Noise source localization on washing machines by conformal array technique and near field acoustic holography

Size: px
Start display at page:

Download "Noise source localization on washing machines by conformal array technique and near field acoustic holography"

Transcription

1 Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Noise source localization on washing machines by conformal array technique and near field acoustic holography Paolo Chiariotti a, Milena Martarelli a, Enrico Primo Tomasini a and Ravi Beniwal b a Department of Mechanical Engineering, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy b SenSound, 440 Burroughs St., Suite 170, Detroit, MI 48202, USA ABSTRACT The acoustic emission of a washing machine has been deeply studied by comparing three different techniques, which are: - conventional acoustic intensity, - planar near-field acoustic holography and conformal array technique based on the Helmotz Equations Least Squares method. These techniques have been used to measure the front of a washing machine, i.e. the more critical side from the acoustic comfort point of view in the working environment. The acoustic intensity measurement has been taken as reference for the comparison of the two other techniques. The sound intensity probe has been scanned over a grid of several discrete positions and the acoustic intensity and pressure on the measurement plane have been determined. For both the conformal and planar near-field acoustic holography techniques an antenna of 30 microphones has been employed scanning over several positions in order to cover the entire washing machine front with a spatial resolution of 2.5 cm (maximum frequency Hz). Advantages and limitations of the noise source location techniques have been examined thoroughly. 1. Introduction The home appliance market is very large world-wide; practically every family in any country is a customer of appliances. The washing machine represents a type of appliance which is rapidly embodying high level technology and is sold in million items per year in the world. Nowadays acoustic comfort is becoming a key objective of washing machine manufacturers, thus it is necessary to accurately locate main noise sources. A washing machine is an electromechanical system, basically composed of a metal cabinet which hosts internally a tub which in turn contains the rotating drum, driven by an electric motor, in most cases through a pulley and with a control board which manages the washing cycles. Because of such a structure both noise sources coming directly from the drive system and those produced by the external cabinet mode shapes have to be expected. Water in the tub also produces the classical splash noise which can be annoying especially for long washing programs. Understanding the spatial distribution of noise sources on washing machine thus becomes an attractive challenge for acoustic measurement techniques. Standard measurements on such appliances are usually performed through the use of sound intensity probes: in this paper advanced array techniques like Near field Acoustic Holography (NAH) and Helmotz Equation Least Square (HELS) have been used to precisely identify noise sources on the front side of a standard washing machine, while intensity probe measurements have been performed in order to compare results with a classical technique. For the first time NAH and HELS have been applied to a real test case such as a running washing machine. Up to now the performances of the two techniques have been compared only on laboratory test cases, [1]. 2. Basic theory review 2.1. Sound intensity measurements The usefulness of measuring sound intensity is directly related to its vectorial nature. This allows testing to overcome problems coming from standard pressure measurements, which are often misleading if not performed

2 in controlled environments (e.g. anechoic rooms). The knowledge of both the amplitude and the direction of an acoustic field allows testing to locate the sources of sound. The most used method of measuring sound intensity in air is the two microphone (or p-p probe) method. This approach uses two closely spaced and phase-matched microphones and relies on the finite difference approximation to the sound pressure gradient. The distance between microphones define the measurable frequency range. Several configurations are possible: (i) measurement at discrete points or, (ii) measurement by continuously scanning the measurement plane with the sound intensity probe. If it can be defined an hypothetical surface that completely encloses the noise source (in conjunction with an acoustically rigid and continuous surface, i.e. if the source lies on the floor), the sound intensity measurement on this surface can be used to determine the sound power level of the source itself (according to the standard 9614-Part 1 for measurement at discrete points and 9614-Part 3 for scanning measurement [2,3]). From sound intensity measurements the acoustic quantities such as pressure, active and reactive intensity and power can be calculated Near Field Acoustic Holography Near Field Acoustic Holography (NAH) is an efficient method for the determination of the acoustic field generated by a noise source on the 3D space surrounding the source itself. The technique is based on near field measurement via microphones array. From the acoustic pressure data measured on the array surface (the hologram) 3D acoustic field can be reconstructed, with high spatial resolution, depending on the spatial resolution of the array. The NAH basic assumption [4] is that the sound field can be described as a combination of planar and evanescent waves (with amplitude decreasing with the distance from the source). These latter have amplitude and direction represented by their wavenumber k (kx,ky,k z) defined along a generic direction as the ratio between the frequency and the propagation speed. The plane waves represent the sound field portion that propagates to the far field, while the evanescent waves describe the complex sound field which exist close to the emitting surface and is damped out in the far field. A particular application of NAH is the planar NAH where the measurement surface, i.e. the microphones array, is planar. From the sound pressure data p(rm,t), measured in the near field by the planar array, i.e. at the distance rm from the emitting surface, the sound field can be reconstructed at any plane parallel to the measurement one. The total 3D acoustic field p(r,t) can be determined at arbitrary distance r from the surface radiating the noise. One implementation of the planar NAH is the The Spatial Transformation of Sound Fields (STSF) technique developed at Brüel& Kjær [5,6]. The STSF is based on the measurement of the pressure cross-spectra over a planar surface close to the source. The acoustic field can be reconstructed at any plane parallel to the measurement one by performing a convolution of the pressure cross-spectra with a known Greem function ( e j(r rm ) k 2 k x2 k y2 4π r rm ). The power of this technique on reconstructing the acoustic field and the particle velocity directly on the radiating surface has been demonstrated in several applications, like [7]. In particular, measurement of high spatial dense surface vibration velocity performed via scanning laser Doppler vibrometry has been used to validate the particle velocity calculated via STSF on the emitting surface Helmotz Equation Least Square In this paper the results of the Helmholtz Equation Least Squares (HELS) method implemented by SenSound Acoustic Imaging are reported, [8,9]. HELS is based on the measurement of the sound using a conformal array (i.e. reproducing the shape of the radiating surface) placed near the surface itself, Figure 1 (a). The measured sound field is then curve-fitted using spherical wave functions, Figure 1 (b), this allows the visualization of pressure, intensity and velocity on the emitting surface, Figure 1 (c). Mathematically, HELS can be written as J p( r, f ) C j ( f ) j (r, f ) (1) j 1 where the expansion functions j are the particular solutions to the Helmholtz equation, at any distance r from the surface. The expansion coefficients Cj can be determined by requiring the assumed-form solution to satisfy the boundary condition at the measurement points, distant rm from the emitting surface:

3 J (2) p ( rm, f ) C j ( f ) j ( rm, f ) j 1 Vibrating object (a) (b) Figure 1 HELS process Therefore the expansion coefficients are determined by matching the assumed-form solution j to the measured data. Finally the errors in this approximation are minimized and optimized using the least squares method. Once the expansion coefficients are determined, the acoustic pressures anywhere in the space and on the source surface can be reconstructed. One unique feature of the HELS method is that reconstruction of the radiated acoustic pressure is not based on spatial sampling, but on synthesis of spheroidal functions. For example, if the source radiates a pure dipole sound, then theoretically reconstruction can be done exactly with no more than four expansion terms or equivalently, four measurements regardless the frequency. For an arbitrarily vibrating structure, the radiated acoustic pressure may be quite complex. Nevertheless, this acoustic pressure field can be expressed as a multipole expansion. Moreover, at low-to-mid frequencies the major contributions are from the first few expansion functions. The higher-order terms represent the small-scale effects and can be neglected. 3. Measurement set up The measurement object is a washing machine of principal dimensions sketched in Figure 2, together with the reference axis system. The front panel has been measured via sound intensity probe, STSF and HELS. The washing machine was driven at a constant rate of 1200 rpm (electric motor drive revolutionary rate, 20 Hz) in order to obtain a steady state excitation condition. y x Figure 2 Washing machine sketch

4 3.1. Sound intensity measurement set-up Sound intensity measurements have been performed through B&K 3595 p-p probe. A scanning grid of 0.70m 0.98m (x and y direction respectively) with 10 rows and 14 columns was chosen to locate noise sources 2 on washing machine, see Figure 3. Segments of m have thus been used to calculate sound power over the measurement area. The scanning grid was placed m far away from the front panel of the washing machine. A time acquisition of 30s was chosen to evaluate sound intensity on each measurement segment. Scan direction Scanning Grid: Number of Rows=10; Number of Columns=14; Segment Area=0.07m 0.07m= m 2; Grid Area=0.70m 0.98m; Measuring distance=0.250m; Acquisition time (T)=30s. y x Figure 3 Sound intensity measurement and acquisition parameters 3.2. STSF measurement set-up STSF measurements have been performed through B&K 7688 system. All measurements have been performed using an array of 30 microphones (B&K 4935) placed at m from the front panel and automatically moved through a Cartesian X-Y moving robot, see Figure 4, and a set of 6 reference microphones fixed at several positions around the washing machine. (c) (a) (b) Figure 4 STSF microphones array fixed on the Cartesian X-Y moving robot (a) placed in front of the washing machine (b) and scanning positions (c) Several interlaced positions (4x4) have been acquired, see Figure 4(c), in order to have the possibility of covering an area bigger than the frontal surface of the washing machine and of calculating the sound field at sufficient low frequency range. The interlacing allowed to increase the spatial resolution of the microphones from m (real distance between microphones) to m in order to increase also the high frequency range for the sound field calculation.

5 Six reference microphones have been used to perform a Principal Component Analysis (PCA) once all scan had been acquired. This procedure enables the end user to separate correlated and uncorrelated sources during postprocessing phase. bearing motor pump Rear right side front Figure 5 Reference microphones positions 3.3. HELS measurement set-up The HELS measurement has been performed with an array of 6x5 microphones, see Figure 6, that was moved over the washing machine front panel in order to reproduce a sufficient conformal measurement surface. The measured patches (6x5) are shown in Figure 7. The blue meshes correspond to the microphones array s positions and the light blue mesh represents the calculation positions, i.e. located on the washing machine front panel surface. In order to process the patches all together, since they have been measured at different time instants, a reference microphone has been used to realign them in time. The microphones arrays distance from the washing machine surface was of about m.

6 Reference microphone Figure 6 Microphones array and reference microphone 4. Discussion of results Figure 7 Microphones arrays positions (blue patches). The sound intensity maps measured by the sound intensity probe at m from surface have been compared with the maps calculated by the STSF in the far field at m from the measurement plane, it being located at m from the emitting surface. In Figure 8 two maps at 400 Hz and 1600 Hz are given, the latter being the

7 frequency at higher emission around the tub area. The sound intensity level and distribution calculated by the STSF system is equal to the intensity measured by the intensity probe, with an improvement on spatial accuracy due to the large number of measurement microphones. db (db ref 10pW/m 2 ) 400 1/3 octave band Hz banwidth /3 octave band Hz banwidth Figure 8 Intensity maps at m from the washing machine front panel. The results of the two holographic systems have been compared in terms of Sound Pressure Level (SPL) and air particle velocity calculated on the emitting surface, the washing machine front panel. Figure 9 shows the comparison between the SPL distribution for three frequencies: - at 800 Hz the maximum pressure is radiated by the soap drawer, - at 1200 Hz the noise amplification due to the reflection from the floor is evident, - at 1600 Hz the emission from the porthole is clear. Figure 10 gives the air particle velocity distribution and the active intensity over the washing machine front panel at the most interesting frequency, i.e. at 1600 Hz where the maximum emission is located on the basket aperture. 5. Conclusions Two kind of near field acoustic holography, the planar one based on Spatial Transformation of Sound Fields (STSF) and the spherical one based on conformal array measurements and Helmotz equation least-square method (HELS) have been applied for the first time to a real test case and their results compared. The location of the noise source is very accurate with both the techniques either in terms of SPL, sound intensity and air particle velocity. For an almost planar test case, as it is the washing machine front panel, the test implementation (array microphone preparation, noise source geometry definition) is very simple in the case of STSF, and more complex for the HELS system, however, that complexity is indispensable for 3D objects where conformal arrays are necessary and planar holography is not appropriate. The results of the STSF have been validated also by means of a traditional scanning technique based on sound intensity measurements with a p-p probe following the international standards for noise source location.

8 db (db ref 20 Pa) 876 Hz Hz banwidth 1196 Hz Hz banwidth 1600 Hz Hz banwidth Figure 9 SPL maps on the washing machine front panel.

9 1600 Hz (m/s) Hz banwidth (db) Air particle velocity 1600 Hz (W/m 2 ) Hz banwidth (db) Active intensity Figure 10 Air particle velocity maps on the washing machine front panel. References [1] J. Gomes, F. Jacobsenn, M. Bach-Andersen, Statistically optimised near field acoustic holography and the Helmholtz equation least squares method: a comparison [2] ISO :1993 Acoustics-Determination of sound power levels of noise sources using sound intensity-part1: Measurement at discrete points. [3] ISO :1993 Acoustics-Determination of sound power levels of noise sources using sound intensity-part2: Measurement by scanning. [4] J. D. Maynard, E. G. Williams, and Y. Lee, Near-field acoustic holography. I: Theory of generalized holography and the development of NAH, J. Acoustical Society of America 78 (4), , 1985; [5] J. Hald and K. B. Ginn, Spatial Transformation of Sound Fields: principle, instrumentation and applications, Proceedings of the Acoustic Intensity Symposium, Tokyo, 1987; [6] Spatial Transformation of Sound Fields Software Type 7688 User Manual, Brüel & Kjær; [7] M. Martarelli, G. M. Revel, E. P. Tomasini, Laser Doppler Vibrometry and Near-Field Acoustic Holography: different approaches for surface velocity distribution measurements, Fifth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, SPIE, 4827, Ancona, 2002; [8] Z. Wang, S. F. Wu, Helmotz equation-least squares method for reconstructing the acoustic pressure field, J. Acoustical Society of America 102 (4), , [9] S. F. Wu, Methods for reconstructing acoustic quantities based on acoustic pressure measurements, J. Acoustical Society of America 124 (5), , 2008.

Sound power estimation by laser Doppler vibration measurement techniques

Sound power estimation by laser Doppler vibration measurement techniques 297 Sound power estimation by laser Doppler vibration measurement techniques G.M. Revel and G.L. Rossi Dipartimento di Meccanica, Università degli Studi di Ancona, I-60131 Ancona, Italy Received 19 December

More information

Transient, planar, nonlinear acoustical holography for reconstructing acoustic pressure and particle velocity fields a

Transient, planar, nonlinear acoustical holography for reconstructing acoustic pressure and particle velocity fields a Denver, Colorado NOISE-CON 013 013 August 6-8 Transient, planar, nonlinear acoustical holography for reconstructing acoustic pressure and particle velocity fields a Yaying Niu * Yong-Joe Kim Noise and

More information

674 JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2015, VOLUME 17, ISSUE 2. ISSN

674 JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2015, VOLUME 17, ISSUE 2. ISSN 1545. The improved separation method of coherent sources with two measurement surfaces based on statistically optimized near-field acoustical holography Jin Mao 1, Zhongming Xu 2, Zhifei Zhang 3, Yansong

More information

Holographic measuring techniques in acoustics

Holographic measuring techniques in acoustics Holographic measuring techniques in acoustics Ferenc Márki and Fülöp Augusztinovicz Budapest University of Technology and Economics, Dept. of Telecommunications H-1111 Budapest, Sztoczek u., ferko@hit.bme.hu

More information

Fan Noise Control by Enclosure Modification

Fan Noise Control by Enclosure Modification Fan Noise Control by Enclosure Modification Moohyung Lee a, J. Stuart Bolton b, Taewook Yoo c, Hiroto Ido d, Kenichi Seki e a,b,c Ray W. Herrick Laboratories, Purdue University 14 South Intramural Drive,

More information

Application Note. Brüel & Kjær. Tyre Noise Measurement on a Moving Vehicle. Introduction. by Per Rasmussen and Svend Gade, Brüel & Kjær, Denmark

Application Note. Brüel & Kjær. Tyre Noise Measurement on a Moving Vehicle. Introduction. by Per Rasmussen and Svend Gade, Brüel & Kjær, Denmark Application Note Tyre Noise Measurement on a Moving Vehicle by Per Rasmussen and Svend Gade,, Denmar To obtain precise information about the noise radiation from tyres it is desirable to measure with the

More information

Influence of background noise on non-contact vibration measurements using particle velocity sensors

Influence of background noise on non-contact vibration measurements using particle velocity sensors Influence of background noise on non-contact vibration measurements using particle velocity sensors Daniel FERNANDEZ COMESAÑA 1 ; Fan YANG 1,2 ; Emiel TIJS 1 1 Microflown Technologies, the Netherlands

More information

Visualization of Automotive Power Seat Slide Motor Noise

Visualization of Automotive Power Seat Slide Motor Noise Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 9-2014 Visualization of Automotive Power Seat Slide Motor Noise J Stuart Bolton Purdue University,

More information

A METHOD FOR THE INDIRECT MEASUREMENT OF ACOUSTIC POWER EMITTED BY SYNCRONOUS BELTS

A METHOD FOR THE INDIRECT MEASUREMENT OF ACOUSTIC POWER EMITTED BY SYNCRONOUS BELTS A METHOD FOR THE INDIRECT MEASUREMENT OF ACOUSTIC POWER EMITTED BY SYNCRONOUS BELTS A. Di Sante, G. Ferri*, G. M. Revel, G. L. Rossi Dipartimento di Meccanica Universita degli Studi di Ancona, Via Breece

More information

Measuring system for sound source location for a systematic design modification of electrical machines

Measuring system for sound source location for a systematic design modification of electrical machines Measuring system for sound source location for a systematic design modification of electrical machines Roland Lach, Stefan Soter Institute of Electrical Machines, Drives and Power Electronics University

More information

A study on regularization parameter choice in Near-field Acoustical Holography

A study on regularization parameter choice in Near-field Acoustical Holography Acoustics 8 Paris A study on regularization parameter choice in Near-field Acoustical Holography J. Gomes a and P.C. Hansen b a Brüel & Kjær Sound and Vibration Measurement A/S, Skodsborgvej 37, DK-285

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 LABORATORY MEASUREMENT

More information

A preliminary investigation of near-field acoustical holography in characterizing noise from military jet aircraft

A preliminary investigation of near-field acoustical holography in characterizing noise from military jet aircraft Dearborn, Michigan NOISE-CON 2008 2008 July 28-30 A preliminary investigation of near-field acoustical holography in characterizing noise from military jet aircraft Kent L. Gee a Department of Physics

More information

Extension of acoustic holography to cover higher frequencies. Jørgen Hald, Brüel & Kjær SVM A/S, Denmark

Extension of acoustic holography to cover higher frequencies. Jørgen Hald, Brüel & Kjær SVM A/S, Denmark Extension of acoustic holography to cover higher frequencies Jørgen Hald, Brüel & Kjær SVM A/S, Denmark 1 1 Introduction Near-field Acoustical Holography (NAH) is based on performing D spatial Discrete

More information

Analysis and Control of Noise Emissions of a Small Single Cylinder D.I. Diesel Engine

Analysis and Control of Noise Emissions of a Small Single Cylinder D.I. Diesel Engine NVC23 3NVC-5 Analysis and Control of Noise Emissions of a Small Single Cylinder D.I. Diesel Engine Felice E. Corcione, Daniela Siano, Bianca M. Vaglieco, Istituto Motori, CNR Napoli (Italy) Giuseppe E.

More information

Laser scanning vibrometry measurements on a light weight building element

Laser scanning vibrometry measurements on a light weight building element Laser scanning vibrometry measurements on a light weight building element N.B. Roozen, M. Rychtáriková, Katholieke Universiteit Leuven, Laboratory for Acoustics and Thermal Physics (ATF), Department of

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 6, 2009 http://asa.aip.org 157th Meeting Acoustical Society of America Portland, Oregon 18-22 May 2009 Session 3aSA: Structural Acoustics and Vibration 3aSA3.

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

Efficient modeling of sound source radiation in free-space and room environments

Efficient modeling of sound source radiation in free-space and room environments Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations 8-216 Efficient modeling of sound source radiation in free-space and room environments Yangfan Liu Purdue University Follow

More information

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES P-7 THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES RYU, YUNSEON BRUEL & KJAER SOUND & VIBRATION MEASUREMENT A/S SKODSBORGVEJ 307 NAERUM 2850 DENMARK TEL : +45 77 41 23 87 FAX : +45 77

More information

Comparison of Noise Test Codes when Applied to air Compressors

Comparison of Noise Test Codes when Applied to air Compressors VDI-Berichte Nr. 1932, 2006 A 6 83 Comparison of Noise Test Codes when Applied to air Compressors Michael J. Lucas, INCE Bd. Cert., Ingersoll-Rand Company, Davidson/NC INTRODUCTION Beginning January 2004,

More information

Field reconstruction by inverse methods in acoustics and vibration N. Totaro, Q. Leclère, J.L. Guyader

Field reconstruction by inverse methods in acoustics and vibration N. Totaro, Q. Leclère, J.L. Guyader Field reconstruction by inverse methods in acoustics and vibration N. Totaro, Q. Leclère, J.L. Guyader Lyon Paris French riviera Solar map in France We are here 2 3 Lyon Laboratoire Vibrations Acoustique

More information

University of Kentucky

University of Kentucky Introduction David Herrin Wave Animation http://www.acs.psu.edu/drussell/demos/waves-intro/waves-intro.html 2 Wave Motion Some Basics Sound waves are pressure disturbances in fluids, such as air or hydraulic

More information

Sound power qualification of a turbocharger in enclosed environment using an innovating acoustic imaging processing: Generalized Acoustic Holography

Sound power qualification of a turbocharger in enclosed environment using an innovating acoustic imaging processing: Generalized Acoustic Holography Sound power qualification of a turbocharger in enclosed environment using an innovating acoustic imaging processing: Generalized Acoustic Holography A. Sébastien PAILLASSEUR 1, B. Thibaut LE MAGUERESSE

More information

Analysis of Split Air Conditioner Noise using Sound Intensity Mapping

Analysis of Split Air Conditioner Noise using Sound Intensity Mapping Analysis of Split Air Conditioner Noise using Sound Intensity Mapping M. S. Mohd Sani *,1,2,a, I. Zaman 2,b and M. Rahman 2,c 1 Advance Structural Integrity and Vibration Research (ASIVR), Faculty of Mechanical

More information

Plate mode identification using modal analysis based on microphone array measurements

Plate mode identification using modal analysis based on microphone array measurements Plate mode identification using modal analysis based on microphone array measurements A.L. van Velsen, E.M.T. Moers, I. Lopez Arteaga, H. Nijmeijer Department mechanical engineering, Eindhoven University

More information

Noise and Vibration Control for a Decanting Centrifuge

Noise and Vibration Control for a Decanting Centrifuge Noise and Vibration Control for a Decanting Centrifuge A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Engineering at the University of Canterbury by Perri Randle

More information

Evaluation of standards for transmission loss tests

Evaluation of standards for transmission loss tests Evaluation of standards for transmission loss tests M. Cassidy, R. K Cooper, R. Gault and J. Wang Queen s University Belfast, School of Mechanical and Aerospace Engineering, Ashby Building, Stranmillis

More information

Acoustic holography. LMS Test.Lab. Rev 12A

Acoustic holography. LMS Test.Lab. Rev 12A Acoustic holography LMS Test.Lab Rev 12A Copyright LMS International 2012 Table of Contents Chapter 1 Introduction... 5 Chapter 2... 7 Section 2.1 Temporal and spatial frequency... 7 Section 2.2 Time

More information

Fast wideband acoustical holography

Fast wideband acoustical holography Fast wideband acoustical holography Jørgen Hald a) Br uel and Kjær Sound and Vibration Measurement A/S, Skodsborgvej 307, DK-2850 Nærum, Denmark (Received 19 August 2015; revised 18 February 2016; accepted

More information

The information included in the following report presents the results of sound pressure and sound power testing.

The information included in the following report presents the results of sound pressure and sound power testing. ISO 7779:2010 Acoustics -- Measurement of airborne noise emitted by information technology and telecommunications equipment 1 of 14 DEVICES - solid panel case - window panel case Report Date: 06/25/2015

More information

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Radiated sound power estimates of building elements by means of laser Doppler vibrometry Radiated sound power estimates of building elements by means of laser Doppler vibrometry N.B. Roozen, L. Labelle, M. Rychtáriková,2, C. Glorieux, D. Urbán 3, P. Za tko 3, H. Mullner 4 Laboratory of Acoustics,

More information

Noise Reduction of an Electrical Motor by Using a Numerical Model

Noise Reduction of an Electrical Motor by Using a Numerical Model Noise Reduction of an Electrical Motor by Using a Numerical Model Ahmet Ali Uslu Arcelik A.S. R&D Department, Vibration & Acoustic Technologies Laboratory, Istanbul, Turkey. Summary Electrical motor is

More information

INNOVATIVE INTERFACE FOR HUMAN- COMPUTER INTERACTION

INNOVATIVE INTERFACE FOR HUMAN- COMPUTER INTERACTION INTERNATIONAL DESIGN CONFERENCE - DESIGN 2006 Dubrovnik - Croatia, May 15-18, 2006. INNOVATIVE INTERFACE FOR HUMAN- COMPUTER INTERACTION W. Rolshofen, P. Dietz and G. Schäfer Keywords: Acoustic Sources,

More information

IS INTERNATIONAL STANDARD. Acoustics - Determination of sound power levels of noise sources using sound intensity - Part 2:

IS INTERNATIONAL STANDARD. Acoustics - Determination of sound power levels of noise sources using sound intensity - Part 2: INTERNATIONAL STANDARD IS0 9614-2 First edition 1996-08-01 Acoustics - Determination of sound power levels of noise sources using sound intensity - Part 2: Measurement by scanning Acoustique - Dhermination

More information

MEASUREMENTS OF SOUND ABSORPTION TIMBERCRETE

MEASUREMENTS OF SOUND ABSORPTION TIMBERCRETE A.B.N. 73 107 291 494 C O N S U L T I N G A C O U S T I C A L E N G I N E E R S MEASUREMENTS OF SOUND ABSORPTION TIMBERCRETE 100 mm ANCIENT STONE BRICK REPORT NUMBER: 4546-2 PREPARED FOR: Timbercrete Pty

More information

MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES

MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES Jacob Klos and Daniel L. Palumbo Structural Acoustics Branch NASA Langley Research Center

More information

EXPERIMENTAL INVESTIGATION OF NOISE PARAMETERS IN HVAC SYSTEMS

EXPERIMENTAL INVESTIGATION OF NOISE PARAMETERS IN HVAC SYSTEMS The 40 th International Conference on Mechanics of Solids, Acoustics and Vibrations & The 6th International Conference on Advanced Composite Materials Engineering ICMSAV2016& COMAT2016 Brasov, ROMANIA,

More information

Identification and contribution analysis of vehicle interior noise based on acoustic array technology

Identification and contribution analysis of vehicle interior noise based on acoustic array technology Research Article Identification and contribution analysis of vehicle interior noise based on acoustic array technology Advances in Mechanical Engineering 2017, Vol. 9(11) 1 12 Ó The Author(s) 2017 DOI:

More information

Acoustics Laboratory

Acoustics Laboratory Acoustics Laboratory 1 at the Center for Noise and Vibration Control in ME, KAIST Supervisor: Prof. Jeong-Guon Ih (e-mail: J.G.Ih@kaist.ac.kr) Lab members: (as of March 2015) Ph.D. Students: 6 (1 part-time

More information

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Olivier Robin, Celse Kafui Amedin, Alain Berry, Noureddine Atalla, Olivier

More information

Application of laser vibrometer for the study of loudspeaker dynamics

Application of laser vibrometer for the study of loudspeaker dynamics Available online at www.sciencedirect.com ScienceDirect Materials Today: Proceedings 4 (2017) 5773 5778 www.materialstoday.com/proceedings DAS 2016 Application of laser vibrometer for the study of loudspeaker

More information

MICROPHONE ARRAY METHOD FOR THE CHARACTERIZATION OF ROTATING SOUND SOURCES IN AXIAL FANS

MICROPHONE ARRAY METHOD FOR THE CHARACTERIZATION OF ROTATING SOUND SOURCES IN AXIAL FANS MICROPHONE ARRAY METHOD FOR THE CHARACTERIZATION OF ROTATING SOUND SOURCES IN AXIAL FANS Gert HEROLD, Ennes SARRADJ Brandenburg University of Technology, Chair of Technical Acoustics, Siemens-Halske-Ring

More information

Turbines and turbine sets Measurement of emitted airborne noise Engineering/survey method

Turbines and turbine sets Measurement of emitted airborne noise Engineering/survey method INTERNATIONAL STANDARD ISO 10494 Second edition 2018-04 Turbines and turbine sets Measurement of emitted airborne noise Engineering/survey method Turbines et groupes de turbines Mesurage du bruit aérien

More information

In situ estimation of acoustic impedance on the surfaces of realistic interiors: an inverse approach

In situ estimation of acoustic impedance on the surfaces of realistic interiors: an inverse approach In situ estimation of acoustic impedance on the surfaces of realistic interiors: an inverse approach Gabriel Pablo Nava, Yoichi Sato, Shinichi Sakamoto Institute of Industrial Science, University of Tokyo,

More information

Sound field decomposition of sound sources used in sound power measurements

Sound field decomposition of sound sources used in sound power measurements Sound field decomposition of sound sources used in sound power measurements Spyros Brezas Physikalisch Technische Bundesanstalt Germany. Volker Wittstock Physikalisch Technische Bundesanstalt Germany.

More information

Modeling and simulation of windows with noise mitigation and natural ventilation

Modeling and simulation of windows with noise mitigation and natural ventilation Modeling and simulation of windows with noise mitigation and natural ventilation Xiang YU ; Fangsen CUI ; ze-tiong TAN 2 ; Kui YAO 3 Institute of High Performance Computing, A*TAR, ingapore 2 Building

More information

Sound Engineering Test and Analysis

Sound Engineering Test and Analysis Sound Engineering Test and Analysis Product sound and sound quality are key aspects of product perception. How a product sounds plays a critical role in conveying the right message about its functionality,

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at   ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 128 133 6th International Building Physics Conference, IBPC 2015 Sound insulation of building elements at low frequency:

More information

Sean F. Wu, Ph.D. Fellow, ASA, ASME University Distinguished Professor Department of Mechanical Engineering Wayne State University Detroit, MI 48202

Sean F. Wu, Ph.D. Fellow, ASA, ASME University Distinguished Professor Department of Mechanical Engineering Wayne State University Detroit, MI 48202 Sean F. Wu, Ph.D. Fellow, ASA, ASME University Distinguished Professor Department of Mechanical Engineering Wayne State University Detroit, MI 48202 Telephone: (313)577-3884 (office) Fax: (313)577-8789

More information

Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials

Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials Mehmet ÇALIŞKAN a) Middle East Technical University, Department of Mechanical Engineering, Ankara, 06800,

More information

Sound power level measurement in diffuse field for not movable sources or emitting prominent discrete tones

Sound power level measurement in diffuse field for not movable sources or emitting prominent discrete tones CFA 2018 - Le Havre Sound power level measurement in diffuse field for not movable sources or emitting prominent discrete tones F. Bessaca et P. Cellardb a CETIAT, Domaine Scientifique de la Doua, 25,

More information

Source Visualization by Using Statistically Optimized Near-Field Acoustical Holography in Conical Coordinates

Source Visualization by Using Statistically Optimized Near-Field Acoustical Holography in Conical Coordinates Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-01 Source Visualiation by Using Statistically Optimied Near-Field Acoustical Holography

More information

Sound Power Measurement of Domestic Boilers

Sound Power Measurement of Domestic Boilers Sound Power Measurement of Domestic Boilers Dipl.-Phys. R. Edenhofer, Dr.-Ing. K. Lucka, Prof. Dr.-Ing. H. Köhne, Oel-Wärme-Institut ggmbh, Aachen In order to create a standardised method for the measurement

More information

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response Proceedings of the Acoustics 22 Nantes Conference 23-27 April 22, Nantes, France Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response C. Maury a and T.

More information

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA Simulation of Horn Driver Response by Direct Combination of Compression Driver Response and Horn FEA Dario Cinanni CIARE, Italy Corresponding author: CIARE S.r.l., strada Fontenuovo 306/a, 60019 Senigallia

More information

LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION OF CLASSICTONE 700 ASTM C Type E Mounting. Test Number 2

LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION OF CLASSICTONE 700 ASTM C Type E Mounting. Test Number 2 LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION OF CLASSICTONE 700 ASTM C423-01 Type E Mounting Date of Test: 27/11/2009 Report Author: Mark Simms Test Number 2 Report Number 1644 Report Number 1644 Page

More information

Quantitative source spectra from acoustic array measurements

Quantitative source spectra from acoustic array measurements BeBeC-2008-03 Quantitative source spectra from acoustic array measurements Ennes Brandenburgische Technische Universita t Cottbus, Institut fu r Verkehrstechnik, Siemens-Halske-Ring 14, 03046 Cottbus,

More information

ON SOUND POWER MEASUREMENT OF THE ENGINE IN ANECHOIC ROOM WITH IMPERFECTIONS

ON SOUND POWER MEASUREMENT OF THE ENGINE IN ANECHOIC ROOM WITH IMPERFECTIONS ON SOUND POWER MEASUREMENT OF THE ENGINE IN ANECHOIC ROOM WITH IMPERFECTIONS Mehdi Mehrgou 1, Ola Jönsson 2, and Leping Feng 3 1 AVL List Gmbh., Hans-list-platz 1,8020, Graz, Austria 2 Scania CV AB, Södertälje,

More information

AN INVERSE METHOD TO ESTIMATE THE ACOUSTIC IMPEDANCE ON THE SURFACES OF COMPLEX-SHAPED INTERIORS

AN INVERSE METHOD TO ESTIMATE THE ACOUSTIC IMPEDANCE ON THE SURFACES OF COMPLEX-SHAPED INTERIORS AN INVERE METHOD TO ETIMATE THE ACOUTIC IMPEDANCE ON THE URFACE OF COMPLEX-HAPED INTERIOR Gabriel Pablo Nava 1,3,, Yosuke Yasuda 2, Yoichi ato 1 and hinichi akamoto 1 1 Institute of Industrial cience,

More information

FastBEM Acoustics. Verification Manual , Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved

FastBEM Acoustics. Verification Manual , Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved FastBEM Acoustics Verification Manual 2007-2017, Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved www.fastbem.com Copyright 2007-2017, Advanced CAE Research, LLC, All Rights Reserved

More information

Basics of Sound and Noise. David Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Basics of Sound and Noise. David Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering Basics of Sound and Noise David Herrin, Ph.D., P.E. Department of Mechanical Engineering Ø Public University Ø 16 Colleges Ø 93 Undergraduate Programs Ø 99 M.S. Programs Ø 66 Ph.D. Programs Ø 28,000 Students

More information

CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY

CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY 81 CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY 6.1 INTRODUCTION For obtaining products of good quality in the manufacturing industry, it is absolutely

More information

Assessing the vibro-acoustic radiation characteristics of a compact consumer appliance

Assessing the vibro-acoustic radiation characteristics of a compact consumer appliance Assessing the vibro-acoustic radiation characteristics of a compact consumer appliance Daniel TAYLOR 1 and John LAMB 2 Dyson Ltd, Malmesbury, England ABSTRACT Customer acceptance and regulatory requirements

More information

QUANTIFYING ACOUSTIC SOURCES THROUGH SOUND POWER MEASUREMENTS

QUANTIFYING ACOUSTIC SOURCES THROUGH SOUND POWER MEASUREMENTS SENSORS FOR RESEARCH & DEVELOPMENT WHITE PAPER #31 QUANTIFYING ACOUSTIC SOURCES THROUGH SOUND POWER MEASUREMENTS Written By Andrew R. Barnard, Ph.D., INCE Bd. Cert. Research Associate, Applied Research

More information

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time We help ideas meet the real world DELTA Test Report DANAK TEST Reg. no. 100 Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time Client: Kvadrat Soft Cells A/S Page 1

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

The Pennsylvania State University. The Graduate School. Graduate Program in Acoustics DEVELOPMENT OF SUPERSONIC INTENSITY IN REVERBERANT

The Pennsylvania State University. The Graduate School. Graduate Program in Acoustics DEVELOPMENT OF SUPERSONIC INTENSITY IN REVERBERANT The Pennsylvania State University The Graduate School Graduate Program in Acoustics DEVELOPMENT OF SUPERSONIC INTENSITY IN REVERBERANT ENVIRONMENTS (SIRE) WITH APPLICATIONS IN UNDERWATER ACOUSTICS A Dissertation

More information

Prediction of Light Rail Vehicle Noise in Running Condition using SEA

Prediction of Light Rail Vehicle Noise in Running Condition using SEA Prediction of Light Rail Vehicle Noise in Running Condition using SEA Sebastian PREIS ; Gérard BORELLO Siemens AG Austria Urban Transport, Austria InterAC, France ABSTRACT A complete Light Rail vehicle

More information

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07 Test Report RI Acoustic Lab Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier 20 Feb. 07 Title Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier

More information

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Gil F. Greco* 1, Bernardo H. Murta 1, Iam H. Souza 1, Tiago B. Romero 1, Paulo H. Mareze 1, Arcanjo Lenzi 2 and Júlio A.

More information

Journal of Sound and Vibration

Journal of Sound and Vibration Journal of Sound and Vibration 332 (2013) 952 967 Contents lists available at SciVerse ScienceDirect Journal of Sound and Vibration journal homepage: www.elsevier.com/locate/jsvi Nonlinear, dissipative,

More information

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous

More information

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile 1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile Xian-lin Ren School of Mechatronics Engineering, University of Electronic Science

More information

A wavenumber approach to characterizing the diffuse field conditions in reverberation rooms

A wavenumber approach to characterizing the diffuse field conditions in reverberation rooms PROCEEDINGS of the 22 nd International Congress on Acoustics Isotropy and Diffuseness in Room Acoustics: Paper ICA2016-578 A wavenumber approach to characterizing the diffuse field conditions in reverberation

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

SOUND INTENSITY MAPPING OF AN ENGINE DYNAMOMETER Pekan, Pahang, Malaysia. Phone: ; Fax: Pekan, Pahang, Malaysia

SOUND INTENSITY MAPPING OF AN ENGINE DYNAMOMETER Pekan, Pahang, Malaysia. Phone: ; Fax: Pekan, Pahang, Malaysia International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 11, pp. 2820-2829, January-June 2015 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.11.2015.56.0237

More information

Aeroacoustic simulation of automotive ventilation outlets

Aeroacoustic simulation of automotive ventilation outlets Aeroacoustic simulation of automotive ventilation outlets J.-L. Adam a, D. Ricot a, F. Dubief a and C. Guy b a Renault SAS, 1 avenue du golf, 78288 Guyancourt, France b Ligeron, Les Algorithmes Bâtiment

More information

Prediction of Sound Propagation From Power Transmission Plant

Prediction of Sound Propagation From Power Transmission Plant Prediction of Sound Propagation From Power Transmission Plant Jingchao Sun Stockholm, 2013 Thesis for the degree of Master of Science, 30 Hp Department of Sound and Vibration The Marcus Wallenberg Laboratory

More information

Numerical modeling of the primary source in a hemi-anechoic room

Numerical modeling of the primary source in a hemi-anechoic room Numerical modeling of the primary source in a hemi-anechoic room R. Arina 1, K. Völkel 2 1 Politecnico di Torino, Torino, Italy 2 Physikalisch Technische Bundesanstalt, Braunschweig, Germany ABSTRACT An

More information

CERTIFICATE OF CALIBRATION

CERTIFICATE OF CALIBRATION Page 1 of 10 CALIBRATION OF Sound Level Meter: Brüel & Kjær Type 3050-A-040 No: 3050-100751 Id: - Microphone: Brüel & Kjær Type 4189 No: 2621142 Preamplifier: Brüel & Kjær Type 2669 No: 2803547 Supplied

More information

Sound power level determinations at laboratory and field environments: An experimental comparison

Sound power level determinations at laboratory and field environments: An experimental comparison PROCEEDINGS of the 22 nd International Congress on Acoustics Acoustical Measurements and Instrumentation: Paper ICA2016-635 Sound power level determinations at laboratory and field environments: An experimental

More information

PRODUCT DATA. Sound Intensity Calibrator Type 3541-A. Uses and Features

PRODUCT DATA. Sound Intensity Calibrator Type 3541-A. Uses and Features PRODUCT DATA Sound Intensity Calibrator Type 3541-A Type 3541-A enables calibration of sound intensity measuring instruments by using a coupler designed especially for sound intensity calibrations. Intensity-probe

More information

DELTA Test Report. Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm

DELTA Test Report. Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm DELTA Test Report TEST Reg. no. 100 Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm Performed for Fraster ApS DANAK 100/2275 Project no.:

More information

Improving Electromotor Process in Water Pump by Using Power Spectral Density, Time Signal and Fault Probability Distribution Function

Improving Electromotor Process in Water Pump by Using Power Spectral Density, Time Signal and Fault Probability Distribution Function Improving Electromotor Process in Water Pump by Using Power Spectral Density, Time Signal and Fault Probability Distribution Function Hojjat Ahmadi, Zeinab Khaksar Department of Agricultural Machinery

More information

Snowmobile Noise Measurement

Snowmobile Noise Measurement Snowmobile Noise Measurement Andrew R. Barnard, Ph.D Jason R. Blough, Ph.D. Mechanical Engineering Engineering Mechanics Michigan Technological University 6 March 2015 Who cares about snowmobile noise

More information

Numerical Studies of Supersonic Jet Impingement on a Flat Plate

Numerical Studies of Supersonic Jet Impingement on a Flat Plate Numerical Studies of Supersonic Jet Impingement on a Flat Plate Overset Grid Symposium Dayton, OH Michael R. Brown Principal Engineer, Kratos/Digital Fusion Solutions Inc., Huntsville, AL. October 18,

More information

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Daipei LIU 1 ; Herwig PETERS 1 ; Nicole KESSISSOGLOU 1 ; Steffen MARBURG 2 ; 1 School of

More information

1. Introduction. 2. ISO 3745 and ISO standard comparison

1. Introduction. 2. ISO 3745 and ISO standard comparison Acoustic performance analysis of anechoic chambers based on ISO 3745 and ISO 26101: standards comparison and performance analysis of the anechoic chamber at the University of Split Mladen Russo Luka Kraljević

More information

Impeller Fault Detection for a Centrifugal Pump Using Principal Component Analysis of Time Domain Vibration Features

Impeller Fault Detection for a Centrifugal Pump Using Principal Component Analysis of Time Domain Vibration Features Impeller Fault Detection for a Centrifugal Pump Using Principal Component Analysis of Time Domain Vibration Features Berli Kamiel 1,2, Gareth Forbes 2, Rodney Entwistle 2, Ilyas Mazhar 2 and Ian Howard

More information

Sound radiation from a loudspeaker, from a spherical pole cap, and from a piston in an infinite baffle1

Sound radiation from a loudspeaker, from a spherical pole cap, and from a piston in an infinite baffle1 Sound radiation from a loudspeaker, from a spherical pole cap, and from a piston in an infinite baffle1 Ronald M. Aarts, Philips Research Europe HTC 36 (WO-02), NL-5656 AE Eindhoven, The Netherlands, Also

More information

Variable Speed Drive Application Based Acoustic Noise Reduction Strategy

Variable Speed Drive Application Based Acoustic Noise Reduction Strategy , October 2-22, 21, San Francisco, USA Variable Speed Drive Application Based Acoustic Noise Reduction Strategy C. Grabner Abstract The acoustic sound level caused as secondary effects of industrial energy

More information

Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing

Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing Journal of Physics: Conference Series PAPER OPEN ACCESS Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data in Non-Destructive Testing To cite this article: P Chiariotti et al 2015

More information

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method PROCEEDINGS of the 22 nd International Congress on Acoustics Boundary Element and Meshless Methods on Acoustics and Vibrations: Paper ICA2016-309 Efficient calculation for evaluating vast amounts of quadrupole

More information

Some considerations on noise monitoring for air handling equipments

Some considerations on noise monitoring for air handling equipments IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Some considerations on noise monitoring for air handling equipments To cite this article: C Bujoreanu and M Benchea 2017 IOP Conf.

More information

DESIGN AND DEVELOPMENT OF AN ACTIVE CONTROLLED WINDOW WITH HIGH SOUND TRANSMISSION LOSS

DESIGN AND DEVELOPMENT OF AN ACTIVE CONTROLLED WINDOW WITH HIGH SOUND TRANSMISSION LOSS 24th International Symposium on on Automation & Robotics in in Construction (ISARC 2007) Construction Automation Group, I.I.T. Madras DESIGN AND DEVELOPMENT OF AN ACTIVE CONTROLLED WINDOW WITH HIGH SOUND

More information

A three-dimensional sound intensity measurement system for sound source identification and sound power determination by ln models a)

A three-dimensional sound intensity measurement system for sound source identification and sound power determination by ln models a) A three-dimensional sound intensity measurement system for sound source identification and sound power determination by ln models a) Shiho Nagata, Kenji Furihata, b and Tomohiro Wada Department of Electrical

More information

ECMA Measurement of airborne noise emitted and structure-borne vibration induced by small air-moving devices Part 1: Airborne noise measurement

ECMA Measurement of airborne noise emitted and structure-borne vibration induced by small air-moving devices Part 1: Airborne noise measurement ECMA-275-1 4 th Edition / December 2017 Measurement of airborne noise emitted and structure-borne vibration induced by small air-moving devices Part 1: Airborne noise measurement Reference number ECMA-123:2009

More information

17. Investigation of loudspeaker cabinet vibration using reciprocity

17. Investigation of loudspeaker cabinet vibration using reciprocity 17. Investigation of loudspeaker cabinet vibration using reciprocity H Alavi & K R Holland, ISVR, University of Southampton E-mail: Hessam.Alavi@soton.ac.uk This paper investigates the contribution of

More information