Solutions of half-linear differential equations in the classes Gamma and Pi

Size: px
Start display at page:

Download "Solutions of half-linear differential equations in the classes Gamma and Pi"

Transcription

1 Soluions of hlf-liner differenil equions in he clsses Gmm nd Pi Pvel Řehák Insiue of Mhemics, Acdemy of Sciences CR CZ-6662 Brno, Czech Reublic; Fculy of Educion, Msryk Universiy CZ Brno, Czech Reublic Vlenin Tddei 2 Di. di Scienze Fisiche, Informiche e Memiche, Universià di Moden e Reggio Emili I-425 Moden, Ily vlenin.ddei@unimore.i Absrc Absrc We sudy symoic behvior of ll) osiive soluions of he nonoscillory hlf-liner differenil equion of he form r) y sgn y ) = ) y sgn y, where, ) nd r, re osiive coninuous funcions on [, ), wih he hel of he Krm heory of regulrly vrying funcions nd he de Hn heory. We show h incresing res. decresing soluions belong o he de Hn clss Γ res. Γ under suible ssumions. Furher we sudy behvior of slowly vrying soluions for which symoic formuls re esblished. Some of our resuls re new even in he liner cse = 2. Keywords: hlf-liner differenil equion; osiive soluion; symoic formul; regulr vriion; clss Gmm; clss Pi 200 Mhemics Subjec Clssificion: 34C; 34C4; 34E05; 26A2 Inroducion Consider he hlf-liner equion r)φy )) = )Φy), ) where r, re osiive coninuous funcions on [, ) nd Φu) = u sgn u wih >. Denoe by he conjuge number of, i.e. =. Equion ) is nonoscillory nd ll is nonrivil soluion re evenully monoone see [7]). Our im is o describe symoic behvior of ll) osiive incresing nd decresing soluions o ) wih he hel of he Krm heory of regulrly vrying funcions nd he de Hn heory. Suored by he grn 20/0/032 of he Czech Science Foundion nd by RVO Suored by he rojec PRIN-MIUR 2009 Ordinry Differenil Equions nd Alicions nd by he rojec GNAMPA 203 Toologicl mehods for nonliner differenil roblems nd licions.

2 We esblish firs condiions gurneeing h ll osiive incresing soluions which end o ) res. osiive decresing soluions which end o zero) of ) belong o he de Hn clss Γ res. Γ wih uxiliry funcions exressed in erms of he coefficiens; hese clsses form roer subses of ridly vrying funcions. The ides of he roofs of hese semens will be uilized o discuss lso regulr vriion of soluions o ). The second r of he er is devoed o soluions of ) in he de Hn clss Π which forms roer subse of slowly vrying funcions. We will disinguish wo cses wih resec o cerin behvior of he coefficiens, where in one cse, ll osiive decresing soluions re shown o be in Π nd o sisfy cerin symoic formuls, while in he oher cse such kind of resuls is esblished for incresing soluions. Theory of regulr vriion hs been shown very useful in he sudy of symoic roeries of differenil equions, see in riculr he monogrh [6] which summrizes he reserch u o Hlf-liner differenil equions in he frmework of regulr vriion hve been considered in [3, 4, 5, 22, 23], see lso [24, Cher 3] nd [7, Subsecion 4.3]. Our resuls cn be undersood in vrious wys. We give comlemenry informion o sndrd symoic clssificion of nonoscillory soluions see e.g. [2, 3, 5, 7], [7, Cher 4]), nd o some resuls on behvior of soluions o ) mde in he frmework of regulr vriion [3, 4, 23, 24]). Furher, our heory cn be seen s n exension of resuls for he liner equion y = )y see [8, 9, 6, 8, 9, 2, 24]). We however end severl observions nd furher exensions which re new even in he liner cse. The er is orgnized s follows. In he nex secion we recll severl useful fcs bou hlf-liner differenil equions, regulrly vrying funcions, nd de Hn clsses. Secion 3 consiss of hree subsecions. In he firs res. he second one we esblish condiions which gurnee h incresing res. decresing soluions of ) re in Γ res. Γ. In boh cses we give exmles nd simlified versions of sufficien condiions. Subsecion 3.3 discusses reled resuls which re eiher byroducs of he roofs s Hrmn-Winner ye resul) or use modified ides of he roofs sufficien condiions for regulr vriion of soluions). Secion 4 consiss lso of hree subsecions. The firs wo re logiclly disinguished wih resec o he behvior of he coefficiens. In Subsecion 4. we exmine decresing slowly vrying soluions which re in Π) nd derive symoic formuls. The seing of he second subsecion requires o seek for slowly vrying soluions mong incresing soluions nd, gin, symoic formuls for such soluions re esblished. In boh cses we give exmles nd ddiionl observions, see Subsecion 4.3. The er is concluded wih shor secion which indices some direcions for fuure reserch. 2 Preinries I is well known see [7, Cher 4]) h ) wih osiive r, is nonoscillory, i.e. ll is soluions re evenully of consn sign. Thus, wihou loss of generliy, we work jus wih osiive soluions, i.e. wih he clss M = {y : y) is osiive soluion of ) for lrge }. 2

3 Bsic clssificion of nonoscillory soluions nd exisence resuls cn be found in [2, 3, 5, 7]. For survey see [7, Cher 4]). Becuse of he sign condiions on he coefficiens, ll osiive soluions of ) re evenully monoone, herefore hey belong o one of he following disjoin clsses: M + = {y M : y ) > 0 for lrge }, M = {y M : y ) < 0 for lrge }. I cn be shown h boh hese clsses re nonemy see [7, Lemm 4..2]). The clsses M +, M cn be furher divided ino four muully disjoin subclsses: We se M + = {y M + : y) = }, M + B = {y M+ : y) = l R}, M B = {y M : y) = l > 0}, M 0 = {y M : y) = 0}. T J = T r) s)ds) d nd T T J 2 = r) s)ds) d. T The convergence or divergence of he bove inegrls fully chrcerize he bove subclsses. In riculr, ccording o [7, Theorem 4..4], M + = M + if nd only if J =, while M + = M + B if nd only if J <. Moreover, M = M B if nd only if J = nd J 2 <, while M = M 0 if nd only if J 2 =. Finlly, if J < nd J 2 <, hen M 0 M B. Le y M nd ke f C wih f) 0 for every. Denoed w = frφ y ), i y sisfies he generlized Ricci equion w f f w f + ) r Φ f) w = 0, 2) where Φ snds for he inverse of Φ, i.e., Φ u) = u sgn u. If f), hen 2) reduces o he usul generlized Ricci equion Dividing 2) by f, we ge w ) + )r ) w = 0. 3) w f = f w )r f 2 + w f. 4) A soluion y of ) is sid o be rincil soluion if for every soluion u of ) such h u λy, λ R, i holds y )/y) < x )/x) for lrge, see [7, Secion 4.2]. According o [4, Corollry ], he se of evenully osiive) rincil soluions is eiher M B if J = nd J 2 < or M 0 oherwise. A soluion of he ssocied generlized Ricci equion which is genered by rincil soluion is clled n evenully miniml soluion. According o [7, Theorem ], if P ) ) for 3

4 lrge, hen he evenully miniml soluions w = rφy /y) nd z = rφx /x) of he generlized Ricci equions resecively ssocied o ) nd r)φx )) = P )Φx) sisfy w) z) 5) for lrge. In he second r of his secion we recll some bsic informions on he Krm heory of regulrly vrying funcions nd he de Hn heory; for deeer sudy of his oic see he monogrhs [, 9]. Given δ R {± } nd mesurble funcion f : [, ) 0, ) such h for every λ > 0, we sy h fλ) f) = λδ f is regulrly vrying of index δ, we wrie f RV δ), if δ R\{0}; f is slowly vrying, we wrie f SV, if δ = 0; f is ridly vrying, we wrie f RP V ) res. f RP V ), if δ = res. δ =. Here we use he convenion λ = 0, λ = for λ 0, ), nd λ =, λ = 0 for λ > 0. I follows h f RV δ) if nd only if here exiss funcion L SV such h f) = δ L) for every. The slowly vrying comonen of f RV δ) will be denoed by L f, i.e., L f ) = δ f). The Reresenion heorem see e.g. []) sys h f RV δ) if nd only if { f) = φ) δ ex ψs) s ds }, 6), for some > 0, where φ, ψ re mesurble wih φ) = C 0, ) nd ψ) = 0. A regulrly vrying funcion f is sid o be normlized regulrly vrying, we wrie f NRV δ), if φ) C in 6). If 6) holds wih δ = 0 nd φ) C, we sy h f is normlized slowly vrying, we wrie f NSV. Clerly, if f is C f funcion nd ) = δ, hen f NRV δ). f) The following Krm heorem direc-hlf) will be very useful in he sequel. As usul, f) g) s ) mens f)/g) =. Theorem. [, 9]) If L SV hen s. Moreover, if s δ Ls)ds funcion; if cses, L)/ L) 0 s. δ δ+ L) if δ <, s δ Ls)ds δ + δ+ L) if δ > Ls)/s ds converges, hen L) = Ls)/s ds diverges, hen L) = 4 Ls)/s ds is SV Ls)/s ds is SV funcion; in boh

5 Here re some simle roeries of RV funcions which we frequenly use: If L SV nd ϑ > 0, hen ϑ L) nd ϑ L) 0 s. Le f i RV ϑ i ), i =, 2, ϑ, ϑ 2, γ R. Then f γ RV γϑ ), f + f 2 RV mx{ϑ, ϑ 2 }), f f 2 RV ϑ + ϑ 2 ). Severl furher roeries re sred in he ex, he lces where we need hem. We now recll useful subclsses of slowly nd ridly vrying funcions, which were inroduced by de Hn, see [, 6, 9]. A nondecresing funcion f : R 0, ) is sid o belong o he clss Γ if here exiss funcion v : R 0, ) such h for ll λ R f + λv)) = e λ ; f) we wrie f Γ or f Γv). The funcion v is clled n uxiliry funcion for f. Furher, f Γ v) if /f Γv). Someimes we wrie Γ s Γ +. A mesurble funcion f : [, ) R is sid o belong o he clss Π if here exiss funcion w : 0, ) 0, ) such h for λ > 0 fλ) f) w) = ln λ; we wrie f Π or f Πw). The funcion w is clled n uxiliry funcion for f. I is known h funcions in clss Γ re ridly vrying of index see [6, Theorem.5.]). From Γv) RP V ), i follows h Γ v) RP V ). Moreover, for funcion f in clss Π, here exiss l = f) nd, rovided f is osiive, f is slowly vrying see [9, Corollry.8]). A mesurble funcion f : R 0, ) is Beurling slowly vrying if f + λf)) f) = for ll λ R; 7) we wrie f BSV. If 7) holds loclly uniformly in λ, hen f is clled self-neglecing; we wrie f SN. I is known h if f BSV is coninuous, hen f is self-neglecing see [9, Theorem.34]). Moreover, f SN if nd only here exiss ϕ inegrble such h ϕ) = 0 nd f) ϕs)ds s see [9, Theorem.35]). Trivilly his imlies h f C is BSV if nd only if f is inegrble nd f ) = 0. 3 Soluions in clsses Γ nd Γ 3. Incresing soluions in he clss Γ In his secion we del wih soluions of ) belonging o he de Hn clss Γ where n uxiliry funcion is exressed in erms of he coefficiens of he equion. Theorem 2. Suose h J = nd f C sisfying ) r BSV. If here exiss funcion f) f) := ) ) r) r) 5 nd f ) f 2 )) = 0, 8)

6 [ ] ) r ) hen M + Γ. Proof. Tke osiive soluion y M +. By definiion, Φy) = y nd Φy ) = y ) for sufficienly lrge. We now show h y ) [ ) ] s. y) r) ) Le us firs ssume h f C f nd h ) = 0 nd define w = f) 2 ) fr y y ). Then w sisfies he generlized Ricci equion 4) nd, since f is osiive nd r f = f, we obin [ ] w f f = + w f 2 )w. 9) We c h w) = ). Consider firs he cse when w ) > 0 for lrge. Then w is definiely osiive, w is incresing nd ends o l 0, ] when f. If l =, ccording o 9) nd f 0, we would ge h f 2 of wo osiive consns M 0, M such h w ) f)) = 0, we would hve h f 2, which leds o conrdicion. Thus l <. If l ), gin by 9) nd f w ) = f)) )l 0, yielding he exisence w ) M 0 0) nd i.e., reclling h f = r ), w ) f)) M ) ) w) w 0 ) + M d r) for > 0 wih 0 sufficienly lrge. By definiion, ) y w = f r ) ) = y hence 0) imlies h 0 ) + r ) ) y ) r) M 0 y) ) y = y ) r y for > 0. Inegring beween 0 nd nd reclling h J = imlies y, we hen would ge ) ) w) w 0 ) + M d w0 ) + M ln y) r) M 0 y 0 ), 0 conrdicion. Resoning similrly, we obin conrdicion lso in he cse when w ) < 0 for sufficienly lrge. In fc, in his cse w is osiive decresing funcion nd ends o l [0, ). Finlly, suose he exisence of sequence { n } n 6 y ),

7 wih n n =, n w n ) = l R {, } nd w n ) = 0 for every n. Then, ccording o 9), i follows h [ ] f n ) + w n ) f n ) 2 n ) )w n) = 0 for every n nd, ssing o he i, we obin )l f = 0, becuse ) 0 f 2 )) s. In conclusion, w) = ), i.e. y ) y) ) ) ) r) ) s. Rising by we hen obin y ) [ ) ]. y) r) ) We reurn now o he generl cse. Le f C be such h 8) is fulfilled. Tke = r f) r. Then ) r) ) r) r) ) =, herefore for every ε 0, ) here exiss ε such h ε) ) ) + ε) ) for ll > ε. Since ε 0, ), ccording o [7, Lemm 4..2], here exis evenully osiive incresing soluions v, u, resecively, of roblems { r)φv )) = ε) )Φv) v ε ) = v 0, v ε ) = v 0, ) nd { r)φu )) = + ε) )Φu) u ε ) = u 0, u ε ) = u 0 2) wih v 0, v 0, u 0, u 0 osiive nd such h v 0 v 0 ) y ε) y ε ) ) u 0 u 0 ). Define w v = r v v ), w y = r y y ), nd w u = r u u ). These funcions sisfy, resecively, he generlized Ricci equions nd w v = ε) )r w v, w y = )r w y, w u = + ε) )r w u. By he heory on differenil inequliies see [, Cher III, Secion 4]), since w v ε ) w y ε ) w u ε ) nd ε) ) ) + ε) ) for every > ε, i follows h w v ) w y ) w u ), yielding v ) v) ) ) ) r) y ) y) ) ) ) r) u ) u) ) ) ) r) 3) for every > ε. Define w v = v fr v ). Then [ f w v f = ε + w v ) w v f 2 herefore, resoning s bove, we ge h w v ) = ε ) ], which imlies v ) v) ) ) ) r) v ) v) ) ) ) r) ) ε 4) 7

8 s, becuse ) ). From 3) nd 4) we obin h inf for every ε > 0, i.e. h inf y ) y) y ) y) Similrly, from 3) we lso ge h su y ) y) ) ) ) r) ) ε ) ) ) ). r) ) ) ) ), r) hence y ) y) ) ) ) r) ), which imlies gin y ) ) [ ] s. y) r) ) Denoed [ r ) ] = Q, we hve h y ), hence for every ε 0, ) here y) Q) exiss ε such h ε Q) subsiuion, we obin h +λq) y ) +ε y) Q) λ Qs) ds = 0 for ε. For every λ > 0, inegring by Q) Q + ξq)) dξ λ s, becuse Q BSV coninuous imlies Q SN. Thus ε)λ inf +λq) y s) ys) ds su +λq) Hence, in view of he rbirriness of ε, for every λ > 0, +λq) λ = y s) ds = ys) By definiion, y Γ[ r ) ] ) nd he heorem is roved. y + λq)) ln. y) y s) ds + ε)λ. ys) Remrk. i) The revious resul ws obined in [23, Theorem 3] in he secil cse when r) nd hen exended in he sme er o he cse r) d = vi suible rnsformion of deenden vrible. Using differen echniques, we re ble o exend he heorem o he cse when he inegrl cn lso converge. Moreover, we do no need o disinguish wheher he inegrl converges or diverges. Noe h, in conrs o he liner cse, he rnsformion of deenden vrible which cn rnsform convergen cse ino divergen one) is no disosl for equion ). Recll h he sufficien condiion from [23, Theorem 3] reds s r s) ds = nd ) ) R BSV, BSV, 5) r r where R is he inverse of R) = r s) ds. As noed in [23], for, r C, 5) is gurneed by ) r) ) ) 0 nd 8 ) ) r) r ) r) 0 6)

9 f ) f 2 )) s. Thnks o ideniy 20), condiion 6) imlies lso he condiion 0 s, wih, r C, cf. 8). ii) A comrison wih liner resuls is described in Remrk 3, where lso soluions in Γ re discussed. The nex corollry gives vrious sufficien condiions which gurnee he semen of Theorem 2. ) r Corollry. Assume h J =, BSV. Any of he following ssumions [ ] ) r ) gurnee M + Γ, f being defined in 8): i) is bounded nd here exiss funcion f C such h f) f) s nd f BSV ; ii) iii) ) r is bounded nd here exiss funcion f C such h f) f) s nd ln f BSV ; ) r is bounded nd here exiss funcion f C such h r f) f) s nd f BSV, Proof. i) Since f C, hen f BSV is equivlen o f ) f ) f) 2 ) = 0 from he boundedness of. Similrly, i is ossible o rove he cses ii) nd iii). f) 2 = 0, hence Exmle. Suose h RV δ) nd r RV σ). Then, f RV δ σ ) nd r ) RV σ δ ). According o [9, Proosiion.7], if δ + σ 0 nd δ σ, hen f is symoiclly equivlen o f C, wih f RV δ σ ), while r ) is symoiclly equivlen o h C wih h RV σ δ ). Then f f 2 RV σ δ ). Thus σ δ < imlies f f 2 since r) ) ) 0 nd consequenly f f 2 0. Moreover, h s)ds, he sme condiion imlies h 0, i.e. r ) BSV. Now, if δ <, hen s)ds l R. Hence, J = if nd only if r) d = see [7, ge 36]). Thus σ <, i.e. σ ) >, imlies J =. Noice h σ δ < imlies σ < + δ <. On he oher hnd, if δ >, by Krm s heorem we ge r) ) ) s)ds = σ ) L r ) s δ L s)ds δ+ σ) ) L ) L r )δ+)), 9

10 nd δ + σ) ) >, i.e. σ δ <, imlies gin J =. In conclusion, he ssumions of Theorem 2 re sisfied if σ δ < nd δ + σ 0 wih δ. The resul holds lso when δ = 0 or σ = 0, i.e. when or r re SV. 3.2 Decresing soluions in he clss Γ In his secion we del wih soluions of ) belonging o he de Hn clss Γ. As fr s we know, he only resul reled wih soluion in his clss ws obined in [9, Corollry 3.2] for he liner equion, i.e. when = 2, in he secil cse when r). Using quie differen roch we exend he semen o quie wider clss of equions nd, moreover, we del wih n enire subclss of decresing soluions. In some secs, he following resul is new even in he liner cse, see Remrk 3. Theorem 3. Suose h J < or J 2 = nd funcions, r C such h, r r nd f := [ r ) ] ) M 0 Γ. r ) r ) r BSV. If here exis sisfies 8), hen Proof. Tke y M 0. By definiion, Φy) = y nd Φy ) = y ) for sufficienly lrge. The min ides of he roof of he heorem re similr o he ones of Theorem 2, bu here re subsnil differences in some ses. Therefore we give jus skech of his roof, oining ou he differences. We firs show he relion y ) ) [ ) ] s. Assuming h, r y) r) ) C f nd h ) y = 0, we define w = fr f) 2 ) y ). Then w is negive nd sisfies he equion w [ f = + w) f f 2 ) w) ]. 7) Le us now show h w) = ). Consider firs he cse when w ) < 0 for sufficienly lrge. Then w is definiely negive, w is decresing nd f ends o l [, 0) when. Suose by conrdicion h l =. Then w, herefore ccording o he definiion of f, i holds r ) [ y ) ]. y Hence, rising by, we ge r ) [ y ) ] ) = y r ) [ y ) ], which imlies y [ ] y 0. 8) r y ) Since, r C, condiion r ) BSV is equivlen o [ r ) ] 0, i.e. ) ) 0. 9) r r 0

11 Mking now comuions, we obin f f 2 = = ) ) ) r r r ) 2 r r ) ) r r r 2 r 2 = ) ) r r r, ) ) r r ) r r r 20) herefore 9) nd f 0 imly f 2 ) r r r 0 2) hus r r y ) r ) = y r r r y y 0 by 8) nd 2). The condiions, r C yield y C 2 nd, from ), hus, ccording o 8) nd 2), I follows h hence y y r y ) + )r y ) 2 y = y, y y y ) = y + r y ) y = 2 )r y ) y y y )r y ) r y 0. )ry ) = y ) 2 yy y ) 2 = y y y ) 2, which imlies y > 0, conrdicion wih y M. Thus l >. If l ), gin by 7) nd f 0, we would ge h f 2 ) l) 0, yielding he exisence of wo osiive consns M 0, M such h ) ) y ) 22) r) M 0 y) nd 0 w ) f)) = ) ) w) w 0 ) M d 23) r) for > 0 sufficienly lrge. From 22) nd 23), reclling h y 0, we hen would ge w) w 0 ) + M ln y) M 0 y 0 ), conrdicion. Resoning similrly, we obin conrdicion lso in he cse when w ) < 0 for sufficienly lrge or here exiss sequence { n } n wih n n =, n w n ) = l R {, } nd w n ) = 0 for every n. We hve so roved

12 h w) = ), i.e. y ) y) ) ) ) r) ). Rising by we hen obin y ) [ ) ] s. y) r) ) In he generl cse, given, r C s in he ssumions, le v nd u be soluions resecively of roblems ) nd 2) in clss M 0 nd consider he soluions w v, w y nd w u of he resecively ssocied Ricci equions. Since v, y nd u re rincil soluions nd ϵ) ) ) + ϵ) ) for > ϵ, hen w v ) w y ) w u ) for lrge by 5). Hence i is ossible o reson similrly s in Theorem 2 o rove h y ) y) ) ) ) r) ), which imlies gin y ) [ ) ]. y) r) ) Denoed gin [ r ) ] = Q, from y ) nd Q SN we obin, for every y) Q) λ > 0, +λq) λ = By definiion, y Γ[ r ) y s) y + λq)) ds = ln ys) y) y) = ln y + λq)). ] ), i.e. y Γ [ r ) ] ) nd he heorem is roved. The nex corollry gives condiions which gurnee he semen of Theorem 3. The roof is similr o he one of Corollry. Corollry 2. Assume h J < or J 2 =. If ny of he condiions i) or ii) or iii) of Corollry holds for some, r C wih, r r, hen M 0 [r ] ) ) Γ. Exmle 2. Suose h RV δ) nd r RV σ). According o [9, Proosiion.7], if δ, σ 0, nd r re symoiclly equivlen resecively o nd r C, wih RV δ ) nd r RV σ ). Resoning s in Exmle, i follows h f f 2 0 nd r ) BSV. Now, if δ <, hen δ δ+ L ), hus Krm s heorem we hve s)ds r) s)ds <. According o ) ) s)ds δ+ σ) ) L ). L r ) δ ) Hence, if we furher ssume σ < + δ, i.e. δ + σ) ) >, we obin J 2 =. Noe h while we re ble o gurnee J 2 =, we cnno ssure J < when δ <, since i would yield σ < δ, which is in conrdicion wih σ < + δ; he ler inequliy being required for r ) BSV. If δ >, hen s)ds, which imlies J 2 =. In conclusion, he ssumions of Theorem 2 re sisfied if δ, σ 0 nd σ δ < wih δ. 3.3 Reled observions nd regulrly vrying soluions The following corollry gives recise clssificion of ll soluions of ) in erms of de Hn clsses. Is roof is direc consequence of Theorem 2 nd Theorem 3. 2

13 ) Corollry 3. Assume h J = J 2 = nd h BSV. If here exis r ) funcions, r such h, r r nd f := sisfies 8), hen r r M + Γ [r ) ] ) nd M Γ [r ) ] ). Remrk 2. As by-roduc of Corollry 3, we ge condiions gurneeing h M + = M + RP V ) nd M = M 0 RP V ). Remrk 3. A closer exminion of he roofs of Theorem 2 nd Theorem 3 shows h under he condiions of Corollry 3 we hve gurneed he exisence of soluions y i of ) such h y i) ± ) r) ) ) yi ) 24) s, i =, 2. If = 2 nd r) =, hen 24) reduces o y i) ± )y i ), y i being soluions of y )y = 0. The sme formuls in he liner cse were obined in [2] by Hrmn nd Winner under he ssumions s) ds = nd )/ 3 2 ) 0 s. Omey in [8] rediscovered his semen for n incresing soluion y nd showed h y Γ 2 ) under he ssumion 2 BSV, see lso [9, 9, 2]. A decresing soluion which is in Γ ws found by Omey in [9] wih he hel of reducion of order formul, hving disosl n incresing soluion in Γ. Noe h his ool cnno be used in he hlf-liner cse. We emhsize h in Corollry 3 we work wih ll ossible) decresing soluions nd wih generl r, which mkes his semen new lso in he liner cse. The ides of he roofs of Theorems 2, 3 cn be used o esblish condiions which gurnee regulr vriion of soluions o ). Theorem 4. Assume h here exis, r C such h f ) f 2 ) ) = D R nd ) r) ) ) = C 0, ), 25) where f = ), nd ) ), r) r) s. Le ϱ r r > 0 > ϱ 2 denoe he roos of he equion ϱ i) If J =, hen M + NRV ii) If J < or J 2 =, hen M 0 D ϱ Φ ϱ ) C ). NRV Φ ϱ 2 ) C = 0. 26) ). 3

14 Proof. i) Tke y M +. Similrly s in he roof of Theorem 2 we ge he relion ) f)r) y ) y) ϱ s wih f = ). Since C > 0, ccording o he r r l Hosil rule, ) r) ) [ ) r) ) ] C, hence from he second condiion in 25) we ge ) r) r) C s. Thus, ϱ ) r) ) y ) y) ) C) y ) y) ) y = C ) y) ) Φ ϱ ). ) y s. This imlies ) = ϱ y) C, or y NRV C ii) Tke y M 0. Similrly s in he roof of Theorem 3 we ge he relion ) f)r) y ) y) ϱ2 s. We only noe h o show h w) is excluded for negive soluion w of he ssocied Ricci ye equion we cn use he sme rgumens s in he roof Theorem 3, since r boundedness follows from he ideniy ) r r is bounded. The f ) f 2 ) ) = ) ) r) ) ) ) ) r) r ) r) 27) nd condiion 25). Similrly s in i), we obin y ) y) = Φ ϱ 2 ) C. Remrk 4. Jroš, Kusno, nd Tnigw in [4], ssuming r s) ds =, showed h equion ) wih no sign condiion on ) ossesses ir of soluions y i NRV R Φ λ i )), i =, 2, if nd only if R ) s) ds = A ), ), 28) where R) = r s) ds nd λ, λ 2 re he rel roos of he equion λ λ A = 0. 29) The noion f NRV R ϑ) mens f R NRV ϑ); we sek bou generlized regulr vriion wih resec o R. A similr semen is roved for he cse r s) ds <. To mke comrison wih our resuls simler, le r) =. Then he i in condiion 28) reduces o s) ds nd generlized regulr vriion becomes usul regulr vriion, hus y i NRV Φ λ i )), i =, 2. The second condiion in 25) hen imlies ) ) C s nd so, by he L Hosil rule, s) ds =, which yields )C = /A. )C Furher, from he ideniy 27) nd he firs condiion in 25), we hve D = )C. The relion beween he corresonding rel roos λ of 29) nd ϱ of 26) reds s λ = ϱa )). Hence, Φ λ i ) = Φ ϱ i )/C, i =, 2, nd so, s execed, he corresonding indices of regulr vriion in boh resuls re he sme. Noe h he inegrl condiion from [4] is more generl hn our condiions in Theorem 4 nd, moreover, i is shown o be necessry. On he oher hnd, he fixed oin roch used in [4] gurnees he exisence of les one osiive incresing decresing) RV soluion, while Theorem 4 sys h ll osiive incresing decresing) soluions re regulrly vrying. 4

15 Remrk 5. I is well known h J < imlies M + = M + B SV. Consequenly, ssuming 25), no mer wh ddiionl inegrl condiion holds, M + RV SV. The sme conclusion holds for M, reclling h, if J = nd J 2 <, hen M = M B SV. Remrk 6. Noe h, wih r C, hving obined ) ) ) y ) = f)r)φ ϱ 30) r) y) s, where y is soluion of ) nd ϱ is roo of 26) which cnno be zero), D being rel number, he semens of he roofs of Theorems 2, 3, nd 4 cn be roved in n lernive nd unified wy; comre wih he ler rs of heir roofs. The number C in 25) is ssumed o be in [0, ). We show h here exiss he i y )y) = K R. 3) y 2 ) We hve y y y = 2 )r y y r )r y y. Relion 30) imlies ) y ). From ideniy 27), in view of r) = r), 30), r) y ) ϱ nd ) ) s, we ge r ) r) y) ) y ) = r ) ) r) ) y) r) ) r) y ) )C D ) Φ ϱ) s. Since ϱ is roo of 26), for K from 3) i holds K = ϱ Cϱ + ) Dϱ = ϱ ϱ Cϱ) = C Φ ϱ). If C = 0, hen K =, which imlies y Γ ± y /y ) deending on wheher y is incresing or decresing, see [20, Proosiion 2.]. Since for he uxiliry funcion i holds y ) y) ) )r) ) s, we ge he semens of Theorems 2 nd 3. If C > 0 s in Theorem 4), hen K nd y NRV / K)) = NRV Φ ϱ)/c) by [20, Proosiion 2.]. Noe h in [20], he semen which we jus lied is formuled for regulrly vrying funcions, bu closer exminion of he roof in h er shows h regulr vriion is normlized. Corollry 4. Assume h here exis, r C such h ) ) ) r NRV γ), γ R, nd = C 0, ). 32) r) Then he semen of Theorem 4 holds, where D in 26) sisfies D = C γ). Proof. The second condiion in 32) imlies r) ) C s. Hence, in view of he firs condiion in 32), we hve ) r) ) r ) r) C r ) r) Cγ s. For D from condiion 25), in view of 27), we ge D = )C Cγ. The resul now follows from Theorem 4. 5

16 4 Soluions in he clss Π 4. Decresing soluions in he cse δ < We sr wih showing h ny osiive decresing soluion of ) is normlized slowly vrying nd in he de Hn clss Π) nd sisfies n symoic formul. Theorem 5. Le RV δ) nd r RV δ + ) wih δ <. If L ) L r ) 0 s, hen y Π y )) for every y M. Moreover, for every y M, i) if ii) if h ss) rs) wih y M 0. h ss) rs) ) ds =, hen here exiss ε) wih ε) 0 s such y) = ex { + εs)) ss) ) } ds δ + )rs) 33) ) ds <, hen here exiss ε) wih ε) 0 s such { y) = l ex + εs)) ss) δ + )rs) where l = y) 0, ), wih y M B. ) ds }, 34) Proof. Firs noe h s)ds < hnks o δ <. Furher, r RV )δ + )). Since )δ + ) = )δ + + ) = )δ + ), >, nd δ <, we hve )δ + ) >, nd so r s) ds =. Tke y M. We firs rove h y NSV. By definiion rφy ) = r y ) for sufficienly lrge nd i is negive incresing. Therefore here exiss r) y )) = M, 0]. If M < 0, hen, ccording o he monooniciy, r) y )) M for every, hus y ) M r). Inegring now from o we would ge y) y) M rs) ds s, conrdicion. Hence M = 0. Inegring now ) from o, we ge r) y )) = hus, dividing by r) nd reclling h y is decresing, y )) = r) s)ys) ds, 35) s)ys) ds y) r) s)ds. Therefore, dividing by y) nd mulilying by, we obin ) 0 < y ) s)ds 36) y) r) 6

17 for lrge. By Krm s heorem, r) s)ds δ+ L r ) Hence, ccording o he ssumion, r) δ δ+ L ) = L ) L r ) δ. s)ds 0, nd from 36) we ge y )/y) 0, which imlies y NSV. Now, since RV δ), i follows h r y ) ) = y RV δ). From 35) nd Krm s heorem, we obin r y ) RV δ + ). Since r RV δ + ), we ge y ) RV ), i.e. y RV ). Finlly, inegring by subsiuion, we ge, for every λ > 0, yλ) + y) y ) = λ y u) λ y ) du = y s) λ y ) ds s, i.e. y Π y )), becuse y s) y ) s [min{, λ}, mx{, λ}]. Se h) = δ r) y )) δ + ) ds = ln λ, 37) s uniformly in he inervl s δ 2 rs) y s)) ds. Le us show h h Πh )) nd h Π δ + ) δ r) y )) ). Indeed, h ) = δ ) δ 2 r) y )) + δ )y) δ + ) δ 2 r) y )) = δ )y), hence, reclling h RV δ) nd y SV, we hve h RV δ + δ + 0) = RV ) nd, resoning like in 37), we obin h h Πh )). Moreover, inegring by subsiuion, we ge hλ) h) δ + ) δ r) y )) = λ δ δ rλ) y λ)) δ + ) δ r) y )) + δ r) y )) δ + ) δ r) y )) δ + ) λ s δ 2 rs) y s)) ds δ + ) δ r) y )) = λ δ rλ) y λ)) δ + )r) y )) λ δ + δ 2 u δ 2 ru) y u)) δ r) y )) = λ δ rλ) y λ)) δ + )r) y )) δ + λ Since r y ) RV δ + ), i follows h λ δ rλ) y λ)) δ + )r) y )) nd he uniform convergence of y u) y ) [ λ o u u δ 2 ru) y u)) du r) y )) 7 u δ 2 ru) y u)) r) y )) = λ δ δ + λδ+ = δ + du. du in [min{, λ}, mx{, λ}] imlies ] = λ u δ 2 u δ+ du = ln λ, 38)

18 hus hλ) h) = ln λ, δ + ) δ r) y )) i.e. h Π δ + ) δ r) y )) ). Becuse of he uniqueness of he uxiliry funcion u o symoic equivlence, δ + ) δ r) y )) h ) = δ )y), which imlies [ y ) y) ] ), i.e. y ) [ ) ] δ+)r) y) δ+)r). Therefore here exiss funcion ε), wih ε) = 0, such h Assume now h y ) y) ss) [ ] rs) ln y) ln y) = [ = + ε)) ) δ + )r) ] ds =. Inegring 39) from o, i follows y s) ys) ds = [ + εs)) ss) ] ds, δ + )rs) which yields 33). In fc, i esily follows h here exiss ε) 0 such h ln y) + εs))[ ss) ] δ+)rs) ds = + εs))[ ss) ] δ+)rs) ds. I is cler h y) 0 s. On he conrry, ssuming ss) [ ] rs) ds < nd inegring 39) from o, i follows ln l ln y) = y s) ys) ds = [ + εs)) ss) ] ds, δ + )rs) wih l = y), which imlies 34). I is cler h l mus be osiive. The nex remrk revels h he condiion gurneeing normlized slow vriion of decresing soluions cn be relxed. Moreover, his condiion is shown o be necessry for he exisence of decresing slowly vrying soluion of ). In ddiion, in Remrk 8, we rove h slowly vrying soluions necessrily decrese. Remrk 7. i) From he roof of Theorem 5 i cn be deduced h M NSV follows from he weker condiions nd )d <, r) r) d = 39) s)ds = 0. 40) We oin ou h, in his cse, i is no necessry o ssume he regulr vriion of or r. ii) We now show he necessiy of 40). More recisely, we rove he following semen. Assume r RV δ + ) wih δ <. If here exiss y M NSV, hen 40) holds. Indeed, se w = rφy /y) = r y /y). Then w sisfies he generlized Ricci equion 3) for lrge, nd 0 < w) = y ) r) y) 8 ) 0 s

19 , becuse y NSV. Hence, here exiss M > 0 such h w) Mr) RV δ + ), nd so w) 0 s 0, becuse δ <. Furher, since y NSV, here exiss N > 0 such h r ) w) Nr)/ RV δ), which imlies r s) ws) ds <. Inegring 3) from o nd mulilying by /r) we obin w) = r) r) s) ds+ )z), z) := r) r s) ws) ds. 4) We c h z) 0 s. Wihou loss of generliy we my ssume r NRV δ + ) C. Indeed, if r is no normlized or is no in C, hen we cn ke r NRV δ + ) C wih r) r) when, nd we hve By he L Hosil rule, z) r) r s) rs)φy s)/ys)) ds. r ) ws) z) = r ) + )r) = r ) w) r )/r) + ) y )/y) = r )/r) + ) = 0 δ + = 0. Condiion 40) hen follows from 4). If, in ddiion RV δ), hen he necessry condiion my red s L )/L r ) 0 s. A closer exminion of he roofs shows h he condiion r RV δ + ) cn be relxed o he exisence of r i RV δ i +), i =, 2, wih r ) r) r 2 ) for lrge, nd δ, δ 2 <. The nex remrk shows h SV soluions cnno increse. Hence, in Theorem 5 we re deling wih ll SV soluions of ). Remrk 8. Assume RV δ), r RV δ + ), wih δ <, nd ke y M +. Then Φy ) = y ) nd Φy) = y. Since y is osiive, hen ry ) is osiive incresing, hence here exiss osiive consn M such h r)y ) M for sufficienly lrge. Dividing by r) nd rising by, i follows h y ) M ) r), which imlies y) y) + M Since r RV δ + ), i holds r ) δ >, i.e. δ rs) ) ds. 42) rs) RV δ ). From hyohesis, δ <, hus >. Alying Krm s heorem, we hen ge h ) ds RV δ + ) = RV ) δ. Since δ <, i follows h δ > 0, herefore 42) imlies h y is greer hn or equl o RV δ ) funcion, nd herefore cnno be SV. We hve so roved h if δ <, hen M SV M. Observe h regulr vriion of cully ws no used. 9

20 Remrk 9. i) If = 2 nd r) =, hen Theorem 5 reduces o [8, Theorem 0.-A]. ii) Under he condiions of Theorem 5-i), i does no follow h { ) } ss) y) ex ds δ + )rs) s. This fc ws observed lredy in he liner cse nd wih r) = ), see [8, Remrk 2]. 4.2 Incresing soluions in he cse δ > The nex heorem dels wih SV soluions in he comlemenry cse δ >. As i follows from subsequen Remrk, we mus sough for SV soluions mong elemens of M +. The resul is new lso in he liner cse. Theorem 6. Le RV δ) nd r RV δ + ) wih δ >. If L ) L r ) 0 s, hen y Πy )) for every y M +. Moreover, for every y M +, i) if ii) if h ss) rs) wih y M +. h ss) rs) ) ds =, hen here exiss ε) wih ε) 0 s such { ) } ss) y) = ex + εs)) ds δ + )rs) 43) ) ds <, hen here exiss ε) wih ε) 0 s such y) = ex { where l = y) 0, ), wih y M + B. ) } ss) + εs)) ds, 44) δ + )rs) Proof. Firs noe h, since δ >, we hve s)ds =. Tke y M+. We firs rove h y NSV. By definiion, Φy ) = y ) for > 0 sufficienly lrge nd hence, inegring ) from 0 o nd reclling h y is incresing we ge r)y ) = r 0 )y 0 ) + 0 s)ys) ds r 0 )y 0 ) + y 0 ) 0 s)ds s. Moreover, i is ossible o find osiive consn A such h 45) r)y ) A 0 s)ys) ds for lrge. Now, dividing he ls inequliy by r) nd reclling h y is incresing, we ge y ) Ay) r) 20 0 s)ds.

21 Thus, dividing by y) nd mulilying by, we obin By Krm s heorem, 0 < ) y ) A y) r) r) s)ds L ) L r ) δ + s)ds. 46) s. Hence, from 46) nd he hyohesis, we ge y )/y) 0, which imlies y NSV. From y RV δ) nd 45), we obin ry RV mx{0, δ+}) = RV δ+), becuse δ >. Consequenly, y ) RV ), i.e. y RV ), nd concluding s in 37) we obin y Πy ). Since y RV δ), wih δ >, from 45) nd Krm s heorem we ge r)y ) 0 s)ys) ds sδ L s)l y s)ds δ+ δ+ L )L y ) = δ+ )y). Thus, dividing by r)y), we ge y ) y) ) ) y ) ) y). δ + )r) ), hence, rising by, δ+)r) Therefore here exiss funcion ε), wih ε) = 0, such h y ) y) ) ) = + ε)). 47) δ + )r) Assume now h ) δ+)r) ) d =. Inegring 47) from o, we ge ln y) ln y) = ) ss) + εs)) ds, δ + )rs) nd 43) follows wih y) s. Oherwise, if ) δ+)r) ) d <, hen, inegring 47) from o, we obin ln y) l = ) ss) + εs)) ds, δ + )rs) wih l = y), which yields 44). Clerly, l 0, ). The nex remrk cs h sufficien condiions gurneeing M + NSV cn be relxed. Moreover, he condiion 48) which cn be undersood s counerr o 40) is necessry for he exisence of n incresing SV soluion. 2

22 Remrk 0. The roof of Theorem 6 esily imlies M + NSV when ssuming, insed of he regulr vriion of nd r, he weker condiions nd r) )d = s)ds = 0. 48) Similrly s in Remrk 7, i is ossible o rove he following semen. Assume r RV δ + ) wih δ >. If here exiss y M + NSV, hen 48) holds. Noe h in his cse, insed of 4), we work wih he Ricci ye inegrl equion of he form w) r) r) = r) s) ds ) r) r s) ws) ds. Here, /r) 0 nd w)/r) 0 s. If, in ddiion RV δ), hen necessry condiion reds s L )/L r ) 0 s. Moreover, he condiion r RV δ + ) cn be relxed o he exisence of r i RV δ i + ), i =, 2, wih r ) r) r 2 ) for lrge, nd δ, δ 2 >. As we will see nex, slowly vrying soluions cnno decrese in our curren seing. Thus, in Theorem 6 we re deling wih ll SV soluions. Remrk. Assume RV δ), r RV δ + ), wih δ >, nd le y M. Then Φy ) = y ) nd Φy) = y. Inegring ) from o, we ge r) y )) = r) y )) + s)ys) ds. 49) From he fc h r y ) is negive incresing, we obin h here exiss r) y )) = M, 0]. Suose now h y SV. Then y RV δ) hus s)ys) ds, becuse δ >, conrdicion. We hve so roved h if δ >, hen M SV M +. Observe h regulr vriion of r cully ws no used. 4.3 Reled observions nd exmle We sr wih jusifying he fc h he relion bou he indices of regulr vriion of he coefficiens is quie nurl when looking for slowly vrying soluions. Remrk 2. Assume h r RV γ), RV δ), nd h y SV is soluion of equion ). Then rφy )) = y RV δ). Suose firs δ >. Then inegring ) we hve r)φy )) = r)φy )) + s)y s) ds +, hus, wihou loss of generliy, we my ssume y ) > 0 for. Hence, r)y )) = r)y )) + s)y s) ds RV mx{0, δ + }) = RV δ + ) nd so y ) δ+ γ ). Now, if, + ), herefore, since + = 0, conrdicion. Thus δ+ γ =, i.e. γ = δ +. I RV δ+ γ), becuse r RV γ), which imlies y RV δ+ γ similrly s before i is ossible o rove h y RV δ+ γ y SV, we ge δ+ γ 22

23 urns ou h δ > is equivlen o γ >, so now le γ <. This imlies γ ) >, consequenly r s) ds =. Resoning like in Remrk 8 we obin h y M, hen r) y )) = s)ys) ds RV δ+), ccording o 35) nd Krm s heorem. Similrly s before we ge γ = δ +. The resuls from Theorems 5 nd 6 cn be unified o obin he following corollry. Corollry 5. Assume h RV δ) nd r RV δ + ), wih δ nd L )/L r ) 0 s. Then, for every y M here exiss ε) wih ε) 0 s such h i) if ss) ) rs) ds =, hen { y) = ex sgnδ + ) ii) if ss) ) rs) ds <, hen { y) = l ex sgnδ + ) where l = y) 0, ). ) } ss) + εs)) ds δ + rs) ) } ss) + εs)) ds, δ + rs) Remrks 8 nd in combinion wih Theorems 5 nd 6 yield he following corollry. Corollry 6. Assume h RV δ), r RV δ + ) wih L ) L r) 0, i) Le δ <. Then ) if ss) ) rs) ds = hen M SV = M = M 0 ; b) if ss) ) rs) ds < hen M SV = M = M B. ii) Le δ >. Then ) if ss) ) rs) ds = hen M SV = M + = M + ; b) if ss) ) rs) ds < hen M SV = M + = M + B. In he nex remrk we discuss relions beween he condiions from Theorems 5 nd 6 which involve he inegrl ss) ) rs) ds nd he inegrl condiions involving J nd J 2 from he generl exisence heory see Preinries) under our seing. Remrk 3. Assume h RV δ) nd r RV γ). We recll, firs of ll, h M + = M + B if nd only if J <, while M + = M + if nd only if J =. Noice h, if δ >, hen s)ds =, nd, ccording o Krm s heorem, s)ds L ) ) δ+ γ) ) r) δ+)l ) r). Under our nurl ssumion γ = δ +, we obin h J = if nd only if L ) ) L r ) d =, which recisely corresonds o our condiions in seing ii) of Corollry 6. 23

24 Recll now h M = M + B if nd only if J = nd J 2 <, while M = M 0 if nd only if J 2 =. Suose δ <. Then s)ds <, hus J = if γ < =, which is fulfilled when γ = + δ. Moreover, gin from Krm s heorem, s)ds r) ) δ+ γ) ) L ) δ + )L r ) ) = L ) δ + )L r ) ) reclling h we ssume γ = δ +. Therefore, lso in his cse, we obin h he inegrl condiions in seing i) of Corollry 6 re equivlen o he known generl exisence condiions involving J nd J 2. Exmle 3. Consider equion ) wih ) = δ L ) nd r) = δ+, where L ) = ln ) γ + h ), L r ) = ln ) γ 2 + h 2 ), wih h i ) = oln ) γ i ), i =, 2, for some γ < γ 2. For exmle, boh h i ) = cos or h i ) = lnln)) sisfy he revious condiion. Trivilly, for every λ > 0, we hve h i.e. L, L r SV. Now, ln λ) γ i + h i λ) ln ) γ i + hi ) lnλ) ln = lnλ) ln = ) γ i + h iλ) ln ) γ i + h i) ln ) γ i ) γ i + h iλ) ln λ) γ i + h i) ln ) γ i ln λ ln )γ i =, L ) L r ) = ln ) γ + h ) ln ) γ 2 + h2 ) = = + h) ln ) γ ln ) γ 2 γ [ + h 2 ) ln ) γ 2 ] = 0, + h ) ln ) γ ln ) γ 2 γ + h 2 ) ln ) γ 50) becuse γ 2 > γ. Finlly, ccording o 50), i follows h ) ) r) ) δ+ L ) = = δ+ L r ) { + h ) ln ) γ ln ) γ 2 γ [ + h 2 ) ln ) γ 2 ] } γ γ2 ln ) s. Thus, since ln s s)λ ds < if nd only if λ <, we hve h ss) ) rs) ds < if nd only if ξ := γ γ 2 <. In his cse, ccording o Corollry 5, every soluion hs finie non zero i l nd { } y) = l ex sgnδ + ) + o))ln ) ξ+ ξ + δ + s. Furher, if ξ >, hen incresing soluions re unbounded, while decresing soluions hve zero i, nd { } y) = ex sgnδ + ) + o))ln ) ξ+ ξ + δ + 24

25 s. Finlly, if ξ =, hen s. y) = ln ) sgnδ+)+o)) δ+ Remrk 4. For reled resuls sufficien nd necessry condiions for he exisence of RV soluions of )) see [4] where generlized regulr vriion nd fixed oin heorem ly imorn roles. Comre lso wih Remrk 4 nd he discussion on condiions 40) nd 48). 5 Some oen roblems In his ls rgrh we indice some direcions for ossible fuure reserch reled o he bove oics: To esblish second order resul ssocied o Theorems 2 nd 3, i.e., o ke ) closer look he behvior of y ) y), y being soluions of ), ) r) ) cf. 24), in he sense of [9, Secion 3.2] nd [2, Secion 5.], where he liner equion y = )y is considered. To give n imrovemen of Theorems 5 nd 6 in he sense of [8, Theorem 0.- B], where he liner equion y = )y is considered nd he clss ΠR 2 u, v) is uilized. To del wih RV ϑ) soluions ϑ being cerin osiive number) in he siuion of Theorem 5, in riculr, o show M + RV ϑ) nd derive n symoic formul. Similrly for Theorem 6. Noe h in conrs o he liner cse, he reducion of order formul or some usul rnsformion ricks re no our disosl. To esblish symoic formuls for RV ϱ) soluions wih ϱ differen from 0 nd ϑ here we men he ϑ from he revious iem), nd ossibly under more generl inegrl condiion, in he sense of [0, Theorem.2], where he liner equion y = )y is considered. To exmine he borderline cse for δ in Theorems 5 nd 6), nmely δ =. To exend some of) he bove resuls o he so-clled nerly hlf-liner equion, i.e., r)gy )) = )F y), where F, G re regulrly vrying funcions wih he sme osiive index. Some observions long his line more recisely, exension of Theorem 5 o he equion where F ), G ) re regulrly vrying zero of index ) cn be found in [25]. References [] N. H. Binghm, C. M. Goldie, J. L. Teugels, Regulr Vriion, Encycloedi of Mhemics nd is Alicions, Vol. 27, Cmbridge Universiy Press, 987. [2] M. Cecchi, Z. Došlá, M. Mrini, On he dynmics of he generlized Emden- Fowler equion, Georgin Mh. J ),

26 [3] M. Cecchi, Z. Došlá, M. Mrini, On nonoscillory soluions of differenil equions wih -Llcin, Adv. Mh. Sci. Al. 200), [4] M. Cecchi, Z. Došlá, M. Mrini, Princil soluions nd miniml ses of qusiliner differenil equions, Dyn. Sys. Al ), [5] T. A. Chnuriy, Monoone soluions of sysem of nonliner differenil equions, Ann. Polon. Mh ), 59 70, in Russin). [6] L. de Hn, On Regulr Vriion nd is Alicions o he Wek Convergence of Smle Exremes, Mhemisch Cenrum Amserdm, 970. [7] O. Došlý, P Řehák, Hlf-liner differenil equions, Elsevier, Norh Hollnd, [8] J. L.Geluk, On slowly vrying soluions of he liner second order differenil equion, Publ. Ins. Mh ), [9] J. L. Geluk, L. de Hn, Regulr vriion, exensions nd Tuberin heorems, CWI Trc, 40. Siching Mhemisch Cenrum, Cenrum voor Wiskunde en Informic, Amserdm, 987. [0] J. L. Geluk, V. Mrić, M. Tomić, On regulrly vrying soluions of second order liner differenil equions, Differenil Inegrl Equions 6 993), [] P. Hrmn, Ordinry differenil equions, SIAM, [2] P. Hrmn, A. Winner, Asymoic inegrions of liner differenil equions, Amer. J. Mh ), [3] J. Jroš, T. Kusno, T. Tnigw, Nonoscillion heory for second order hlfliner differenil equions in he frmework of regulr vriion, Resuls Mh ), [4] J. Jroš, T. Kusno, T. Tnigw, Nonoscillory hlf-liner differenil equions nd generlized Krm funcions, Nonliner Anl ), [5] T. Kusno, V. Mrić, Nonoscillory liner nd hlf-liner differenil equions hving regulrly vrying soluions, Adv. Mh. Sci. Al ), [6] V. Mrić, Regulr Vriion nd Differenil Equions, Lecure Noes in Mhemics 726, Sringer-Verlg, Berlin-Heidelberg-New York, [7] J. D. Mirzov, Asymoic roeries of nonliner sysems of nonuonomous ordinry differenil equions, Mjko, 993, in Russin). [8] E. Omey, Regulr vriion nd is licions o second order liner differenil equions, Bull. Soc. Mh. Belg. Sér. B 33 98), [9] E. Omey, Ridly vrying behviour of he soluions o second order liner differenil equion, Proc. of he 7h in. coll. on differenil equions, Plovdiv, Augus 8-23, 996. Urech: VSP 997),

27 [20] E. Omey, A noe on he soluions of r x)rx) = gx)r 2 x), Proc. of he 9h in. coll. on differenil equions, Plovdiv, Augus 8-23, 998. Urech: VSP 999), [2] E. Omey, On he clss gmm nd reled clsses of funcions, rerieved Aril 9, 203, from < [22] Z. Páíková, Asymoic formuls for nonoscillory soluions of condiionlly oscillory hlf-liner equions, Mh. Slovc ), [23] P. Řehák, De Hn ye incresing soluions of hlf-liner differenil equions, J. Mh. Anl. Al ), [24] P. Řehák, Nonliner Differenil Equions in he Frmework of Regulr Vriion, AMhNe 204, 207 ges. <users.mh.cs.cz/ rehk/ndefrv>. [25] P. Řehák, On decresing soluions of second order nerly liner differenil equions, Bound. Vlue Probl ), 3. 27

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

How to prove the Riemann Hypothesis

How to prove the Riemann Hypothesis Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:5-6 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS Elecronic Journl of Differenil Equions, Vol. 06 06), No. 9, pp. 3. ISSN: 07-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

C 0 Approximation on the Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules*

C 0 Approximation on the Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules* Alied Mhemics,,, 54-59 doi:.46/m..666 Published Online December (h://www.scip.org/journl/m) C Aroximion on he Silly Homogeneous Bolzmnn Equion or Mxwellin Molecules Absrc Minling Zheng School o Science,

More information

A Structural Approach to the Enforcement of Language and Disjunctive Constraints

A Structural Approach to the Enforcement of Language and Disjunctive Constraints A Srucurl Aroch o he Enforcemen of Lnguge nd Disjuncive Consrins Mrin V. Iordche School of Engineering nd Eng. Tech. LeTourneu Universiy Longview, TX 7607-700 Pnos J. Ansklis Dermen of Elecricl Engineering

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Refinements to Hadamard s Inequality for Log-Convex Functions

Refinements to Hadamard s Inequality for Log-Convex Functions Alied Mhemics 899-93 doi:436/m7 Pulished Online Jul (h://wwwscirporg/journl/m) Refinemens o Hdmrd s Ineuli for Log-Convex Funcions Asrc Wdllh T Sulimn Dermen of Comuer Engineering College of Engineering

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function Turkish Journl o Anlysis nd Numer Theory, 4, Vol., No. 3, 85-89 Aville online h://us.scieu.com/jn//3/6 Science nd Educion Pulishing DOI:.69/jn--3-6 On The Hermie- Hdmrd-Fejér Tye Inegrl Ineuliy or Convex

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

Weighted Hardy-Type Inequalities on Time Scales with Applications

Weighted Hardy-Type Inequalities on Time Scales with Applications Medierr J Mh DOI 0007/s00009-04-054-y c Sringer Bsel 204 Weighed Hrdy-Tye Ineuliies on Time Scles wih Alicions S H Sker, R R Mhmoud nd A Peerson Absrc In his er, we will rove some new dynmic Hrdy-ye ineuliies

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 10: The High Beta Tokamak Con d and the High Flux Conserving Tokamak.

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 10: The High Beta Tokamak Con d and the High Flux Conserving Tokamak. .615, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 1: The High Be Tokmk Con d nd he High Flux Conserving Tokmk Proeries of he High Tokmk 1. Evlue he MHD sfey fcor: ψ B * ( ) 1 3 ρ 1+ ν ρ ρ cosθ *

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang jordnmcd Eigenvlue-eigenvecor pproch o solving firs order ODEs -- ordn norml (cnonicl) form Insrucor: Nm Sun Wng Consider he following se of coupled firs order ODEs d d x x 5 x x d d x d d x x x 5 x x

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations Journl of Mhemics nd Sisics 5 ():136-14, 9 ISS 1549-3644 9 Science Publicions On he Pseudo-Specrl Mehod of Solving Liner Ordinry Differenil Equions B.S. Ogundre Deprmen of Pure nd Applied Mhemics, Universiy

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients Hsil nd Veselý Advnces in Difference Equions 2015 2015:190 DOI 10.1186/s13662-015-0533-4 R E S E A R C H Open Access Non-oscillion of perurbed hlf-liner differenil equions wih sums of periodic coefficiens

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

Tax Audit and Vertical Externalities

Tax Audit and Vertical Externalities T Audi nd Vericl Eernliies Hidey Ko Misuyoshi Yngihr Ngoy Keizi Universiy Ngoy Universiy 1. Inroducion The vericl fiscl eernliies rise when he differen levels of governmens, such s he federl nd se governmens,

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales Asympoic relionship beween rjecories of nominl nd uncerin nonliner sysems on ime scles Fim Zohr Tousser 1,2, Michel Defoor 1, Boudekhil Chfi 2 nd Mohmed Djemï 1 Absrc This pper sudies he relionship beween

More information

14. The fundamental theorem of the calculus

14. The fundamental theorem of the calculus 4. The funmenl heorem of he clculus V 20 00 80 60 40 20 0 0 0.2 0.4 0.6 0.8 v 400 200 0 0 0.2 0.5 0.8 200 400 Figure : () Venriculr volume for subjecs wih cpciies C = 24 ml, C = 20 ml, C = 2 ml n (b) he

More information

white strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1.

white strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1. Am : APA Lecure 13 Brownin moion Preliminry quesion : Wh is he equivlen in coninuous ime of sequence of? iid Ncqe rndom vribles ( n nzn noise ( 4 e Re whie ( ie se every fm ( xh o + nd covrince E ( xrxs

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle J. Mh. Anl. Appl. 353 009) 43 48 Conens liss vilble ScienceDirec Journl of Mhemicl Anlysis nd Applicions www.elsevier.com/loce/jm Two normliy crieri nd he converse of he Bloch principle K.S. Chrk, J. Rieppo

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017 MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

1. Introduction. 1 b b

1. Introduction. 1 b b Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Communicions on Sochsic Anlysis Vol 6, No 4 2012 603-614 Serils Publicions wwwserilspublicionscom THE ITÔ FORMULA FOR A NEW STOCHASTIC INTEGRAL HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Absrc

More information

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions Trkish Jornl o Anlysis nd Nmer Theory, 4, Vol, No, 4-46 Aville online h://ssciecom/jn/// Science nd Edcion Plishing DOI:69/jn--- Hermie-Hdmrd nd Simson Tye Ineliies or Dierenile Qsi-Geomericlly Convex

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

A new model for limit order book dynamics

A new model for limit order book dynamics Anewmodelforlimiorderbookdynmics JeffreyR.Russell UniversiyofChicgo,GrdueSchoolofBusiness TejinKim UniversiyofChicgo,DeprmenofSisics Absrc:Thispperproposesnewmodelforlimiorderbookdynmics.Thelimiorderbookconsiss

More information

..,..,.,

..,..,., 57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3 (

More information

Communications inmathematicalanalysis

Communications inmathematicalanalysis Communicions inmhemicanysis Voume 11, Number 2,. 23 35 (211) ISSN 1938-9787 www.mh-res-ub.org/cm GRONWALL-LIKE INEQUALITIES ON TIME SCALES WITH APPLICATIONS ELVAN AKIN-BOHNER Dermen of Mhemics nd Sisics

More information

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas 6. Gs dynmics Dr. Gergely Krisóf De. of Fluid echnics, BE Februry, 009. Seed of infiniesiml disurbnces in sill gs dv d, dv d, Coninuiy: ( dv)( ) dv omenum r r heorem: ( ( dv) ) d 3443 4 q m dv d dv llievi

More information

Transforms II - Wavelets Preliminary version please report errors, typos, and suggestions for improvements

Transforms II - Wavelets Preliminary version please report errors, typos, and suggestions for improvements EECS 3 Digil Signl Processing Universiy of Cliforni, Berkeley: Fll 007 Gspr November 4, 007 Trnsforms II - Wveles Preliminry version plese repor errors, ypos, nd suggesions for improvemens We follow n

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

A note to the convergence rates in precise asymptotics

A note to the convergence rates in precise asymptotics He Journal of Inequaliies and Alicaions 203, 203:378 h://www.journalofinequaliiesandalicaions.com/conen/203//378 R E S E A R C H Oen Access A noe o he convergence raes in recise asymoics Jianjun He * *

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

Exponential Decay for Nonlinear Damped Equation of Suspended String

Exponential Decay for Nonlinear Damped Equation of Suspended String 9 Inernionl Symoium on Comuing, Communicion, nd Conrol (ISCCC 9) Proc of CSIT vol () () IACSIT Pre, Singore Eonenil Decy for Nonliner Dmed Equion of Suended Sring Jiong Kemuwn Dermen of Mhemic, Fculy of

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function Anlyic soluion of liner frcionl differenil equion wih Jumrie derivive in erm of Mig-Leffler funcion Um Ghosh (), Srijn Sengup (2), Susmi Srkr (2b), Shnnu Ds (3) (): Deprmen of Mhemics, Nbdwip Vidysgr College,

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Families of Solutions to Bernoulli ODEs

Families of Solutions to Bernoulli ODEs In the fmily of solutions to the differentil eqution y ry dx + = it is shown tht vrition of the initil condition y( 0 = cuses horizontl shift in the solution curve y = f ( x, rther thn the verticl shift

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

SOME USEFUL MATHEMATICS

SOME USEFUL MATHEMATICS SOME USEFU MAHEMAICS SOME USEFU MAHEMAICS I is esy o mesure n preic he behvior of n elecricl circui h conins only c volges n currens. However, mos useful elecricl signls h crry informion vry wih ime. Since

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces Approximion nd numericl mehods for Volerr nd Fredholm inegrl equions for funcions wih vlues in L-spces Vir Bbenko Deprmen of Mhemics, The Universiy of Uh, Sl Lke Ciy, UT, 842, USA Absrc We consider Volerr

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION Ausrlin Journl of Bsic nd Applied Sciences, 6(6): -6, 0 ISSN 99-878 A Simple Mehod o Solve Quric Equions Amir Fhi, Poo Mobdersn, Rhim Fhi Deprmen of Elecricl Engineering, Urmi brnch, Islmic Ad Universi,

More information

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year 1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the

More information

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Systems Variables and Structural Controllability: An Inverted Pendulum Case Reserch Journl of Applied Sciences, Engineering nd echnology 6(: 46-4, 3 ISSN: 4-7459; e-issn: 4-7467 Mxwell Scienific Orgniion, 3 Submied: Jnury 5, 3 Acceped: Mrch 7, 3 Published: November, 3 Sysems Vribles

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION Avilble online hp://scik.org Eng. Mh. Le. 15, 15:4 ISSN: 49-9337 CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION PANDEY, C. P. 1, RAKESH MOHAN AND BHAIRAW NATH TRIPATHI 3 1 Deprmen o Mhemics, Ajy

More information

arxiv: v1 [math.pr] 24 Sep 2015

arxiv: v1 [math.pr] 24 Sep 2015 RENEWAL STRUCTURE OF THE BROWNIAN TAUT STRING EMMANUEL SCHERTZER rxiv:59.7343v [mh.pr] 24 Sep 25 Absrc. In recen pper [LS5], M. Lifshis nd E. Seerqvis inroduced he u sring of Brownin moion w, defined s

More information

Chapter 4. Lebesgue Integration

Chapter 4. Lebesgue Integration 4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.

More information

Neural assembly binding in linguistic representation

Neural assembly binding in linguistic representation Neurl ssembly binding in linguisic represenion Frnk vn der Velde & Mrc de Kmps Cogniive Psychology Uni, Universiy of Leiden, Wssenrseweg 52, 2333 AK Leiden, The Neherlnds, vdvelde@fsw.leidenuniv.nl Absrc.

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information