TP A.14 The effects of cut angle, speed, and spin on object ball throw

Size: px
Start display at page:

Download "TP A.14 The effects of cut angle, speed, and spin on object ball throw"

Transcription

1 echnical proof echnical proof TP A.14 The effecs of cu angle, speed, and spin on objec ball hrow supporing: The Illusraed Principles of Pool and illiards hp://billiards.colosae.edu by Daid G. Alciaore, PhD, PE ("Dr. Dae") originally posed: 7/1/ las reision: 9//17 See TPs A., A.6 and A.8 for background inforaion and illusraions. For a cue ball wih boh erical-plane (draw or follow) and horional-plane (side) English, he elociy of he poin of conac () beween he cue ball and he objec ball, a ipac is: ) cos sin ( ) ( / j i k i j r x O (1) So k j i k j i x y x cos sin cos () Expressing his ecor in angenial and noral coponens (see TP A.) gies: k n k n x n cos cos sin (3) Therefore, he relaie "sliding" elociy ecor for he poin of conac beween he cue ball and objec ball can be expressed as: k rel (4) because he noral (n) coponen, which creaes he ipac forces, does no conribue o he relaie sliding. The fricion force on he objec ball acs in he direcion of he sliding elociy ecor: k e e k k e rel rel ()

2 Fro Equaion 8 in TP A., he noral ipulse beween he cue ball and objec ball, assuing a perfecly elasic collision, is: F n cos (6) Fro TP A.6, and using Equaions 3 and, he axiu possible fricion ipulse coponen ha conribues o objec ball hrow, based on he liiaion of fricion, is: F ax F e n cos sin sin cos x (7) Anoher lii on he axiu possible fricion ipulse is based on he requireen ha he relaie sliding oion beween he cue ball (C) and objec ball (O) canno reerse direcion during ipac. The relaie angenial speed beween he balls afer ipac is gien by: rel (8) C C where he ers on he righ side indicae pos-ipac speed coponens in he angenial direcion and he ers indicae pos-ipac roaional speeds. O O In he liiing case, rel will go o ero during ipac (i.e., sliding ceases during ipac). In his case, he axiu pos-ipac angenial speed he objec ball can hae is: O ax C C Fro TP A. and ipulse-oenu principles, he ers in Equaion 9 can be expressed as: C O F O F ax C sin F F ax ax ax (1) ax O F ax (9) (11) (1) (13) Subsiuing Equaions 1 hrough 13 ino Equaion 9 yields he axiu possible fricion ipulse coponen ha conribues o objec ball hrow, based on he relaie speed kineaics consrain: F ax sin 7 (14)

3 Using Equaions 7 and 14, we can now deerine he pos-ipac objec ball angenial speed based on which effec is he os liiing (fricion or kineaics): F cos sin cos sin O in x 1 7 (1) The noral coponen of he pos-ipac objec ball elociy, using Equaion 6, is: O n Fn cos (16) Now he objec ball hrow angle can be calculaed wih: 1 O O an (17) O n Typical alues for he paraeers used in he equaions: μ.6 aerage coefficien of fricion beween he balls 1.1in ball radius conered o eers.9 3ph aerage cue ball speed conered o eers/sec s ω roll naural-roll spin rae Typical speeds (conered o eers/sec): slow 1ph slow.447 s ediu 3ph ediu s fas 7ph s fas 3.19

4 Model of fricion based on Marlow daa (Table 1 on p. 4 in "The Physics of Pocke illiards," 199) d.1sin( 4) μd d 1sin( 4) μd.6 d 1sin( 4) μd Noe - he Marlow speed daa is uliplied by sin(4 ) o reflec he relaie angenial speed coponen for he sho in his experien (which had a 4 cu angle). The fricion s. speed relaion sees o follow (or le's assue i follows) a relaion of he for: u ( ) = a be c We can sole for he coefficiens fro he se of daa aboe using: iniial guesses: a μd b μd μd c 1 ln d μd a b a.1 b.1 c.98 Gien μd a b e c d 1 = 1 μd a b e c d = μd a b e c d 3 = 3 a b c Find( ab c ) a b c μ( ) a be c Plo of experienal fricion daa wih heoreical cure fi i d 3.1 μd i.1 μ( ). 1 1 d i

5 MahCAD forulaions of Equaions 1 hrough 17, using he aboe forulaion for fricion: sin( ) ω ω x cos ( ) rel ω x ω aan ω x ω if = rel ω x ω in μ rel ω x ω cos( ) 1 rel ω x ω 7 cos( ) sin( ) ω These wo equaions describe all hrow effecs (see he plos below)! collision-induced hrow s. cu angle for arious-speed naural-roll shos: 1 9 slow slow ediu ediu fas fas OTTOM LINE: slower speed resuls in ore collision-induced hrow; and he aoun of hrow increases wih cu angle, bu i leels off a higher cu angles.

6 collision-induced hrow s. cu angle for sun shos a arious speeds: slow ediu fas These plos can be copared o ob Jewe's experienal daa locaed a: hp:// and wih he daa presened in y Sepeber '6 insrucional aricle. The heoreical plos and experiens agree ery closely in boh cure shape and hrow alues. OTTOM LINE: The aoun of hrow is independen of speed a sall cu angles. Throw is larges in he half-ball hi range (3-ree cu angle range). A larger cu angles, hrow is larger for slower speeds.

7 collision-induced hrow s. cu angle for shos wih arious aouns of erical plane spin (follow or draw), copared o sun 4 ω roll.ω roll.ω roll ( ) OTTOM LINE: collision-induced hrow is greaer for sun shos close o a 1/-ball hi (3 ree cu angle).

8 spin-induced hrow for sraigh-on shos (-ree cu angle) wih arious aouns of forward roll (or draw) and sidespin ω 1.ω roll 1.ω roll 1.ω roll (see TP A.1) 4 ω roll ω.ω roll ω.ω roll ω ω ω These plos are siilar o hose in Figure 4.4 on p. 4 of on Shepard's "Aaeur Physics for he Aaeur Pool Player," 3rd ediion, Howeer, here, a ore accurae odel of collision dynaics and kineaics inoling fricion is used. OTTOM LINE: spin-induced hrow is greaes, and os sensiie o sidespin, wih sun shos and for ediu aouns of spin.

9 spin-induced hrow for sraigh-on sun shos (-ree cu angle) a arious speeds, wih differen English percenages pe 1% 9% 1% (see TP A.1 and TP A.) side spin = SF (/) SF = 1. (pe) 1 slow slow 1.pE ediu ediu 1.pE fas fas 1.pE 1 1 pe % OTTOM LINE: spin-induced hrow is independen of speed for sall aouns of English and larges a abou % English for a slow sho. Afer a poin, ore English doesn' creae ore hrow.

10 cobinaion of collision- and spin-induced hrow for a half-ball hi (3-ree cu angle) wih arious aouns of forward roll (or draw) and sidespin 3 ω 1.ω roll 1.ω roll 1.ω roll (see TP A.1) 4 ω roll ω.ω roll ω.ω roll ω ω ω OTTOM LINE: For a half-ball hi, hrow is greaes for a sun sho wih no sidespin or wih ouside English wih a spin rae facor of 1 (see TP A.1). For ouside English wih a spin rae facor of., here is no hrow.

11 cobinaion of collision- and spin-induced hrow for a half-ball hi (3-ree cu angle) sun shos a differen speeds and wih arious aouns of sidespin fas 3 ω roll ω 1.ω roll 1.4ω roll 1.ω roll (see TP A.1) 1 slow ω ediu ω fas ω ω ω ω slow ediu fas OTTOM LINE: For a half-ball hi sun sho, hrow is greaes wih lile or no sidespin or wih significan ouside English. The aoun of hrow is os sensiie o he aoun of sidespin near he hrow-cancelling ouside English poin.

12 hrow s. cu angle for arious ypes of ypical side-english, slow speed, sun shos: 1 9 slow ω roll ω sun ω none ω inside ω roll ω ouside ω roll ω gearing ( ) sin( ) ω sun ω none ω sun ω inside ω sun ω ouside ω sun ω gearing ( ) These plos agree wih he qualiaie plos in Figure 6-1 on p. 74 of Jack Koehler's "The Science of Pocke illiards," OTTOM LINE: Inside English increases hrow a sall cu angles. Ouside English reerses collision-induced hrow, and has axiu effec a sall cu angles. "Gearing" ouside English resuls in absoluely no hrow.

13 hrow s. cu angle for arious ypes of % side-english, slow speed, sun shos: slow ω roll ω sun SF 4 % ω none ω inside SF ω roll ω ouside SF ω roll ω gearing ( ) sin( ) ω sun ω none ω sun ω inside ω sun ω ouside ω roll ω gearing ( ) 4 6 hrow s. cu angle for arious ypes of % side-english, ediu speed, follow/draw shos: fas ω roll ω sun SF 4 % ω none ω inside SF ω roll ω ouside SF ω roll ω gearing ( ) sin( ) ω roll ω none ω roll ω inside ω roll ω ouside ω roll ω gearing ( ) 4 6

14 hrow s. cu angle for arious ypes of % side-english, slow speed, sun shos: slow ω roll ω sun SF 4 % ω none ω inside SF ω roll ω ouside SF ω roll ω gearing ( ) sin( ) ω sun ω none ω sun ω inside ω sun ω ouside ω roll ω gearing ( ) 4 6 hrow s. cu angle for arious ypes of % side-english, ediu speed, follow/draw shos: ediu ω roll ω sun SF 4 % ω none ω inside SF ω roll ω ouside SF ω roll ω gearing ( ) sin( ) ω roll ω none ω roll ω inside ω roll ω ouside ω roll ω gearing ( ) 4 6

15 hrow s. cu angle for arious ypes of 1% side-english, slow speed, sun shos: slow ω roll ω sun SF 4 1% ω none ω inside SF ω roll ω ouside SF ω roll ω gearing ( ) sin( ) ω sun ω none ω sun ω inside ω sun ω ouside ω roll ω gearing ( ) 4 6 hrow s. cu angle for arious ypes of 1% side-english, ediu speed, follow/draw shos: ediu ω roll ω sun SF 4 1% ω none ω inside SF ω roll ω ouside SF ω roll ω gearing ( ) sin( ) ω roll ω none ω roll ω inside ω roll ω ouside ω roll ω gearing ( ) 4 6

16 Effecs of cling/skid/kick a differen cu angles: aan ω x ω μ μ : fricion uliplier (1: noral, >1: diry condiions, up o 3: cling/skid/kick) if = rel ω x ω in μ μ rel ω x ω rel ω x ω cos( ) cos( ) 1 7 sin( ) ω Throw and cling/skid/kick is axiu for a slow, sun sho: slow ω x ω μ _noral 1. μ _diry 1. μ _cling. ω x ω μ _noral ω x ω μ _diry ω x ω μ _cling For sun shos, he axiu aoun of hrow is norally a close o a 1/-ball hi (3 ree cu angle); bu wih clingy condiions, axiu hrow occurs a larger cu angles (-6 rees). For sall cu angles (less han abou 3 rees), he aoun of hrow is he sae regardless of he aoun of fricion.

17 For a slow rolling-c sho, here's how cling/skid/kick affecs shos: ω x ω x ω μ _noral ω x ω μ _diry ω x ω μ _cling For rolling-c shos, hrow increases wih cling a all cu angles, and is larger a larger cu angles.

TP B.2 Rolling resistance, spin resistance, and "ball turn"

TP B.2 Rolling resistance, spin resistance, and ball turn echnical proof TP B. olling reiance, pin reiance, and "ball urn" upporing: The Illuraed Principle of Pool and Billiard hp://billiard.coloae.edu by Daid G. Alciaore, PhD, PE ("Dr. Dae") echnical proof originally

More information

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions.

Conservation of Momentum. The purpose of this experiment is to verify the conservation of momentum in two dimensions. Conseraion of Moenu Purose The urose of his exerien is o erify he conseraion of oenu in wo diensions. Inroducion and Theory The oenu of a body ( ) is defined as he roduc of is ass () and elociy ( ): When

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

s in boxe wers ans Put

s in boxe wers ans Put Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

Thus the force is proportional but opposite to the displacement away from equilibrium.

Thus the force is proportional but opposite to the displacement away from equilibrium. Chaper 3 : Siple Haronic Moion Hooe s law saes ha he force (F) eered by an ideal spring is proporional o is elongaion l F= l where is he spring consan. Consider a ass hanging on a he spring. In equilibriu

More information

v 1 =4 m/s v 2 =0 m 1 =0.5kg m 2 Momentum F (N) t (s) v 0y v x

v 1 =4 m/s v 2 =0 m 1 =0.5kg m 2 Momentum F (N) t (s) v 0y v x Moenu Do our work on a earae hee of aer or noebook. or each roble, draw clearl labeled diagra howing he ae and elociie for each objec before and afer he colliion. Don forge abou direcion oenu, eloci and

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

More information

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point 2012 Sepember 25 Eam I Physics 105 Circle he leer of he single bes answer. Each uesion is worh 1 poin Physical Consans: Earh s free-fall acceleraion = g = 9.80 m/s 2 3. (Mark wo leers!) The below graph

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, W-F oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1.

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1. Viscous Daping: && + & + ω Viscous Daping Suary Shee No Daping Case: & + ω solve A ( ω + α ) Daped ehaviour depends on he relaive size of ω o and / 3 Cases:. Criical Daping Wee 5 Lecure solve sae BC s

More information

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform? ourier Series & The ourier Transfor Wha is he ourier Transfor? Wha do we wan fro he ourier Transfor? We desire a easure of he frequencies presen in a wave. This will lead o a definiion of he er, he specru.

More information

Introduction to Mechanical Vibrations and Structural Dynamics

Introduction to Mechanical Vibrations and Structural Dynamics Inroducion o Mechanical Viraions and Srucural Dynaics The one seeser schedule :. Viraion - classificaion. ree undaped single DO iraion, equaion of oion, soluion, inegraional consans, iniial condiions..

More information

x y θ = 31.8 = 48.0 N. a 3.00 m/s

x y θ = 31.8 = 48.0 N. a 3.00 m/s 4.5.IDENTIY: Vecor addiion. SET UP: Use a coordinae sse where he dog A. The forces are skeched in igure 4.5. EXECUTE: + -ais is in he direcion of, A he force applied b =+ 70 N, = 0 A B B A = cos60.0 =

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

More information

Kinematics of Wheeled Robots

Kinematics of Wheeled Robots 1 Kinemaics of Wheeled Robos hps://www.ouube.com/wach?=gis41ujlbu 2 Wheeled Mobile Robos robo can hae one or more wheels ha can proide seering direcional conrol power eer a force agains he ground an ideal

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Chapter 13 Homework Answers

Chapter 13 Homework Answers Chaper 3 Homework Answers 3.. The answer is c, doubling he [C] o while keeping he [A] o and [B] o consan. 3.2. a. Since he graph is no linear, here is no way o deermine he reacion order by inspecion. A

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Let us consider equation (6.16) once again. We have, can be found by the following equation

Let us consider equation (6.16) once again. We have, can be found by the following equation 41 Le us consider equaion (6.16) once again. We hae, dp d Therefore, d p d Here dp is he change in oenu caused by he force in he ie ineral d. Change in oenu caused by he force for a ie ineral 1, can be

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for Impulse & Momenum Objecies To deelop he principle of linear impulse and momenum for a paricle. To sudy he conseraion of linear momenum for paricles. To analyze he mechanics of impac. To inroduce he concep

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

CHAPTER 16 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 16 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 6 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS FOLLOW UP PROBLEMS 6.A Plan: Balance he equaion. The rae in ers of he change in concenraion wih ie for each subsance is [ A] expressed as,

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

PROBLEMS ON RECTILINEAR MOTION

PROBLEMS ON RECTILINEAR MOTION PROBLEMS ON RECTILINEAR MOTION PROBLEM 1. The elociy of a paricle which oe along he -ai i gien by 5 (/). Ealuae he diplaceen elociy and acceleraion a when = 4. The paricle i a he origin = when =. (/) /

More information

Section 14 Forces in Circular Motion

Section 14 Forces in Circular Motion Secion 14 orces in Circular Moion Ouline 1 Unifor Circular Moion Non-unifor Circular Moion Phsics 04A Class Noes Wh do objecs do wha he do? The answer we have been invesigaing is forces If forces can eplain

More information

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts? AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

More information

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30 9/3/009 nderanding Energy Proble Copare he work done on an objec o a.0 kg a) In liing an objec 0.0 b) Puhing i up a rap inclined a 30 0 o he ae inal heigh 30 0 puhing 0.0 liing nderanding Copare he work

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of. Inroducion o Nuerical Analysis oion In his lesson you will be aen hrough a pair of echniques ha will be used o solve he equaions of and v dx d a F d for siuaions in which F is well nown, and he iniial

More information

Chapter 2: One-Dimensional Kinematics

Chapter 2: One-Dimensional Kinematics Chaper : One-Dimensional Kinemaics Answers o Een-Numbered Concepual Quesions. An odomeer measures he disance raeled by a car. You can ell his by he fac ha an odomeer has a nonzero reading afer a round

More information

Physics Unit Workbook Two Dimensional Kinematics

Physics Unit Workbook Two Dimensional Kinematics Name: Per: L o s A l o s H i g h S c h o o l Phsics Uni Workbook Two Dimensional Kinemaics Mr. Randall 1968 - Presen adam.randall@mla.ne www.laphsics.com a o 1 a o o ) ( o o a o o ) ( 1 1 a o g o 1 g o

More information

Lecture 23 Damped Motion

Lecture 23 Damped Motion Differenial Equaions (MTH40) Lecure Daped Moion In he previous lecure, we discussed he free haronic oion ha assues no rearding forces acing on he oving ass. However No rearding forces acing on he oving

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18 A Firs ourse on Kineics and Reacion Engineering lass 19 on Uni 18 Par I - hemical Reacions Par II - hemical Reacion Kineics Where We re Going Par III - hemical Reacion Engineering A. Ideal Reacors B. Perfecly

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Chapter 8 Torque and Angular Momentum

Chapter 8 Torque and Angular Momentum Chaper 8 Torque and Angular Moenu Reiew of Chaper 5 We had a able coparing paraeer fro linear and roaional oion. Today we fill in he able. Here i i Decripion Linear Roaional poiion diplaceen Rae of change

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Chapter 14 Homework Answers

Chapter 14 Homework Answers 4. Suden responses will vary. (a) combusion of gasoline (b) cooking an egg in boiling waer (c) curing of cemen Chaper 4 Homework Answers 4. A collision beween only wo molecules is much more probable han

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

How to Solve System Dynamic s Problems

How to Solve System Dynamic s Problems How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line. CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions Pracice Probles - Wee #4 Higher-Orer DEs, Applicaions Soluions 1. Solve he iniial value proble where y y = 0, y0 = 0, y 0 = 1, an y 0 =. r r = rr 1 = rr 1r + 1, so he general soluion is C 1 + C e x + C

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

SIGNALS AND SYSTEMS LABORATORY 8: State Variable Feedback Control Systems

SIGNALS AND SYSTEMS LABORATORY 8: State Variable Feedback Control Systems SIGNALS AND SYSTEMS LABORATORY 8: Sae Variable Feedback Conrol Syses INTRODUCTION Sae variable descripions for dynaical syses describe he evoluion of he sae vecor, as a funcion of he sae and he inpu. There

More information

arxiv:physics/ v1 [physics.ed-ph] 6 Feb 2004

arxiv:physics/ v1 [physics.ed-ph] 6 Feb 2004 The Herz conac in chain elasic collisions P. Parício Insiuo Superior de Engenharia de Lisboa Rua Conselheiro Emídio Naarro, P-949-4 Lisboa, Porugal (January 4) arxi:physics/46 [physics.ed-ph] 6 Feb 4 A

More information

Elastic and Inelastic Collisions

Elastic and Inelastic Collisions laic and Inelaic Colliion In an LASTIC colliion, energy i conered (Kbefore = Kafer or Ki = Kf. In an INLASTIC colliion, energy i NOT conered. (Ki > Kf. aple: A kg block which i liding a 0 / acro a fricionle

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics /5/4 Chaper 4 Chemical Kineics Chemical Kineics Raes of Reacions Chemical Kineics is he sudy of he rae of reacion. How fas does i ake place? Very Fas Reacions Very Slow Reacions Acid/Base Combusion Rusing

More information

Differential Geometry: Numerical Integration and Surface Flow

Differential Geometry: Numerical Integration and Surface Flow Differenial Geomery: Numerical Inegraion and Surface Flow [Implici Fairing of Irregular Meshes using Diffusion and Curaure Flow. Desbrun e al., 1999] Energy Minimizaion Recall: We hae been considering

More information

Summary:Linear Motion

Summary:Linear Motion Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Velocity is a relative quantity

Velocity is a relative quantity Veloci is a relaie quani Disenangling Coordinaes PHY2053, Fall 2013, Lecure 6 Newon s Laws 2 PHY2053, Fall 2013, Lecure 6 Newon s Laws 3 R. Field 9/6/2012 Uniersi of Florida PHY 2053 Page 8 Reference Frames

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

Kinematics. introduction to kinematics 15A

Kinematics. introduction to kinematics 15A 15 15A Inroducion o kinemaics 15B Velociy ime graphs and acceleraion ime graphs 15C Consan acceleraion formulas 15D Insananeous raes of change Kinemaics AreAS of STuDy Diagrammaic and graphical represenaion

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*)

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*) Soluion 3 x 4x3 x 3 x 0 4x3 x 4x3 x 4x3 x 4x3 x x 3x 3 4x3 x Innova Junior College H Mahemaics JC Preliminary Examinaions Paper Soluions 3x 3 4x 3x 0 4x 3 4x 3 0 (*) 0 0 + + + - 3 3 4 3 3 3 3 Hence x or

More information

Supplementary Materials for

Supplementary Materials for advances.scienceag.org/cgi/conen/full/3/9/e1701151/dc1 Suppleenary Maerials for Bioinspired brigh noniridescen phoonic elanin supraballs Ming Xiao, Ziying Hu, Zhao Wang, Yiwen Li, Aleandro Diaz Toro, Nicolas

More information

Cosumnes River College Principles of Macroeconomics Problem Set 1 Due January 30, 2017

Cosumnes River College Principles of Macroeconomics Problem Set 1 Due January 30, 2017 Spring 0 Cosumnes River College Principles of Macroeconomics Problem Se Due Januar 0, 0 Name: Soluions Prof. Dowell Insrucions: Wrie he answers clearl and concisel on hese shees in he spaces provided.

More information

PET467E-Analysis of Well Pressure Tests/2008 Spring Semester/İTÜ Midterm Examination (Duration 3:00 hours) Solutions

PET467E-Analysis of Well Pressure Tests/2008 Spring Semester/İTÜ Midterm Examination (Duration 3:00 hours) Solutions M. Onur 03.04.008 PET467E-Analysis of Well Pressure Tess/008 Spring Semeser/İTÜ Miderm Examinaion (Duraion 3:00 hours) Soluions Name of he Suden: Insrucions: Before saring he exam, wrie your name clearly

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

total distance cov ered time int erval v = average speed (m/s)

total distance cov ered time int erval v = average speed (m/s) Physics Suy Noes Lesson 4 Linear Moion 1 Change an Moion a. A propery common o eeryhing in he unierse is change. b. Change is so imporan ha he funamenal concep of ime woul be meaningless wihou i. c. Since

More information

Mapping in Dynamic Environments

Mapping in Dynamic Environments Mapping in Dynaic Environens Wolfra Burgard Universiy of Freiburg, Gerany Mapping is a Key Technology for Mobile Robos Robos can robusly navigae when hey have a ap. Robos have been shown o being able o

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information