Ranking from Pairwise Comparisons

Size: px
Start display at page:

Download "Ranking from Pairwise Comparisons"

Transcription

1 Ranking from Pairwise Comparisons Sewoong Oh Department of ISE University of Illinois at Urbana-Champaign Joint work with Sahand Negahban(MIT) and Devavrat Shah(MIT) / 9

2 Rank Aggregation Data Algorithm Decision / Score Ranking / 9

3 Example Data Algorithm Decision kittenwar.com / 9

4 Example Data Algorithm Decision.8.. kittenwar.com / 9

5 Example Data Algorithm Decision kittenwar.com / 9

6 Example Data Algorithm Decision / 9

7 Example Data Algorithm Decision / 9

8 Comparisons data Group decisions, recommendation and advertisement, sports and game Universal (ratings can be converted into comparisons) Consistent and reliable Natural (e.g. Sports and games, MSR s TrueSkill) Aggregation is challenging / 9

9 NP-hard approach: Kemeny optimal algorithm a a Find the most consistent ranking arg min a ij I(σ(j) > σ(i)) σ i j NP-hard combinatorial optimization Optimal for a specific model Strong Weak w.p. p w.p. p / 9

10 Traditional approach: l Ranking a a Compute score: s(i) = i j i a ji a ij + a ji n: number of items m: number of samples Compute in O(m) time Works when everyone plays everyone else: m = Ω(n ) [Ammar, Shah ] / 9

11 Traditional approach: l Ranking a a Compute score: s(i) = i j i a ji a ij + a ji n: number of items m: number of samples Compute in O(m) time Works when everyone plays everyone else: m = Ω(n ) [Ammar, Shah ] Strong Weak / 9

12 Traditional approach: l Ranking a a Compute score: s(i) = i j i a ji a ij + a ji n: number of items m: number of samples Compute in O(m) time Works when everyone plays everyone else: m = Ω(n ) [Ammar, Shah ] Strong All wins are equally weighted Weak / 9

13 Traditional approach: l Ranking a a Compute score: s(i) = a ji s(j) i a ij + a ji j i n: number of items m: number of samples Compute in O(m) time Works when everyone plays everyone else: m = Ω(n ) [Ammar, Shah ] Strong All wins are equally weighted Weak / 9

14 Prior work Data Algorithm Decision l ranking l p ranking Kemeny optimal MNL Mixed MNL etc. / Score Ranking / 9

15 Challenges High-dimensional regime # of samples n(log n) Low computational complexity # of operations # of samples Model independent Makes sense 9 / 9

16 Challenges High-dimensional regime # of samples n(log n) Low computational complexity # of operations # of samples Model independent Makes sense Under BTL model, Rank Centrality achieves optimal performance 9 / 9

17 Rank Centrality a a Define a random walk on G a ij P ij = d max a ij + a ji P ii = a ij d max a ij + a ji j i (unique) stationary distribution s T P = s T Random walk spends more time on stronger nodes 0 / 9

18 Rank Centrality a a Define a random walk on G a ij P ij = d max a ij + a ji P ii = a ij d max a ij + a ji j i (unique) stationary distribution s T P = s T Random walk spends more time on stronger nodes 0 / 9

19 Rank Centrality a a Define a random walk on G a ij P ij = d max a ij + a ji P ii = a ij d max a ij + a ji j i (unique) stationary distribution s T P = s T Random walk spends more time on stronger nodes 0 / 9

20 Rank Centrality a a Define a random walk on G a ij P ij = d max a ij + a ji P ii = a ij d max a ij + a ji j i (unique) stationary distribution s T P = s T Random walk spends more time on stronger nodes 0 / 9

21 Rank Centrality a a Define a random walk on G a ij P ij = d max a ij + a ji P ii = a ij d max a ij + a ji j i (unique) stationary distribution s T P = s T Random walk spends more time on stronger nodes 0 / 9

22 Rank Centrality a a Define a random walk on G a ij P ij = d max a ij + a ji P ii = a ij d max a ij + a ji j i (unique) stationary distribution s T P = s T Random walk spends more time on stronger nodes Higher score for beating a stronger node ( s(i) = a ) ij s(i) + P ji s(j) d max a ij + a ji j i = Z i j i j i a ji a ij + a ji s(j) 0 / 9

23 Experiment: Polling public opinions Washington Post - allourideas / 9

24 Experiment: Polling Ground truth: what the algorithm produces with complete data Error = n i (σ i ˆσ i ) Error L ranking Rank Centrality Sampling rate / 9

25 Model Algorithm is model independent For experiments and analysis, need model to generate data Comparisons model Bradley-Terry-Luce (BTL) model there is a true ranking {w i } when a pair is compared, the noise is modelled by P (i < j) = w j w i + w j / 9

26 Model Algorithm is model independent For experiments and analysis, need model to generate data Comparisons model Bradley-Terry-Luce (BTL) model there is a true ranking {w i } when a pair is compared, the noise is modelled by P (i < j) = Sampling model Sample each pair with probability d/n k comparisons for each pair w j w i + w j k d k / 9

27 Experiment: BTL model k d Error= w i>j (w i w j ) I ( ) (ˆσ i ˆσ j )(w i w j )>0 0. Error 0.0 Ratio Matrix L ranking Rank Centrality ML estimate 0. Error Ratio Matrix L ranking Rank Centrality ML estimate k d/n / 9

28 Performance guarantee For d = Ω(log n) BTL model {w i } with w min = Θ(w max ) Theorem (Negahban, O., Shah, ) Rank Centrality achieves w s w C log n k d Information-theoretic lower bound: inf s sup w W w s w C k d / 9

29 Performance guarantee For d = Ω(log n) BTL model {w i } with w min = Θ(w max ) Theorem (Negahban, O., Shah, ) Rank Centrality achieves w s w C log n k d Information-theoretic lower bound: inf s sup w W w s w C k d # of samples = O(n log n) sufficies to achieve arbitrary small error / 9

30 Performance guarantee for general graphs Oftentimes we do not control how data is collected Let G denote the (undirected) graph of given data Compute spectral gap of G (cf. mixing time of natural random walk) ξ λ (G) λ (G) Theorem (Negahban, O., Shah, ) Rank Centrality achieves w s w C d max log n ξ d min k d max / 9

31 Performance guarantee for general graphs Oftentimes we do not control how data is collected Let G denote the (undirected) graph of given data Compute spectral gap of G (cf. mixing time of natural random walk) ξ λ (G) λ (G) Theorem (Negahban, O., Shah, ) Rank Centrality achieves w s w C d max log n ξ d min k d max # of samples = O(n log n) sufficies to achieve arbitrary small error / 9

32 Proof technique. Spectral analysis of reversible Markov chains Markov chain (P, π) is revisible iff π(i)p ij = π(j)p ji P ij = d max a ij a ij + a ji is not reversible, but the expectation π(i) P ij = π(j) P ji P ij = π(i) w i d max w j w i + w j / 9

33 Proof technique. Spectral analysis of reversible Markov chains For any Markov chain (P, π) and any reversible MC ( P, π) π π = P T π P T π P T π P T π + P T π P T π P T (π π) + (P }{{} P ) T (π π) + P P π Reversible ( λ ( P ) + P P ) π π + P P π π π π P P λ ( P ) P P 8 / 9

34 Proof technique. Spectral analysis of reversible Markov chains For any Markov chain (P, π) and any reversible MC ( P, π) π π = P T π P T π P T π P T π + P T π P T π P T (π π) + (P }{{} P ) T (π π) + P P π Reversible ( λ ( P ) + P P ) π π + P P π π π π P P λ ( P ) P P. Bound λ ( P ) by comparisons theorem. Bound P P by concentration of measure inequality for matrices 8 / 9

35 Conclusion Rank aggregation from comparisons High-dimensional regime nkd n log n Low complexity O(nkd log n) Model independent Optimal under BTL up to log n Other Markov chain approaches e.g. Rank Aggregation Revisited C. Dwork, R. Kumar, M. Naor, and D. Sivakumar 9 / 9

o A set of very exciting (to me, may be others) questions at the interface of all of the above and more

o A set of very exciting (to me, may be others) questions at the interface of all of the above and more Devavrat Shah Laboratory for Information and Decision Systems Department of EECS Massachusetts Institute of Technology http://web.mit.edu/devavrat/www (list of relevant references in the last set of slides)

More information

Spectral Method and Regularized MLE Are Both Optimal for Top-K Ranking

Spectral Method and Regularized MLE Are Both Optimal for Top-K Ranking Spectral Method and Regularized MLE Are Both Optimal for Top-K Ranking Yuxin Chen Electrical Engineering, Princeton University Joint work with Jianqing Fan, Cong Ma and Kaizheng Wang Ranking A fundamental

More information

Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems

Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems Sewoong Oh Massachusetts Institute of Technology joint work with David R. Karger and Devavrat Shah September 28, 2011 1 / 13 Crowdsourcing

More information

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018 ELE 538B: Mathematics of High-Dimensional Data Spectral methods Yuxin Chen Princeton University, Fall 2018 Outline A motivating application: graph clustering Distance and angles between two subspaces Eigen-space

More information

Recent Advances in Ranking: Adversarial Respondents and Lower Bounds on the Bayes Risk

Recent Advances in Ranking: Adversarial Respondents and Lower Bounds on the Bayes Risk Recent Advances in Ranking: Adversarial Respondents and Lower Bounds on the Bayes Risk Vincent Y. F. Tan Department of Electrical and Computer Engineering, Department of Mathematics, National University

More information

A Spectral Algorithm for Ranking using Seriation

A Spectral Algorithm for Ranking using Seriation A Spectral Algorithm for Ranking using Seriation Alex d Aspremont, CNRS & ENS, Paris. with Fajwel Fogel, Milan Vojnovic, Ecole Polytechnique, Microsoft Research. Alex d Aspremont Simons Institute, Berkeley,

More information

Stochastic optimization Markov Chain Monte Carlo

Stochastic optimization Markov Chain Monte Carlo Stochastic optimization Markov Chain Monte Carlo Ethan Fetaya Weizmann Institute of Science 1 Motivation Markov chains Stationary distribution Mixing time 2 Algorithms Metropolis-Hastings Simulated Annealing

More information

Minimax-optimal Inference from Partial Rankings

Minimax-optimal Inference from Partial Rankings Minimax-optimal Inference from Partial Rankings Bruce Hajek UIUC b-hajek@illinois.edu Sewoong Oh UIUC swoh@illinois.edu Jiaming Xu UIUC jxu8@illinois.edu Abstract This paper studies the problem of rank

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

Borda count approximation of Kemeny s rule and pairwise voting inconsistencies

Borda count approximation of Kemeny s rule and pairwise voting inconsistencies Borda count approximation of Kemeny s rule and pairwise voting inconsistencies Eric Sibony LTCI UMR No. 5141, Telecom ParisTech/CNRS Institut Mines-Telecom Paris, 75013, France eric.sibony@telecom-paristech.fr

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

2013 IEEE International Symposium on Information Theory

2013 IEEE International Symposium on Information Theory Building Consensus via Iterative Voting Farzad Farnoud Hassanzadeh), Eitan Yaakobi, Behrouz Touri, Olgica Milenkovic, and Jehoshua Bruck Department of Electrical and Computer Engineering, University of

More information

Distributed Optimization over Networks Gossip-Based Algorithms

Distributed Optimization over Networks Gossip-Based Algorithms Distributed Optimization over Networks Gossip-Based Algorithms Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Random

More information

Quantum walk algorithms

Quantum walk algorithms Quantum walk algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 28 September 2011 Randomized algorithms Randomness is an important tool in computer science Black-box problems

More information

Generalized Method-of-Moments for Rank Aggregation

Generalized Method-of-Moments for Rank Aggregation Generalized Method-of-Moments for Rank Aggregation Hossein Azari Soufiani SEAS Harvard University azari@fas.harvard.edu William Chen Statistics Department Harvard University wchen@college.harvard.edu David

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

SYNC-RANK: ROBUST RANKING, CONSTRAINED RANKING AND RANK AGGREGATION VIA EIGENVECTOR AND SDP SYNCHRONIZATION

SYNC-RANK: ROBUST RANKING, CONSTRAINED RANKING AND RANK AGGREGATION VIA EIGENVECTOR AND SDP SYNCHRONIZATION SYNC-RANK: ROBUST RANKING, CONSTRAINED RANKING AND RANK AGGREGATION VIA EIGENVECTOR AND SDP SYNCHRONIZATION MIHAI CUCURINGU Abstract. We consider the classic problem of establishing a statistical ranking

More information

Ranking from pairwise comparisons using Seriation

Ranking from pairwise comparisons using Seriation Ranking from pairwise comparisons using Seriation Alex d Aspremont, CNRS & ENS, Paris. with Fajwel Fogel (Ecole Polytechnique), Milan Vojnovic, (MSR Cambridge). Alex d Aspremont STATLEARN, Grenoble, Apr.

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Convergence Rate of Markov Chains

Convergence Rate of Markov Chains Convergence Rate of Markov Chains Will Perkins April 16, 2013 Convergence Last class we saw that if X n is an irreducible, aperiodic, positive recurrent Markov chain, then there exists a stationary distribution

More information

Simple, Robust and Optimal Ranking from Pairwise Comparisons

Simple, Robust and Optimal Ranking from Pairwise Comparisons Journal of Machine Learning Research 8 (208) -38 Submitted 4/6; Revised /7; Published 4/8 Simple, Robust and Optimal Ranking from Pairwise Comparisons Nihar B. Shah Machine Learning Department and Computer

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

Rank Aggregation via Hodge Theory

Rank Aggregation via Hodge Theory Rank Aggregation via Hodge Theory Lek-Heng Lim University of Chicago August 18, 2010 Joint work with Xiaoye Jiang, Yuao Yao, Yinyu Ye L.-H. Lim (Chicago) HodgeRank August 18, 2010 1 / 24 Learning a Scoring

More information

Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization

Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization JOURNAL OF L A T E X CLASS FILES, 216 1 Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization Mihai Cucuringu E-mail: mihai@math.ucla.edu Abstract

More information

1 Random Walks and Electrical Networks

1 Random Walks and Electrical Networks CME 305: Discrete Mathematics and Algorithms Random Walks and Electrical Networks Random walks are widely used tools in algorithm design and probabilistic analysis and they have numerous applications.

More information

ISE/OR 760 Applied Stochastic Modeling

ISE/OR 760 Applied Stochastic Modeling ISE/OR 760 Applied Stochastic Modeling Topic 2: Discrete Time Markov Chain Yunan Liu Department of Industrial and Systems Engineering NC State University Yunan Liu (NC State University) ISE/OR 760 1 /

More information

Glauber Dynamics for Ising Model I AMS Short Course

Glauber Dynamics for Ising Model I AMS Short Course Glauber Dynamics for Ising Model I AMS Short Course January 2010 Ising model Let G n = (V n, E n ) be a graph with N = V n < vertices. The nearest-neighbor Ising model on G n is the probability distribution

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Generalized Method-of-Moments for Rank Aggregation

Generalized Method-of-Moments for Rank Aggregation Generalized Method-of-Moments for Rank Aggregation Hossein Azari Soufiani SEAS Harvard University azari@fas.harvard.edu William Z. Chen Statistics Department Harvard University wchen@college.harvard.edu

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

1.3 Convergence of Regular Markov Chains

1.3 Convergence of Regular Markov Chains Markov Chains and Random Walks on Graphs 3 Applying the same argument to A T, which has the same λ 0 as A, yields the row sum bounds Corollary 0 Let P 0 be the transition matrix of a regular Markov chain

More information

Graph Helmholtzian and Rank Learning

Graph Helmholtzian and Rank Learning Graph Helmholtzian and Rank Learning Lek-Heng Lim NIPS Workshop on Algebraic Methods in Machine Learning December 2, 2008 (Joint work with Xiaoye Jiang, Yuan Yao, and Yinyu Ye) L.-H. Lim (NIPS 2008) Graph

More information

Deterministic pivoting algorithms for constrained ranking and clustering problems 1

Deterministic pivoting algorithms for constrained ranking and clustering problems 1 MATHEMATICS OF OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxxx 20xx, pp. xxx xxx ISSN 0364-765X EISSN 1526-5471 xx 0000 0xxx DOI 10.1287/moor.xxxx.xxxx c 20xx INFORMS Deterministic pivoting algorithms for constrained

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

6.842 Randomness and Computation February 24, Lecture 6

6.842 Randomness and Computation February 24, Lecture 6 6.8 Randomness and Computation February, Lecture 6 Lecturer: Ronitt Rubinfeld Scribe: Mutaamba Maasha Outline Random Walks Markov Chains Stationary Distributions Hitting, Cover, Commute times Markov Chains

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Probability Models of Information Exchange on Networks Lecture 2. Elchanan Mossel UC Berkeley All rights reserved

Probability Models of Information Exchange on Networks Lecture 2. Elchanan Mossel UC Berkeley All rights reserved Probability Models of Information Exchange on Networks Lecture 2 Elchanan Mossel UC Berkeley All rights reserved Lecture Plan We will see the first simple models of information exchange on networks. Assumptions:

More information

Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening

Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening : The Case of Rank-Dependent Coarsening Mohsen Ahmadi Fahandar 1 Eyke Hüllermeier 1 Inés Couso 2 Abstract We consider the problem of statistical inference for ranking data, specifically rank aggregation,

More information

Rank and Rating Aggregation. Amy Langville Mathematics Department College of Charleston

Rank and Rating Aggregation. Amy Langville Mathematics Department College of Charleston Rank and Rating Aggregation Amy Langville Mathematics Department College of Charleston Hamilton Institute 8/6/2008 Collaborators Carl Meyer, N. C. State University College of Charleston (current and former

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

fsat We next show that if sat P, then fsat has a polynomial-time algorithm. c 2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 425

fsat We next show that if sat P, then fsat has a polynomial-time algorithm. c 2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 425 fsat fsat is this function problem: Let φ(x 1, x 2,..., x n ) be a boolean expression. If φ is satisfiable, then return a satisfying truth assignment. Otherwise, return no. We next show that if sat P,

More information

Reconstruction in the Generalized Stochastic Block Model

Reconstruction in the Generalized Stochastic Block Model Reconstruction in the Generalized Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign GDR

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Active Ranking from Pairwise Comparisons and when Parametric Assumptions Don t Help

Active Ranking from Pairwise Comparisons and when Parametric Assumptions Don t Help Active Ranking from Pairwise Comparisons and when Parametric Assumptions Don t Help Reinhard Heckel Nihar B. Shah Kannan Ramchandran Martin J. Wainwright, Department of Statistics, and Department of Electrical

More information

arxiv: v1 [cs.lg] 30 Dec 2015

arxiv: v1 [cs.lg] 30 Dec 2015 Simple, Robust and Optimal Ranking from Pairwise Comparisons Nihar B. Shah nihar@eecs.berkeley.edu Martin J. Wainwright, wainwrig@berkeley.edu arxiv:5.08949v [cs.lg] 30 Dec 05 Department of EECS, and Department

More information

On the Tightness of an LP Relaxation for Rational Optimization and its Applications

On the Tightness of an LP Relaxation for Rational Optimization and its Applications OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 0030-364X eissn 526-5463 00 0000 000 INFORMS doi 0.287/xxxx.0000.0000 c 0000 INFORMS Authors are encouraged to submit new papers to INFORMS

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Matrix estimation by Universal Singular Value Thresholding

Matrix estimation by Universal Singular Value Thresholding Matrix estimation by Universal Singular Value Thresholding Courant Institute, NYU Let us begin with an example: Suppose that we have an undirected random graph G on n vertices. Model: There is a real symmetric

More information

Information Recovery from Pairwise Measurements

Information Recovery from Pairwise Measurements Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach Yuxin Chen, Changho Suh, Andrea Goldsmith Stanford University KAIST Page 1 Recovering data from correlation measurements A large

More information

Learning from Comparisons and Choices

Learning from Comparisons and Choices Journal of Machine Learning Research 9 08-95 Submitted 0/7; Revised 7/8; Published 8/8 Sahand Negahban Statistics Department Yale University Sewoong Oh Department of Industrial and Enterprise Systems Engineering

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

Bayesian Decision Process for Cost-Efficient Dynamic Ranking via Crowdsourcing

Bayesian Decision Process for Cost-Efficient Dynamic Ranking via Crowdsourcing Journal of Machine Learning Research 17 (016) 1-40 Submitted /16; Published 11/16 Bayesian Decision Process for Cost-Efficient Dynamic Ranking via Crowdsourcing Xi Chen Stern School of Business New York

More information

Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices. Sándor Bozóki

Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices. Sándor Bozóki Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices Sándor Bozóki Institute for Computer Science and Control Hungarian Academy of Sciences (MTA

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

Convex Optimization of Graph Laplacian Eigenvalues

Convex Optimization of Graph Laplacian Eigenvalues Convex Optimization of Graph Laplacian Eigenvalues Stephen Boyd Stanford University (Joint work with Persi Diaconis, Arpita Ghosh, Seung-Jean Kim, Sanjay Lall, Pablo Parrilo, Amin Saberi, Jun Sun, Lin

More information

1 Ways to Describe a Stochastic Process

1 Ways to Describe a Stochastic Process purdue university cs 59000-nmc networks & matrix computations LECTURE NOTES David F. Gleich September 22, 2011 Scribe Notes: Debbie Perouli 1 Ways to Describe a Stochastic Process We will use the biased

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13

curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13 curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13 James R. Lee University of Washington Joint with Ronen Eldan (Weizmann) and Joseph Lehec (Paris-Dauphine) Markov chain

More information

On the Complexity of Budgeted Maximum Path Coverage on Trees

On the Complexity of Budgeted Maximum Path Coverage on Trees On the Complexity of Budgeted Maximum Path Coverage on Trees H.-C. Wirth An instance of the budgeted maximum coverage problem is given by a set of weighted ground elements and a cost weighted family of

More information

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Pasqua D Ambra Institute for Applied Computing (IAC) National Research Council of Italy (CNR) pasqua.dambra@cnr.it

More information

Combinatorial Laplacian and Rank Aggregation

Combinatorial Laplacian and Rank Aggregation Combinatorial Laplacian and Rank Aggregation Yuan Yao Stanford University ICIAM, Zürich, July 16 20, 2007 Joint work with Lek-Heng Lim Outline 1 Two Motivating Examples 2 Reflections on Ranking Ordinal

More information

Edge Flip Chain for Unbiased Dyadic Tilings

Edge Flip Chain for Unbiased Dyadic Tilings Sarah Cannon, Georgia Tech,, David A. Levin, U. Oregon Alexandre Stauffer, U. Bath, March 30, 2018 Dyadic Tilings A dyadic tiling is a tiling on [0,1] 2 by n = 2 k dyadic rectangles, rectangles which are

More information

EVALUATION OF EIGEN-VALUE METHOD AND GEOMETRIC MEAN BY BRADLEY-TERRY MODEL IN BINARY AHP

EVALUATION OF EIGEN-VALUE METHOD AND GEOMETRIC MEAN BY BRADLEY-TERRY MODEL IN BINARY AHP ISAHP 2001, Berne, Switzerland, August 2-4, 2001 ALUATION OF EIGEN-VALUE METHOD AND GEOMETRIC MEAN BY BRADLEY-TERRY MODEL IN BINARY AHP Kazutomo Nishizawa Department of Mathematical Engineering, College

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

Ergodic Subgradient Descent

Ergodic Subgradient Descent Ergodic Subgradient Descent John Duchi, Alekh Agarwal, Mikael Johansson, Michael Jordan University of California, Berkeley and Royal Institute of Technology (KTH), Sweden Allerton Conference, September

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Markov Chain BSDEs and risk averse networks

Markov Chain BSDEs and risk averse networks Markov Chain BSDEs and risk averse networks Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) 2nd Young Researchers in BSDEs

More information

Approximate Ranking from Pairwise Comparisons

Approximate Ranking from Pairwise Comparisons Approximate Ranking from Pairwise Comparisons Reinhard Heckel Max Simchowitz Kannan Ramchandran Martin J. Wainwright, Department of ECE, Rice University Department of Statistics, and EECS, University of

More information

The coupling method - Simons Counting Complexity Bootcamp, 2016

The coupling method - Simons Counting Complexity Bootcamp, 2016 The coupling method - Simons Counting Complexity Bootcamp, 2016 Nayantara Bhatnagar (University of Delaware) Ivona Bezáková (Rochester Institute of Technology) January 26, 2016 Techniques for bounding

More information

R ij = 2. Using all of these facts together, you can solve problem number 9.

R ij = 2. Using all of these facts together, you can solve problem number 9. Help for Homework Problem #9 Let G(V,E) be any undirected graph We want to calculate the travel time across the graph. Think of each edge as one resistor of 1 Ohm. Say we have two nodes: i and j Let the

More information

Ch5. Markov Chain Monte Carlo

Ch5. Markov Chain Monte Carlo ST4231, Semester I, 2003-2004 Ch5. Markov Chain Monte Carlo In general, it is very difficult to simulate the value of a random vector X whose component random variables are dependent. In this chapter we

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012 CS-62 Theory Gems October 24, 202 Lecture Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler Introduction In Lecture 0, we introduced a fundamental object of spectral graph theory:

More information

On Outer Bounds to the Capacity Region of Wireless Networks

On Outer Bounds to the Capacity Region of Wireless Networks On Outer Bounds to the Capacity Region of Wireless Networks Sahand Haji Ali Ahmad Aleksandar Jovičić and Pramod Viswanath August 03 005 Abstract We study the capacity region of a general wireless network

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

Oberwolfach workshop on Combinatorics and Probability

Oberwolfach workshop on Combinatorics and Probability Apr 2009 Oberwolfach workshop on Combinatorics and Probability 1 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity. Steady convergence it takes a while to

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Distributed learning in potential games over large-scale networks

Distributed learning in potential games over large-scale networks Distributed learning in potential games over large-scale networks Fabio Fagnani, DISMA, Politecnico di Torino joint work with Giacomo Como, Lund University Sandro Zampieri, DEI, University of Padova Networking

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Lecture notes for Analysis of Algorithms : Markov decision processes

Lecture notes for Analysis of Algorithms : Markov decision processes Lecture notes for Analysis of Algorithms : Markov decision processes Lecturer: Thomas Dueholm Hansen June 6, 013 Abstract We give an introduction to infinite-horizon Markov decision processes (MDPs) with

More information

Partitioning Algorithms that Combine Spectral and Flow Methods

Partitioning Algorithms that Combine Spectral and Flow Methods CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 15-11/11/2009 Partitioning Algorithms that Combine Spectral and Flow Methods Lecturer: Michael Mahoney Scribes: Kshipra Bhawalkar and Deyan

More information

A physical model for efficient rankings in networks

A physical model for efficient rankings in networks A physical model for efficient rankings in networks Daniel Larremore Assistant Professor Dept. of Computer Science & BioFrontiers Institute March 5, 2018 CompleNet danlarremore.com @danlarremore The idea

More information

2.1 Laplacian Variants

2.1 Laplacian Variants -3 MS&E 337: Spectral Graph heory and Algorithmic Applications Spring 2015 Lecturer: Prof. Amin Saberi Lecture 2-3: 4/7/2015 Scribe: Simon Anastasiadis and Nolan Skochdopole Disclaimer: hese notes have

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

1 AUTOCRATIC STRATEGIES

1 AUTOCRATIC STRATEGIES AUTOCRATIC STRATEGIES. ORIGINAL DISCOVERY Recall that the transition matrix M for two interacting players X and Y with memory-one strategies p and q, respectively, is given by p R q R p R ( q R ) ( p R

More information

Quantum algorithms. Andrew Childs. Institute for Quantum Computing University of Waterloo

Quantum algorithms. Andrew Childs. Institute for Quantum Computing University of Waterloo Quantum algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 11th Canadian Summer School on Quantum Information 8 9 June 2011 Based in part on slides prepared with Pawel Wocjan

More information

Economics of Networks Social Learning

Economics of Networks Social Learning Economics of Networks Social Learning Evan Sadler Massachusetts Institute of Technology Evan Sadler Social Learning 1/38 Agenda Recap of rational herding Observational learning in a network DeGroot learning

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jiaming Xu Joint work with Rui Wu, Kai Zhu, Bruce Hajek, R. Srikant, and Lei Ying University of Illinois, Urbana-Champaign

More information

Reconstruction in the Sparse Labeled Stochastic Block Model

Reconstruction in the Sparse Labeled Stochastic Block Model Reconstruction in the Sparse Labeled Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign

More information

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano Google PageRank Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano fricci@unibz.it 1 Content p Linear Algebra p Matrices p Eigenvalues and eigenvectors p Markov chains p Google

More information

Ranking using Matrices.

Ranking using Matrices. Anjela Govan, Amy Langville, Carl D. Meyer Northrop Grumman, College of Charleston, North Carolina State University June 2009 Outline Introduction Offense-Defense Model Generalized Markov Model Data Game

More information