: Question #01 (A) Stereoisomers (B) Constitutional

More information

Chem 201 Midterm Winter, 2013 Beauchamp

Chem 201 Midterm Winter, 2013 Beauchamp hem 0 Midterm Winter, 0 Beauchamp Name Problems Points redit. Functional Group Nomenclature. Degrees of Unsaturation & Functional Groups or Various Nomenclature Terms. D structure, Functional Groups 0.

More information

Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, REPRESENTATION OF STRUCTURE AND

Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, REPRESENTATION OF STRUCTURE AND ORGANIC CHEMISTRY, 2 ND EDITION PAULA YURKANIS BRUICE Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, AND REPRESENTATION OF STRUCTURE RAED M. AL-ZOUBI, ASSISTANT PROFESSOR

More information

4. Stereochemistry of Alkanes and Cycloalkanes

4. Stereochemistry of Alkanes and Cycloalkanes 4. Stereochemistry of Alkanes and Cycloalkanes Based on McMurry s Organic Chemistry, 6 th edition, Chapter 4 2003 Ronald Kluger Department of Chemistry University of Toronto The Shapes of Molecules! The

More information

Alkanes. Introduction

Alkanes. Introduction Introduction Alkanes Recall that alkanes are aliphatic hydrocarbons having C C and C H bonds. They can be categorized as acyclic or cyclic. Acyclic alkanes have the molecular formula C n H 2n+2 (where

More information

Conformations. Lecture 15. Hydrocarbon Families (carbon and hydrogen only) Aliphatics and Alicyclics. Aromatics. Alkanes Alkenes Alkynes.

Conformations. Lecture 15. Hydrocarbon Families (carbon and hydrogen only) Aliphatics and Alicyclics. Aromatics. Alkanes Alkenes Alkynes. Alkanes represent one of four hydrocarbon families (having only carbon and hydrogen). These families include alkanes, alkenes, alkynes, and aromatics. The alkane family will provide our main examples for

More information

Chem 201 Sample Midterm Beauchamp

Chem 201 Sample Midterm Beauchamp hem 201 Sample Midterm Beauchamp Exams are designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Partial credit

More information

Full file at

Full file at Chapter 2 - Alkanes: The Nature of Organic Compounds 1. Which of the following functional group classifications do not contain oxygen? A. ether B. thiol C. aldehyde D. ester E. amide 2. To which functional

More information

13. Free Radical Chemistry

13. Free Radical Chemistry hem 201 Study Session Final Beauchamp ame Problems Points redit 1. Functional Group omenclature (1 large structure) 2. Various possibilities: Types of Isomers, Degrees of Unsaturation, common nomenclature,

More information

1 Basic Organic Nomenclature Two kinds: Common or trivial names IUPAC (International Union of Pure and Applied Chemists!), systematic naming system

1 Basic Organic Nomenclature Two kinds: Common or trivial names IUPAC (International Union of Pure and Applied Chemists!), systematic naming system Alkanes Introduction to 3D Structures Alkanes are hydrocarbons, i.e. organic molecules that contain only carbon () and hydrogen () atoms Alkanes are unsaturated (have no double/triple bonds), but may have

More information

5. Stereochemical Analysis. 7. Dipole Moments and Inductive versus Resonance Effects. 8. Types of isomers from a given formula. 9. Physical Properties

5. Stereochemical Analysis. 7. Dipole Moments and Inductive versus Resonance Effects. 8. Types of isomers from a given formula. 9. Physical Properties hem 201 Sample Midterm Beauchamp ame Problems Points redit 1. Functional Group omenclature (1 large structure) 2. Lewis Structures, Resonance, Formal harge 3. yclohexane onformations, 2 substituents, ewman

More information

Organic Chemistry, Fifth Edition

Organic Chemistry, Fifth Edition Organic Chemistry, Fifth Edition Janice Gorzynski Smith Modified by Dr. Juliet Hahn Chapter 4 Alkanes Copyright 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without

More information

Chapter 4: Alkanes and Cycloalkanes

Chapter 4: Alkanes and Cycloalkanes 1. Nomenclature hapter 4: lkanes and ycloalkanes hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) [Sections: 4.1-4.14] unsaturated (one or more pi bonds) alkanes alkenes alkynes

More information

The wise does at once what the fool does at last.

The wise does at once what the fool does at last. hem 201 Midterm all, 2018 Beauchamp ame Problems Points redit 1. unctional Group omenclature (1 large structure) 30 2. esonance, ormal harge, Arrows 18 3. yclohexane onformations, ewman Projections 30

More information

CHEM 241 ALKANES AND CYCLOALKANES CHAP 3 ASSIGN H H

CHEM 241 ALKANES AND CYCLOALKANES CHAP 3 ASSIGN H H CEM 241 ALKANES AND CYCLOALKANES CAP 3 ASSIGN COMFORMATIONS AND cis-trans STEREOISOMERS 1. trans-1,2-dibromocyclohexane is represented by structure(s): D. II and III E. I and II 2. cis-1,3-dibromocyclohexane

More information

Problems Points Credit

Problems Points Credit Chem 201 Midterm Winter, 2018 Beauchamp ame Problems Points Credit 1. Functional Group omenclature (1 large structure) 30 2. Resonance, Formal Charge, Arrows 18 3. Properties of Atoms, Logic Arguments

More information

"You can't go back and change the beginning, but you can start where you are and change the ending." C.S. Lewis. Chem 201 Midterm.

You can't go back and change the beginning, but you can start where you are and change the ending. C.S. Lewis. Chem 201 Midterm. hem 201 Midterm Fall, 2017 Beauchamp ame Problems Points redit 1. Functional Group omenclature (1 large structure) 2. Types of Isomers, Degrees of Unsaturation or common nomenclature terms or functional

More information

Organic Chemistry 1 Lecture 6

Organic Chemistry 1 Lecture 6 CEM 232 Organic Chemistry I Illinois at Chicago Organic Chemistry 1 Lecture 6 Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 28, 2010 1 Self Test Question Which form of strain

More information

Class Activity 5A. Conformations of Alkanes Part A: Acyclic Compounds

Class Activity 5A. Conformations of Alkanes Part A: Acyclic Compounds Class Activity 5a Conformations of Alkanes Part A: Acyclic Compounds 1 Model 1: Isomers Class Activity 5A Conformations of Alkanes Part A: Acyclic Compounds C C O C C C C C C C O O A B C wedge, bond coming

More information

Name the following compounds (include stereochemistry, cis/trans, E/Z when appropriate). Cl E- 6 chloro, 5 ethyl, 4 methyl 3-octene

Name the following compounds (include stereochemistry, cis/trans, E/Z when appropriate). Cl E- 6 chloro, 5 ethyl, 4 methyl 3-octene Problem Set 6 Name the following compounds (include stereochemistry, cis/trans, E/Z when appropriate). E- 6 chlo, 5 ethyl, 4 methyl 3-octene 5 methyl, 3 vinyl cyclohexene 7Z- 7 bromo 4 ethyl, 6 methyl

More information

Chapter 2: An Introduction to Organic Compounds

Chapter 2: An Introduction to Organic Compounds Chapter : An Introduction to Organic Compounds I. FUNCTIONAL GROUPS: Functional groups with similar structure/reactivity may be "grouped" together. A. Functional Groups With Carbon-Carbon Multiple Bonds.

More information

When I lecture we will add more info, so leave spaces in your notes

When I lecture we will add more info, so leave spaces in your notes Title and Highlight Right side: NOTES! Topic: EQ: Date Date NOTES: Write out the notes from my website. Use different types of note-taking methods to help you recall info (different color pens/highlighters,

More information

Problems Points Credit

Problems Points Credit hem 0 Midterm Winter, 08 Beauchamp ame Key Problems Points redit. Functional Group omenclature ( large structure) 0. Resonance, Formal harge, Arrows 8. Properties of Atoms, Logic Arguments of rganic hemistry

More information

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22 hapter 4: Alkanes and ycloalkanes [Sections: 4.1-4.14] Basic Organic ompound Nomenclature hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) unsaturated (one or more pi bonds)

More information

ORGANIC - EGE 5E CH. 5 - ALKANES AND CYCLOALKANES.

ORGANIC - EGE 5E CH. 5 - ALKANES AND CYCLOALKANES. !! www.clutchprep.com CONCEPT: ALKANE NOMENCLATURE Before 1919, chemists literally had to memorize thousands of random (common) chemical names. IUPAC naming provides a systematic method to give every chemical

More information

ALKANES STRUCTURE, PROPERTIES, AND SYNTHESIS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

ALKANES STRUCTURE, PROPERTIES, AND SYNTHESIS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO: ALKANES STRUCTURE, PROPERTIES, AND SYNTESIS A STUDENT WO AS MASTERED TE MATERIAL IN TIS SECTION SOULD BE ABLE TO: 1. Predict relative boiling points of alkanes, in comparison with other alkanes and with

More information

Lab Workshop 1: Alkane and cycloalkane conformations

Lab Workshop 1: Alkane and cycloalkane conformations Lab Workshop : lkane and cycloalkane conformations ach student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism

Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Alkanes are hydrocarbons containing only single Bonds saturated General formula: CnH2n+2 Drawing chemical structures Several

More information

Name: (Print your name) Chem Spring, Midterm 1

Name: (Print your name) Chem Spring, Midterm 1 ame: (Print your name) hem 2010 Spring, 2019 Midterm 1 hem 2010 Midterm 1 Spring, 2019 Beauchamp ame Problems Points redit 1. Functional Group omenclature (1 large structure) 30 2. Lewis Structures, Resonance,

More information

Chapter 7 Cyclic Compounds. Stereochemistry of Reactions

Chapter 7 Cyclic Compounds. Stereochemistry of Reactions Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 7 Cyclic Compounds. Stereochemistry of Reactions Solutions to In-Text Problems 7.3 Following the procedure in the

More information

Problems. 8. Stereochemical Analysis Physical Properties, Forces of Interaction Resonance, Curved Arrows, Formal Charge, Polarity 15

Problems. 8. Stereochemical Analysis Physical Properties, Forces of Interaction Resonance, Curved Arrows, Formal Charge, Polarity 15 hem 201 Midterm Exam Winter, 2017 Beauchamp Name Problems Points 1. Functional Group Nomenclature (1 large structure) 30 2. Degrees of Unsaturation & Functional Groups (many different functional groups)

More information

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS 1 CONFORMATIONAL ISOMERS Stereochemistry concerned with the 3-D aspects of molecules Rotation is possible around C-C bonds in openchain

More information

Organic Chemistry 1 CHM 2210 Exam 2 (October 10, 2001)

Organic Chemistry 1 CHM 2210 Exam 2 (October 10, 2001) Organic Chemistry 1 CM 2210 Exam 2 (October 10, 2001) Name (print): _ Signature: _ Student ID Number: _ There are 10 multiple choice problems (4 points each) on this exam. Record the answers to the multiple

More information

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 4 Alkanes Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies, Inc.

More information

Chem 201 Midterm Winter, 2013 Beauchamp

Chem 201 Midterm Winter, 2013 Beauchamp hem 201 Midterm Winter, 2013 Beauchamp Name Problems Points redit 1. Functional Group Nomenclature 2. Degrees of Unsaturation & Functional Groups or Various Nomenclature Terms 15 3. 2D structure, Functional

More information

First Name MIKE. Chem 30A Winter 2005 MIDTERM #1 (50 Min) Weds February 2nd

First Name MIKE. Chem 30A Winter 2005 MIDTERM #1 (50 Min) Weds February 2nd Last First MI Student ID Number: Total Score Circle the name of your TA: MIKE ROB Discussion Section Day: Time: / 00 Chem 30A Winter 2005 MIDTERM # (50 Min) Weds February 2nd INTERPRETATION OF TE QUESTIONS

More information

CHAPTER 4 HW SOLUTIONS: ALKANES

CHAPTER 4 HW SOLUTIONS: ALKANES CAPTER W SOLUTONS: ALKANES CATEGORZATONS. assify each carbon atom pointed to below as,, or.. Draw an alkane that contains only: and carbon atoms carbon atoms and carbon atoms and carbon atoms or or or

More information

Conformational Analysis

Conformational Analysis onformational Analysis Free Rotation about arbon-arbon Single Bonds A carbon carbon single bond is formed by the end-on overlap of cylindrically symmetrical sp 3 orbitals. Therefore, attached carbon atoms

More information

9. Stereochemistry: Introduction to Using Molecular Models

9. Stereochemistry: Introduction to Using Molecular Models 9. Stereochemistry: Introduction to Using Molecular Models The first part of this document reviews some of the most important stereochemistry topics covered in lecture. Following the introduction, a number

More information

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS !! www.clutchprep.com CONCEPT: INDEX OF HYDROGEN DEFICIENCY (STRUCTURAL) A saturated molecule is any molecule that has the maximum number of hydrogens possible for its chemical structure. The rule that

More information

Chem 314. Problem Points Credit. 1. Nomenclature D Lewis structures D Structures, Formal Charge & Resonance 34

Chem 314. Problem Points Credit. 1. Nomenclature D Lewis structures D Structures, Formal Charge & Resonance 34 alifornia State Polytechnic University, Pomona 1 Spring, 2013 Midterm Exam hem 314 Beauchamp hem 314 ame Problem Points redit 1. omenclature 30 2. 2D Lewis structures 20 3. 3D Structures, Formal harge

More information

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Conformational Isomers Isomers that differ as a result of sigma bond Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Bond Rotation and Newman Projections As carbon-carbon

More information

Chapters 1, 2, & 3. CHAPTER 3 *** 3-D Molecular Model Set Needed*** Saturated Hydrocarbons (AKA: Alkanes) (AKA:Paraffins)

Chapters 1, 2, & 3. CHAPTER 3 *** 3-D Molecular Model Set Needed*** Saturated Hydrocarbons (AKA: Alkanes) (AKA:Paraffins) Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 1 Lecture Notes Chapters 1, 2, & 3 CAPTER 3 *** 3-D Molecular Model Set Needed*** Saturated ydrocarbons (AKA: Alkanes) (AKA:Paraffins)

More information

H C H H. sawhorse projection

H C H H. sawhorse projection Alkanes arbons are sp 3 hybridized. Bonds are σ-bonds. - bonds ~ 1.54Å; - bonds ~ 1.10Å. Bond angles ~ 109 o. Ethane sawhorse projection Newman projection Different arrangements of atoms in a molecule

More information

1. The barrier to rotation around the C-C bonds for 2-methylpropane and 2,2-dimethylpropane are shown below.

1. The barrier to rotation around the C-C bonds for 2-methylpropane and 2,2-dimethylpropane are shown below. 1. The barrier to rotation around the C-C bonds for 2-methylpropane and 2,2-dimethylpropane are shown below. E Rot = 14.2 kj/mol E Rot = 19.6 kj/mol a. Why does the potential energy of a molecule increase

More information

Chemistry 3719, Fall 2002 Exam 1 Name:

Chemistry 3719, Fall 2002 Exam 1 Name: Chemistry 3719, Fall 2002 Exam 1 Name: This exam is worth 100 points out of a total of 600 points for Chemistry 3719/3719L. You have 50 minutes to complete the exam and you may use molecular models as

More information

1. Discuss the the relative conformation analysis of 1,2-dimethylcyclohexane. H H H 3 C H H CH H 3 3 C H H

1. Discuss the the relative conformation analysis of 1,2-dimethylcyclohexane. H H H 3 C H H CH H 3 3 C H H 1. Discuss the the relative conformation analysis of 1,2-dimethylcyclohexane. If we consider cis isomer of 1,2-dimethylcyclohexane, the e,a and a,e both conformer is optically active ads no element of

More information

"Friendship is one mind in two bodies." Mencius

Friendship is one mind in two bodies. Mencius California State Polytechnic University, Pomona 1 Fall, 2014 Midterm Exam Chem 314 Beauchamp Chem 314 Name Problem Points Credit 1. Nomenclature 30 2. 2D Lewis structures 20 3. 3D Structures, Formal Charge

More information

ch03 Student: A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection?

ch03 Student: A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection? ch03 Student: 1. Identify the conformation of butane shown below. A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection? A. 1,1,2,2-tetramethylethane

More information

C. Correct! The abbreviation Ar stands for an aromatic ring, sometimes called an aryl ring.

C. Correct! The abbreviation Ar stands for an aromatic ring, sometimes called an aryl ring. Organic Chemistry - Problem Drill 05: Drawing Organic Structures No. 1 of 10 1. What does the abbreviation Ar stand for? (A) Acetyl group (B) Benzyl group (C) Aromatic or Aryl group (D) Benzoyl group (E)

More information

(a) (10 points) Fill in any hydrogens not shown and indicate the molecular formula of the compound in the box provided.

(a) (10 points) Fill in any hydrogens not shown and indicate the molecular formula of the compound in the box provided. 1. Fundamentals (a) (10 points) Fill in any hydrogens not shown and indicate the molecular formula of the compound in the box provided. (b) (10 points) Draw a Lewis structure for each of the following

More information

Only by constructing a model does one at first appreciate fully how. cyclohexane can exist in a non-planar, beautifully symmetrical, and apparently

Only by constructing a model does one at first appreciate fully how. cyclohexane can exist in a non-planar, beautifully symmetrical, and apparently Text Related to Segment 5.05 2002 Claude E. Wintner Only by constructing a model does one at first appreciate fully how cyclohexane can exist in a non-planar, beautifully symmetrical, and apparently entirely

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? CEM 331: Chapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N C 2 C N C 2 C N 1 2 3 4 1: three sigma bonds and

More information

CHE 321 Summer 2010 Exam 2 Form Choose the structure(s) that represent cis-1-sec-butyl-4-methylcyclohexane. I II III

CHE 321 Summer 2010 Exam 2 Form Choose the structure(s) that represent cis-1-sec-butyl-4-methylcyclohexane. I II III CE 321 Summer 2010 Exam 2 orm 2 Multiple Choice Questions: 60 points 1. Choose the structure(s) that represent cis-1-sec-butyl-4-methylcyclohexane. I II III (A) I only (B) II only (C) I and II only II

More information

Note: You must have your answers written in pen if you want a regrade!!!!

Note: You must have your answers written in pen if you want a regrade!!!! NAME (Print): SIGNATURE: hemistry 310M/318M Dr. Brent Iverson 1st Midterm ctober 1, 2009 Please print the first three letters of your last name in the three boxes Please Note: This test may be a bit long,

More information

Problems Points Credit

Problems Points Credit hem 201 Final Fall, 2012 Beauchamp Name Problems Points redit 1. Functional Group Nomenclature (1 large structure) (R/S and E/Z too) 30 2. Types of Isomers, Degrees of Unsaturation 25 3. yclohexane onformations,

More information

Organic Chemistry. Alkanes (2)

Organic Chemistry. Alkanes (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkanes (2) by Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my; iezwan@ump.edu.my

More information

KEY I. (28 points) i) NOTE: sp-hybridized carbanions make good nucleophiles for substitution reactions. Product A C C CH 3. Product B.

KEY I. (28 points) i) NOTE: sp-hybridized carbanions make good nucleophiles for substitution reactions. Product A C C CH 3. Product B. I. (8 points) Page 1 A. omplete the following as necessary NT: sp-hybridized carbanions make good nucleophiles for substitution reactions NaN N Na Na (optional) i equivalents of Product A Product B a)

More information

Alkanes 3/27/17. Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means fat ) - Open chain Aromatic - ring. Alkane Alkene Alkyne

Alkanes 3/27/17. Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means fat ) - Open chain Aromatic - ring. Alkane Alkene Alkyne Alkanes EQ 1. How will I define Hydrocarbons? 2. Compare and contrast the 3 types of hydrocarbons (Alkanes, alkenes, alkynes). Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means

More information

2. 2D Lewis structure (large structure with possible formal charge) 20

2. 2D Lewis structure (large structure with possible formal charge) 20 hem 201 Final Fall, 2017 Beauchamp ame Problems Points redit 1. Functional Group omenclature (1 large structure) 30 2. 2D Lewis structure (large structure with possible formal charge) 20 3. yclohexane

More information

Chemistry 3719, Fall 2003 Exam 1 Name:

Chemistry 3719, Fall 2003 Exam 1 Name: Chemistry 3719, Fall 2003 Exam 1 Name: This exam is worth 100 points out of a total of 600 points for Chemistry 3719/3719L. You have 50 minutes to complete the exam and you may use molecular models as

More information

CHM 233 : Fall 2017 Quiz #8 - Answer Key

CHM 233 : Fall 2017 Quiz #8 - Answer Key M 233 : Fall 2017 Quiz #8 - Answer Key Question 1 Malkanes5 Which best describes the relationship between the following two structures? trans-1,3-diethylcyclohexane A structural iosmers B different structures

More information

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 4 Alkanes Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies, Inc.

More information

Chem 201 Final. Beauchamp

Chem 201 Final. Beauchamp hem 201 Final Winter, 2018 Beauchamp ame KEY Problems Points redit 1. Functional Group omenclature (1 large structure) 0 2. Lewis tructures, esonance, Formal harge 18. yclohexane onformations, 2 substituents,

More information

1. methyl 2. methylene 3. methine 4. primary 5. secondary 6. tertiary 7. quarternary 8. isopropyl

1. methyl 2. methylene 3. methine 4. primary 5. secondary 6. tertiary 7. quarternary 8. isopropyl hem 201 Sample Midterm Beauchamp Exams are designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Make sure you

More information

EXAMINATION 1 Chemistry 3A SID #:

EXAMINATION 1 Chemistry 3A SID #: EXAMINATION hemistry A Name: Print first name before second! Use capital letters! SID #: Peter Vollhardt February, 08 GSI (if you are taking hem AL): Please provide the following information if applicable.

More information

Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis"

Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis" Alkanes = saturated hydrocarbons" Simplest alkane = methane C 4" " We can build additional alkanes by adding

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

Chem 341 Organic Chemistry I Lecture Summary 10 September 14, 2007

Chem 341 Organic Chemistry I Lecture Summary 10 September 14, 2007 Chem 34 Organic Chemistry I Lecture Summary 0 September 4, 007 Chapter 4 - Stereochemistry of Alkanes and Cycloalkanes Conformations of Cycloalkanes Cyclic compounds contain something we call Ring Strain.

More information

NAME: SPRING 2015 MIDTERM

NAME: SPRING 2015 MIDTERM page 1 pts NAME: SPRING 2015 MIDTERM hemistry 231 Professor: Dr. Gergens take-home portion (DUE at the beginning of the period, 4/6) Do your best on this take-home portion of your mid-term. I may grade

More information

Chemistry 3719 Fall 2000 Exam 1 Name: KEY. Anti Gauche Eclipsed 1 Eclipsed 2

Chemistry 3719 Fall 2000 Exam 1 Name: KEY. Anti Gauche Eclipsed 1 Eclipsed 2 hemistry 3719 Fall 2000 Exam 1 Name: KEY This exam is worth 100 points and you have 50 minutes to complete it. You may use molecular models to help you with any of the problems. Good luck. 1. (8 pts) 1,2-Dibromoethane

More information

(1) Check to see if the two compounds are identical. (2) Recall the definitions of stereoisomers, conformational isomers, and constitutional isomers.

(1) Check to see if the two compounds are identical. (2) Recall the definitions of stereoisomers, conformational isomers, and constitutional isomers. MCAT Organic Chemistry Problem Drill 04: Stereochemistry Question No. 1 of 10 Question 1. Determine the relationship of the molecules shown: O O Question #01 (A) Identical (B) Constitutional isomers (C)

More information

Why am I learning this, Dr. P?

Why am I learning this, Dr. P? Chapter 4- Organic Compounds: Cycloalkanes and their Stereochemistry Ashley Piekarski, Ph.D. Why am I learning this, Dr. P? Cyclic compounds are commonly encountered in all classes of biomolecules: Proteins

More information

Chapter 2. Skeletal Structures

Chapter 2. Skeletal Structures Chapter 2 Basic nomenclature/definition of alkanes Nomenclature of alkyl groups Nomenclature of more complicated alkanes Nomenclature & structure of alkane derivatives: Alkyl halides Ethers Alcohols Amines

More information

EXAMINATION 1 Chemistry 3A. Making up an I Grade If you are, please indicate the semester during which you took previous Chem 3A and the Instructor

EXAMINATION 1 Chemistry 3A. Making up an I Grade If you are, please indicate the semester during which you took previous Chem 3A and the Instructor 1 EXAMINATION 1 Chemistry 3A Key Name: Print first name before second! Use capital letters! SID #: Peter Vollhardt February 28, 2017 GSI (if you are taking Chem 3AL): Please provide the following information

More information

ORGANIC CHEMISTRY I (CHEM 2301) 9:30 10:20 am, July 1, Exam 1

ORGANIC CHEMISTRY I (CHEM 2301) 9:30 10:20 am, July 1, Exam 1 NAME ID # ORGANIC CHEMISTRY I (CHEM 2301) 9:30 10:20 am, July 1, 2014 Exam 1 If you want to pick your graded exam up tomrow in class (in public), please check the box on the right: If you do not check

More information

(S)-(-)-Dopa, used to treat Parkinson's disease, and its medically ineffective (R)-(+) enantiomer

(S)-(-)-Dopa, used to treat Parkinson's disease, and its medically ineffective (R)-(+) enantiomer C h a p t e r F i v e: Stereoisomerism N 2 2 N (S)-(-)-Dopa, used to treat Parkinson's disease, and its medically ineffective (R)-(+) enantiomer CM 321: Summary of Important Concepts YConcepts for Chapter

More information

Please provide clear and concise answers to all of the following questions. Use equations and/or drawings to support your answers where appropriate.

Please provide clear and concise answers to all of the following questions. Use equations and/or drawings to support your answers where appropriate. Organic hemistry I (230-001) Examination II October 27, 2004 Key Name (PINT LEGIBLY): Please provide clear and concise answers to all of the following questions. Use equations and/or drawings to support

More information

Expt MM 1. MOLECULAR MODELING AND PREDICTIONS OF EQUILIBRIUM CONSTANT FOR MENTHONE (trans) AND ISOMENTHONE (cis) ISOMERS (MM)

Expt MM 1. MOLECULAR MODELING AND PREDICTIONS OF EQUILIBRIUM CONSTANT FOR MENTHONE (trans) AND ISOMENTHONE (cis) ISOMERS (MM) Expt MM 1 MOLECULAR MODELING AND PREDICTIONS OF EQUILIBRIUM CONSTANT FOR MENTHONE (trans) AND ISOMENTHONE (cis) ISOMERS (MM) Important Modification Note the software in use may be changed in 2008 to Scigress.

More information

Dr. Steven Pedersen October 3, Chemistry 3A. Midterm 1. No Calculators Allowed No Molecular Models Allowed Be Sure Your Exam has 9 Pages

Dr. Steven Pedersen October 3, Chemistry 3A. Midterm 1. No Calculators Allowed No Molecular Models Allowed Be Sure Your Exam has 9 Pages Dr. Steven Pedersen ctober 3, 2017 Chemistry 3A Midterm 1 Student name: ASWER KEY Student ID: (Also include your SID in the top left corner of each page) Student signature: Problem 1 Problem 2 Problem

More information

Practice Hour Examination # 1-2

Practice Hour Examination # 1-2 CHEM 346 Organic Chemistry I Fall 2013 Practice Hour Examination # 1-2 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I (for Majors) Instructor: Paul J. Bracher Practice Hour Examination # 1-2 Monday,

More information

Problems. 8. Stereochemical Analysis Physical Properties, Forces of Interaction Resonance, Curved Arrows, Formal Charge, Polarity 15

Problems. 8. Stereochemical Analysis Physical Properties, Forces of Interaction Resonance, Curved Arrows, Formal Charge, Polarity 15 hem 0 Midterm Exam Winter, 07 eauchamp Name Problems Points. Functional Group Nomenclature ( large structure) 0. Degrees of Unsaturation & Functional Groups (many different functional groups) or Various

More information

CHAPTER 4 HW: ALKANES

CHAPTER 4 HW: ALKANES CAPTER 4 W: ALKANES CLASSES OF CARBON 1. assify each carbon atom pointed to below as 1, 2, 3 or 4. 2. Draw an alkane that contains only: 1 and 4 carbon atoms 2 carbon atoms 1 and 2 carbon atoms 1 and 3

More information

Organic Chemistry Unit #2: Structure of Alkanes, Cycloalkanes, and Alkenes

Organic Chemistry Unit #2: Structure of Alkanes, Cycloalkanes, and Alkenes Organic hemistry Unit #2: Structure of Alkanes, ycloalkanes, and Alkenes Bring your model kits to class we will to learn to use them! Objectives: by the end of this unit, you should be able to... Interconvert

More information

Problems Points Credit

Problems Points Credit hem 201 Midterm Spring, 2018 Beauchamp ame KEY Problems Points redit 1. Functional Group omenclature (1 large structure) 30 2. esonance, Formal harge, Arrows 18 3. yclohexane onformations, ewman Projections

More information

A. Structure and Nomenclature. Introduction of Organic Chemistry. Unit 2: Structure of Alkanes, Cycloalkanes, and Alkenes

A. Structure and Nomenclature. Introduction of Organic Chemistry. Unit 2: Structure of Alkanes, Cycloalkanes, and Alkenes Organic hemistry #2 1 Introduction of Organic hemistry. Unit 2: Structure of Alkanes, ycloalkanes, and Alkenes Bring your model kits to class we will to learn to use them! Objectives: by the end of this

More information

CHEMpossible. 261 Exam 1 Review

CHEMpossible. 261 Exam 1 Review CHEMpossible 261 Exam 1 Review A. Rank the following carboxylic acids from least acidic to most acidic: B. Draw the line-angle formulas for three acylic (non-cyclic) esters with the molecular formula C

More information

Introduction to organic compounds

Introduction to organic compounds Chapter 2 Introduction to organic compounds Nomenclature Physical properties Conformation Organic compounds Ch 2 #2 in Organic Chemistry 1 hydrocarbons [R] alkanes alkenes alkynes alkyl halides [RX] ethers

More information

Cl 7 8 N 9 H 6 HS 4. 2-(5,5-dimethyl-3-chlorocyclopent-2-enyl)-5-oxo-6-methyl-7-cyanoheptyl 2-hydroxy-3,3-dimethyl-4-(1-mercapto-

Cl 7 8 N 9 H 6 HS 4. 2-(5,5-dimethyl-3-chlorocyclopent-2-enyl)-5-oxo-6-methyl-7-cyanoheptyl 2-hydroxy-3,3-dimethyl-4-(1-mercapto- hem 0 Sample Midterm Beauchamp Exams are designed so that no one question will make or break you. The best strategy is to work steadily, starting with those problems you understand best. Partial credit

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Topic 1: Mechanisms and Curved Arrows etc Reactions of Alkenes:.Similar functional groups react the same way. Why? Winter 2009 Page 73 Topic 1: Mechanisms and Curved Arrows etc Reactivity:.Electrostatic

More information

comes forward STEREOISOMERS ISOMERS THAT ARE DIFFERENT BECAUSE OF THEIR ORIENTATION IN SPACE

comes forward STEREOISOMERS ISOMERS THAT ARE DIFFERENT BECAUSE OF THEIR ORIENTATION IN SPACE STEREOCEMISTRY SOME DEFINITIONS WIT EXAMPLES PRESENTING STEREO STRUCTURES CIRAL CENTER REPRESENTAITON goes back goes back in the plane of the paper comes forward comes forward DOTTED LINE - WEDGE goes

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is a tertiary amine? 1) A) B) C) D) E) D 2) There are 8 isomers that have

More information

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017 Compounds with a single ring are monocyclic. For example: Assuming they have no double or triple bonds, they each have one degree of unsaturation. This means that their formulas follow the pattern C nh

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane.

1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane. Chemistry 51 DS Quiz 2 1. When methane is photochlorinated a small amount of ethane is found in the product. Give a full mechanism to account for presence of the ethane. 2. When 2,3-dimethylbutane is monochlorinated

More information

CHEM120 - ORGANIC CHEMISTRY WORK SHEET Answer the following questions with respect to compounds (A) and (B):

CHEM120 - ORGANIC CHEMISTRY WORK SHEET Answer the following questions with respect to compounds (A) and (B): EM120 - RGANI EMISTRY WRK SEET 1 1. Answer the following questions with respect to compounds (A) and (B): (B) (A) 5 2 ( 3 ) 2 6 3 2 2 2 ( 3 ) 3 1 2 4 3 () 2 2 3 3 1 3 2 3 (a) Draw the bond-line notation

More information

CHEMISTRY MIDTERM # 1 answer key September 29, 2005

CHEMISTRY MIDTERM # 1 answer key September 29, 2005 CEMISTRY 313-01 MIDTERM # 1 answer key September 29, 2005 Statistics: Average: 75 pts (75%); ighest: 99 pts (99%); Lowest: 31 pts (31%) Number of students performing at or above average: 28 (57%) Number

More information

Copyright 2009 James K Whitesell

Copyright 2009 James K Whitesell Copyright 2009 James K Whitesell 5-1 These two molecules, cyclopropylcyclopentane and cyclobutycyclobutane have the same number of carbon and hydrogen atoms and thus they are constitutional isomers. 5-2

More information

B. A transition state represents a maximum on the reaction path diagram and can be isolated.

B. A transition state represents a maximum on the reaction path diagram and can be isolated. Practice Hour Exam 2, Chemistry 2210, Organic Chemistry I 1. The most stable carbocation is: 2. Which of the following statements is true of transition states? A. A transition state represents a minimum

More information