The Ramsauer-Townsend Effect

Size: px
Start display at page:

Download "The Ramsauer-Townsend Effect"

Transcription

1 The Ramsauer-Townsend Effect Evan Sheridan, Tom Power, Chris Kervick Feburary 18th 2013 Abstract The Quantum Mechanical phenomena known as the Ramsauer-Townsend effect is investigated using xenon gas, liquid nitrogen, EM91 thyratron vacuum tube, 10 V and 4 V DC power supplies and multimeters. The energy at which the probability of scattering is minimum was found to be 0.7 ± 0.1eV. The range of values for the mean free path of the electron was given by 3.43x10 3 m λ m. The contact potential was found to be ± 0.004V. Finally, the mean kinetic energy of the electrons was calculated as 1.5 ± 0.02eV. 1

2 Aims To observe the Ramsauer-Townsend effect. To find the energy at which the probability of scattering of electrons by the xenon gas is minimum. To find the maximum and minimum values of the mean free path of the electron. To determine the contact potential and mean thermionic emission energy. Backround and Theory The Ramsauer-Townsend Effect is a quantum mechanical effect that occurs when a beam of electrons is passed through a noble gas. It is observed that for specific energies of the electron current that the electron beam will pass through the gas unscathed. Classically, this makes no sense because there shouldn t be a specific energy at which the probability that electrons will be scattered will achieve a minimum. This is because the classical model treats the phenomena as collisions. In order to describe the effect one must use the tools of quantum mechanics. Instead of treating the electrons and the nucleus of the atoms as point like objects we consider that the electron can behave as a wave and the atom creates a potential barrier. We see that when the wavelength of the electrons is such that λ = 2d n then destructive interference occurs due to the reflected beams from A and B(A is the left potential step and B the right potential step) and we get unity transmission. d is the width of the potential well that we use to describe the potential due to the atom that interacts with the electrons. The phenomena that particles can be reflected from a potential step is not intuitive but a consequence of the 1-dimensional time independent Schrodinger equation. In our case we use xenon and in order to calculate the probability of the scattering we define f(v ) = I P (V ) I S (V ) where the denotes the respective currents when no xenon is present (when we cool it with the liquid nitrogen). I P is the current induced on the plate due to unscattered electrons. I S is the induced current on the shield due to scattered electrons. If we denote P S by the probability of scattering the we have: I P = f(v )I S (1 P S ) with some considerations it can be shown that: = P S = 1 I P I S I S I P P S = 1 e l λ taking logarithms an expression for the mean free path of the electron is given by: λ = l log(p S ) Now in order to predict certain properties of the electrons that are emitted from the cathode we must find the kinetic energy of the electrons. This energy is given by: E kin = ev tot 1

3 where V tot = V + V C + V such that V is the acceleration potential, V C is the contact potential between the two metals in the chamber and V is the mean thermionic energy of the electrons. It can be shown that : I(V r ) = I 0 e 3Vr 2 V log(i(v r ) = log(i 0 ) 3V r 2 V Thus plotting a log plot of Log(I) vs Voltage we can determine V C momentum and wavelength of the accelerated electrons. and V and thus find the The Experiment The circuit is given by: Set up the circuit as shown. Firstly, with the xenon gas present, measure both I p and I s as a function of the applied voltage. Range the voltage from 0 Volts - 10 Volts and take readings in.2 volt intervals up to 1 and then 1 volt intervals up to 10. Now invert the tube and place it in contact with the liquid nitrogen so as to reduce the pressure of the xenon gas. Repeat the same process as without the liquid nitrogen, i.e measure I p and I s using the same voltage intervals. Measure the contact potential and mean thermionic energy by reversing the polarity of the accelerating voltage. Results and Analysis The first plot illustrates I P and I P as a function of applied voltage. 2

4 As we can see the presence of the xenon gas drastically impacts the behaviour of the electrons in the tube. We can see that as we increase the voltage IP increases quite quickly as opposed to the almost constant I P in comparison. This indicates that a very low temperatures the electrons move freely throughout the tube, rarely being scattered and the more energy they are given the larger the current induced at the plate. The following graph illustrates the Ramsauer-Townsend effect: It shows clearly a minimum quite close to zero. The minimum was found to correspond with and energy of 0.7 ± 0.1eV. Since the quoted value is near 1eV it can be concluded that the Ramsauer- Townsend effect was successfully observed. The probability maximum and minimum corresponded to 0.13 and 0.9, respectively. Hence using: λ = l log(p S ) 3

5 with l = 0.7cm we get the range for the mean free path to be: 3.43x10 3 m λ m The final plot illustrates the effect of the retarding potential. From the plot we can calculate the contact potential by the finding the point of intersection of the lines the characterise the two seperate regions. It can be read off the plot that the contact potential is.404 ± 0.004V Given that the total kinetic energy of the electron is given by: V tot = V + V C + V V can be read from the slope of the second line which is given by y = 3.77x and thus the mean kinetic is given by ev T ot = 1.5 ± 0.02eV Now using that and the De Broglie relation p = 2m e E λ = h p we find that the momentum of the electrons is given by p = 5.25x10 25 kg m s 1 and that the wavelength of the electrons is given by λ = 1.22x10 9 m. Conclusions Overall, the experiment was a success. The Ramsauer- Townsend effect was observed and the energy where the probability of scattering was successfully located near 1 ev. The range of the mean free path of the electrons was found to be 3.43x10 3 m λ m. As well as this, various other properties of the electrons were discovered, such as it s wavelength λ = 1.22x10 9 m and momentum p = 5.25x10 25 kg m s 1. Perhaps the most significant result of this experiment is the demonstration that classical physics fails in certain instances and a quantum mechanical treatment must be utilised in order to provide an explanation. 4

The Ramsauer-Townsend Effect

The Ramsauer-Townsend Effect The Ramsauer-Townsend Effect Gavin Cheung 0987 March 9, 0 Abstract Using a thyratron, the Ramsauer-Townsend effect was observed by firing electrons through xenon gas. It was found that the probability

More information

The Ramsauer-Townsend Effect

The Ramsauer-Townsend Effect The Ramsauer-Townsend Effect David-Alexander Robinson; Jack Denning; 08332461 25th March 2010 Contents 1 Abstract 2 2 Introduction & Theory 2 2.1 The Ramsauer-Townsend Effect................. 2 2.2 Contact

More information

I. Ramsauer-Townsend Effect

I. Ramsauer-Townsend Effect Various Methods of Experimentally Measuring the Radius of Atoms; the Ramsauer-Townsend Effect and Electron Diffraction Introduction It s commonly known that particles act like waves, and this introduces

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Dual Nature of Radiation and Matter-I

Dual Nature of Radiation and Matter-I Dual Nature of Radiation and Matter-I Physics Without Fear CONTENTS ELECTRON EMISSION PHOTOELECTRIC EFFECT; HERTZ S OBSERVATIONS HALLWACHS AND LENARD S OBSERVATIONS EXPERIMENTAL STUDY OF PHOTOELECTRIC

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Electron Diffraction

Electron Diffraction Electron iffraction o moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis de

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) Electromagnetic induction (Chapter 23): For a straight wire, the induced current or e.m.f. depends on: The magnitude of the magnetic

More information

DUAL NATURE OF RADIATION AND MATTER I K GOGIA KV JHARODA KALAN DELHI.

DUAL NATURE OF RADIATION AND MATTER I K GOGIA KV JHARODA KALAN DELHI. DUAL NATURE OF RADIATION AND MATTER AIM: The aim of present self- learning module is to train the minds of the learners in building the concepts by learning on their own. The module is designed to Achieve

More information

Name the region of the electromagnetic radiation emitted by the laser. ...

Name the region of the electromagnetic radiation emitted by the laser. ... 1. An argon-laser emits electromagnetic radiation of wavelength 5.1 10 7 m. The radiation is directed onto the surface of a caesium plate. The work function energy for caesium is 1.9 ev. (i) Name the region

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1]

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1] 1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. 1 (a) (b) Name the effect described above....[1] The variation with frequency f of the maximum

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado Experiment 9 1 Introduction The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado During the late nineteenth century, a great deal of evidence accumulated indicating that radiation

More information

Chapter 38. Photons Light Waves Behaving as Particles

Chapter 38. Photons Light Waves Behaving as Particles Chapter 38 Photons Light Waves Behaving as Particles 38.1 The Photoelectric Effect The photoelectric effect was first discovered by Hertz in 1887, and was explained by Einstein in 1905. The photoelectric

More information

Preview from Notesale.co.uk Page 4 of 35

Preview from Notesale.co.uk Page 4 of 35 field 64 If a dielectric is inserted b/w the plates of a charged capacitor, its Remains Becomes infinite capacitance constant decreases increases 65 Selenium is an insulator in the dark but when exposed

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Dual Nature of Radiation and Matter

Dual Nature of Radiation and Matter PHYSICS NOTES Dual Nature of Radiation and Matter Emission of electrons: We know that metals have free electrons (negatively charged particles) that are responsible for their conductivity. However, the

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

CHAPTER 12 TEST REVIEW

CHAPTER 12 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Lecture 2: Quantum Mechanics and Relativity

Lecture 2: Quantum Mechanics and Relativity Lecture 2: Quantum Mechanics and Relativity Atom Atomic number A Number of protons Z Number of neutrons A-Z Number of electrons Z Charge of electron = charge of proton ~1.6 10-19 C Size of the atom ~10-10

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Quantum Interference and Duality

Quantum Interference and Duality Quantum Interference and Duality Kiyohide NOMURA Department of Physics December 21, 2016 1 / 49 Quantum Physics(Mechanics) Basic notion of Quantum Physics: Wave-Particle Duality Light (electromagnetic

More information

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to :

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to : 1 Candidates should be able to : Explain electron diffraction as evidence for the wave nature of particles like electrons. Explain that electrons travelling through polycrystalline graphite will be diffracted

More information

In a particular investigation the atomic spacing of the crystal is m and the electrons are accelerated through 3000 V.

In a particular investigation the atomic spacing of the crystal is m and the electrons are accelerated through 3000 V. 1 Crystal structure can be investigated using the diffraction of an electron beam. A typical diffraction pattern is shown. In a particular investigation the atomic spacing of the crystal is 2.3 10 11 m

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Quantum physics practice question answers

Quantum physics practice question answers Quantum physics practice question answers 1. How electron gun creates beam of electrons Any four from: 1. hot filament (1) 2. thermionic emission / electrons have enough energy to leave (1) 3. anode and

More information

Photoelectric Effect [20 marks]

Photoelectric Effect [20 marks] Photoelectric Effect [20 marks] 1. photoelectric cell is connected in series with a battery of emf 2 V. Photons of energy 6 ev are incident on the cathode of the photoelectric cell. The work function of

More information

The Franck Hertz Experiment and the Ramsauer Townsend Effect: Elastic and Inelastic Scattering of Electrons by Atoms

The Franck Hertz Experiment and the Ramsauer Townsend Effect: Elastic and Inelastic Scattering of Electrons by Atoms The Franck Hertz Experiment and the Ramsauer Townsend Effect: Elastic and Inelastic Scattering of Electrons by Atoms MIT Department of Physics (Dated: May 11, 2005) The main purpose of these experiments

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x 10-19 C and mass 9.1x 10-31 kg... Work function. The minimum amount of energy required

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Answers to examination-style questions. Answers Marks Examiner s tips

Answers to examination-style questions. Answers Marks Examiner s tips End-of-unit (a) (i) 94 protons This is the proton number Z. (ii) 45 neutrons Number of neutrons is found from (nucleon number proton number) = (A Z) = 239 94 (iii) 93 electrons A neutral atom would have

More information

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron?

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron? 2. What was it that J. J. Thomson actually measured? 3. Regarding

More information

Modern Physics Part 1: Quantization & Photons

Modern Physics Part 1: Quantization & Photons Modern Physics Part 1: Quantization & Photons Last modified: 15/12/2017 Contents Links Contents Introduction Classical Physics Modern Physics Quantization Definition & Examples Photons Black Body Radiation

More information

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21. Early and the Wave Nature of Matter Winter 2018 Press CTRL-L to view as a slide show. Last Time Last time we discussed: Optical systems Midterm 2 Today we will discuss: Quick of X-ray diffraction Compton

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Sample Examination Questions

Sample Examination Questions Sample Examination Questions Contents NB. Material covered by the AS papers may also appear in A2 papers. Question Question type Question focus number (section A or B) 1 A Ideal transformer 2 A Induced

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. An electron orbits a nucleus which carries a charge of +9.6 x10-19 C. If the electron s orbital radius is 2.0 x10-10 m, what is its electric potential energy? A. -6.9 x10-18

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Quantum Model Einstein s Hypothesis: Photoelectric Effect

Quantum Model Einstein s Hypothesis: Photoelectric Effect VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT Quantum Model Einstein s Hypothesis: Photoelectric Effect The photoelectric effect was discovered by Hertz in 1887 as he confirmed Maxwell s electromagnetic

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Millikan determined the charge on individual oil droplets using an arrangement as represented in the diagram. The plate voltage necessary to hold a charged droplet stationary

More information

Exam 2 Development of Quantum Mechanics

Exam 2 Development of Quantum Mechanics PHYS40 (Spring 00) Riq Parra Exam # (Friday, April 1 th, 00) Exam Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner of each problem

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Experimental Physics I & II "Junior Lab" Fall Spring 2008

Experimental Physics I & II Junior Lab Fall Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 8.13-14 Experimental Physics I & II "Junior Lab" Fall 2007 - Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

The Phenomena of Quantum Mechanics

The Phenomena of Quantum Mechanics Introduction The Phenomena of Quantum Mechanics Quantum mechanics is a general theory. It is presumed to apply to everything, from subatomic particles to galaxies. But interest is naturally focussed on

More information

The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997

The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997 The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997 Abstract One of the most important experiments supporting quantum theory is the Franck- Hertz

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

DUAL NATURE OF RADIATION AND MATTER

DUAL NATURE OF RADIATION AND MATTER Chapter Eleven DUAL NATURE OF RADIATION AND MATTER MCQ I 111 A particle is dropped from a height H The de Broglie wavelength of the particle as a function of height is proportional to (a) H (b) H 1/2 (c)

More information

Dual Nature of Matter

Dual Nature of Matter Emission of electrons: Dual Nature of Matter We know that metals have free electrons (negatively charged particles) that are responsible for their conductivity. However, the free electrons cannot normally

More information

Modern Physics notes Paul Fendley Lecture 3

Modern Physics notes Paul Fendley Lecture 3 Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 3 Electron Wavelength Probability Amplitude Which slit? Photons Born, IV.4 Feynman, 1.6-7, 2.1 Fowler, Rays and Particles The wavelength of

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. (a) The diagram below shows a narrow beam of electrons produced by attracting electrons emitted from a filament wire to a metal plate which has a small hole in it. (i) Why

More information

Chapter-11 DUAL NATURE OF MATTER AND RADIATION

Chapter-11 DUAL NATURE OF MATTER AND RADIATION Chapter-11 DUAL NATURE OF MATTER AND RADIATION Work function (j o ): The minimum energy required for an electron to escape from the surface of a metal i.e. The energy required for free electrons to escape

More information

Downloaded from

Downloaded from 7. DUAL NATURE OF MATTER & RADIATION GIST ELECTRON EMISSION 1. There are three types of electron emission, namely, Thermionic Emission, Photoelectric Emission and Field Emission. 2. The minimum energy

More information

Crystal Structure and Electron Diffraction

Crystal Structure and Electron Diffraction Crystal Structure and Electron Diffraction References: Kittel C.: Introduction to Solid State Physics, 8 th ed. Wiley 005 University of Michigan, PHY441-44 (Advanced Physics Laboratory Experiments, Electron

More information

Uncertainty principle

Uncertainty principle Chapter 3 Uncertainty principle Now it is Amperé s hypotheis that the source of all magnetic fields is the motion of charges. In particular, magnetic dipole moments arise from the circulation of charge.

More information

Introduction. 6.1 Summary Notes The Quantum. D Notes: ! is wavelength (m) c is the speed of light (m/s)

Introduction. 6.1 Summary Notes The Quantum. D Notes: ! is wavelength (m) c is the speed of light (m/s) Introduction Matter and energy have a dual nature: wave and particle. Understanding the particle nature of light is necessary for learning about modern physics and technology. 6.1 Summary Notes The Quantum

More information

Electric Deflection of Electrons

Electric Deflection of Electrons Electric Deflection of Electrons Objective The purpose of this experiment is to observe that the spacial deflection of an electron in a cathode ray tube is directly proportional to the deflection potential.

More information

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light Lecture 15 Notes: 07 / 26 The photoelectric effect and the particle nature of light When diffraction of light was discovered, it was assumed that light was purely a wave phenomenon, since waves, but not

More information

PHYSICS VCE UNITS 3&4 DIAGNOSTIC TOPIC TESTS 2017

PHYSICS VCE UNITS 3&4 DIAGNOSTIC TOPIC TESTS 2017 PHYSICS VCE UNITS 3&4 DIAGNOSTIC TOPIC TESTS 2017 TEST 9: TOTAL 45 MARKS (45 MINUTES) Student s Name: Teacher s Name: Directions to students Write your name and your teacher s name in the spaces provided

More information

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum.

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum. JURONG JUNIOR COLLEGE J2 H1 Physics (2011) Tutorial: Quantum Physics 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum. Calculate the energy of a

More information

[2] (b) An electron is accelerated from rest through a potential difference of 300 V.

[2] (b) An electron is accelerated from rest through a potential difference of 300 V. 1 (a) In atomic physics electron energies are often stated in electronvolts (ev) Define the electronvolt. State its value in joule.. [2] (b) An electron is accelerated from rest through a potential difference

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Physics Important Terms and their Definitions

Physics Important Terms and their Definitions Physics Important Terms and their S.No Word Meaning 1 Acceleration The rate of change of velocity of an object with respect to time 2 Angular Momentum A measure of the momentum of a body in rotational

More information

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus Conceptual Physics 11 th Edition Chapter 32: THE ATOM AND THE QUANTUM Discovery of the Atomic Nucleus These alpha particles must have hit something relatively massive but what? Rutherford reasoned that

More information

PHYS 3313 Section 001 Lecture #7

PHYS 3313 Section 001 Lecture #7 PHYS 3313 Section 001 Lecture #7 Photoelectric Effect Compton Effect Pair production/pair annihilation PHYS 3313-001, Fall 1 Reading assignments: CH3.9 Announcements Homework #2 CH3 end of the chapter

More information

Franck-Hertz Experiment in Neon/Hg

Franck-Hertz Experiment in Neon/Hg Franck-Hertz Experiment in Neon/Hg Equipment Franck-Hertz tube (Ne or Hg) & Operating Unit Analog oscilloscope Many Banana cables; 1 BNC cables; 2 BNC-Banana Plug connector Graphing paper Theory This experiment

More information

Charge to Mass Ratio of the Electron

Charge to Mass Ratio of the Electron Charge to Mass Ratio of the Electron 1. Purpose: To determine the charge to mass ratio of the electron, e/m, by subjecting a beam of electrons to a magnetic field and examining their trajectories. It can

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. Chapter 1 Photoelectric Effect Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. History The photoelectric effect and its understanding

More information

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons Learning objectives: What are cathode rays and how were they discovered? Why does the gas in a discharge tube emit light of

More information

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Photon: a quantum of light or electromagnetic wave. Quantum:

More information

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes Physics 116 Session 31 De Broglie, duality, and uncertainty Nov 21, 2011 R. J. Wilkes Email: ph116@u.washington.edu Announcements HW 6 due today Clicker scores have been updated on Webassign gradebook

More information

Chapter 17: Resonant transmission and Ramsauer Townsend. 1 Resonant transmission in a square well 1. 2 The Ramsauer Townsend Effect 3

Chapter 17: Resonant transmission and Ramsauer Townsend. 1 Resonant transmission in a square well 1. 2 The Ramsauer Townsend Effect 3 Contents Chapter 17: Resonant transmission and Ramsauer Townsend B. Zwiebach April 6, 016 1 Resonant transmission in a square well 1 The Ramsauer Townsend Effect 3 1 Resonant transmission in a square well

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Show that the threshold frequency for the surface is approximately Hz.

Show that the threshold frequency for the surface is approximately Hz. 1 When illuminated with electromagnetic waves, a metal surface can exhibit the photoelectric effect. The maximum wavelength that causes the emission of photoelectrons with zero kinetic energy is 6.8 10

More information

Wave function and Quantum Physics

Wave function and Quantum Physics Wave function and Quantum Physics Properties of matter Consists of discreet particles Atoms, Molecules etc. Matter has momentum (mass) A well defined trajectory Does not diffract or interfere 1 particle

More information

PHOTOELECRIC EFFECT BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

PHOTOELECRIC EFFECT BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Warsaw University of Technology Faculty of Physics Physics Laboratory I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz PHOTOELECRIC EFFECT 3 36 1. Fundamentals

More information

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION Columbia Physics: Lab -6 (ver. 10) 1 EXPERMENT -6 e/m OF THE ELECTRON GENERAL DSCUSSON The "discovery" of the electron by J. J. Thomson in 1897 refers to the experiment in which it was shown that "cathode

More information

Photoelectric Effect Experiment

Photoelectric Effect Experiment Experiment 1 Purpose The photoelectric effect is a key experiment in modern physics. In this experiment light is used to excite electrons that (given sufficient energy) can escape from a material producing

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

QUANTUM PHYSICS II. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

QUANTUM PHYSICS II. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe QUANTUM PHYSICS II Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 Suppose Fuzzy, a quantum-mechanical duck of mass 2.00 kg, lives in a world in which h, the Planck

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

MODERN PHYSICS. 1 v 2. Kmax

MODERN PHYSICS. 1 v 2. Kmax MODERN PHYSICS PRACTICE QUESTIONS ( PHOTO ELECTRIC EFFECT ) Pg No 18 1) Define 'intensity' of radiation in photon picture of light. [Comptt. Delhi 2012] SOL: It is the number of photo electrons emitted

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

Chapter 38. The End of Classical Physics

Chapter 38. The End of Classical Physics Chapter 38. The End of Classical Physics Studies of the light emitted by gas discharge tubes helped bring classical physics to an end. Chapter Goal: To understand how scientists discovered the properties

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

LC-4: Photoelectric Effect

LC-4: Photoelectric Effect LC-4: Photoelectric Effect Lab Worksheet Name In this lab you investigate the photoelectric effect, one of the experiments whose explanation by Einstein forced scientists into accepting the ideas of quantum

More information