VLSI Design I; A. Milenkovic 1


 Arabella Shelton
 3 years ago
 Views:
Transcription
1 ourse dministration PE/EE 47, PE 57 VLI esign I L6: omplementary MO Logic Gates epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( ) Instructor: leksandar Milenkovic E 7L Mon. 5:3 PM 6:3 PM, Wen. :3 3:3 PM URL: T: Joel Wilder Labs: Lab# posted (due 9/3/5) Text: MO VLI esign, 3 rd ed., Weste, Harris Review: Introduction, esign Metrics, I Fabrication (Read hapter ); I Fabrication (hapter 3) Today: MO Nonideal IV, MO Inverter (hapter ) 9/4/5 VLI esign I;. Milenkovic MO Inverter VT eta Ratio NMO off PMO res.5 NMO sat PMO res If β p / β n, switching point will move from / alled skewed gate Other gates: collapse into equivalent inverter (V).5 NMO sat PMO sat.5 NMO res PMO sat NMO res PMO off β p. β = n β p β = n.5 (V) 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 4 Noise Margins How much noise can a gate input see before it does not recognize the input? Logic Levels To maximize noise margins, select logic levels at Logical High Output Range Output haracteristics Input haracteristics V OH NM H V IH Indeterminate V Region IL Logical High Input Range β p /β n > Logical Low Output Range V OL NM L Logical Low Input Range 9/4/5 VLI esign I;. Milenkovic 5 9/4/5 VLI esign I;. Milenkovic 6 VLI esign I;. Milenkovic
2 V OL Logic Levels MO Inverter: witch Model of ynamic ehavior To maximize noise margins, select logic levels at unity gain point of transfer characteristic R p Unity Gain Points V OH lope =  L L β p /β n > R n = = V tn V IL V V IH  V tp 9/4/5 VLI esign I;. Milenkovic 7 9/4/5 VLI esign I;. Milenkovic 8 MO Inverter: witch Model of ynamic ehavior Relative Transistor izing R p L R n L When designing static MO circuits, balance the driving strengths of the transistors by making the PMO section wider than the NMO section to maximize the noise margins and obtain symmetrical characteristics = = Gate response time is determined by the time to charge L through R p (discharge L through R n ) 9/4/5 VLI esign I;. Milenkovic 9 9/4/5 VLI esign I;. Milenkovic witching Threshold V M where = (both PMO and NMO in saturation since V = V G ) V M r /( + r) where r = k p V Tp /k n V Tn witching threshold set by the ratio r, which compares the relative driving strengths of the PMO and NMO transistors Want V M = / (to have comparable high and low noise margins), so want r (W/L) p k n V Tn (V M V Tn V Tn /) = (W/L) n k p V Tp ( V M +V Tp +V Tp /) witch Threshold Example In our generic.5 micron MO process, using the process parameters from slide L3.5, a =.5V, and a minimum size NMO device ((W/L) n of.5) NMO PMO (W/L) p (W/L) n = V T (V) γ(v.5 ) V T (V).63  k (/V ) 5 x 63 x 6 λ(v  ) /4/5 VLI esign I;. Milenkovic 9/4/5 VLI esign I;. Milenkovic VLI esign I;. Milenkovic
3 witch Threshold Example imulated Inverter V M In our generic.5 micron MO process, using the process parameters, a =.5V, and a minimum size NMO device ((W/L) n of.5) NMO PMO V T (V) γ(v.5 ) V T (V).63  k (/V ) 5 x 63 x 6 λ(v  ).6 . (W/L) p 5 x ( /) = x x (W/L) n 3 x 6 = (.5.4./) (W/L) p = 3.5 x.5 = 5.5 for a V M of.5v V M (V) ~3.4 (W/L) p /(W/L) n Note: xaxis is semilog V M is relatively insensitive to variations in device ratio setting the ratio to 3,.5 and gives V M s of.v,.8v, and.3v Increasing the width of the PMO moves V M towards Increasing the width of the NMO moves V M toward 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 4 3 V OH = V OL = Noise Margins etermining V IH and V IL VIL V M piecewise linear approximation of VT VIH y definition, V IH and V IL are where d /d =  (= gain) NM H = V IH NM L = V IL  pproximating: V IH = V M V M /g V IL = V M + ( V M )/g o high gain in the transition region is very desirable 9/4/5 VLI esign I;. Milenkovic 5 (V) MO Inverter VT from imulation (V).5um, (W/L) p /(W/L) n = 3.4 (W/L) n =.5 (min size) =.5V V M.5V, g = 7.5 V IL =.V, V IH =.3V NM L = NM H =. (actual values are V IL =.3V, V IH =.45V NM L =.3V & NM H =.5V) Output resistance lowoutput =.4kΩ highoutput = 3.3kΩ 9/4/5 VLI esign I;. Milenkovic 6 gain Gain eterminates Gain is a strong function of the slopes of the currents in the saturation region, for = V M (+r) g (V M V Tn V Tn /)(λ n  λ p ) etermined by technology parameters, especially channel length modulation (λ). Only designer influence through supply voltage and V M (transistor sizing). 9/4/5 VLI esign I;. Milenkovic 7 Impact of Process Variation on VT urve (V) ad PMO Good NMO (V) Good PMO ad NMO Nominal process variations (mostly) cause a shift in the switching threshold 9/4/5 VLI esign I;. Milenkovic 8 VLI esign I;. Milenkovic 3
4 caling the upply Voltage.5..5 (V).5 (V).5 Gain= (V).5.5 (V) evice threshold voltages are evice threshold voltages are kept (virtually) constant kept (virtually) constant 9/4/5 VLI esign I;. Milenkovic 9..5 tatic MO Logic MO ircuit tyles tatic omplementary MO tatic complementary MO  except during switching, output connected to either V or via a lowresistance path high noise margins full rail to rail swing VOH and VOL are at V and, respectively low output impedance, high input impedance no steady state path between V and (no static power consumption) delay a function of load capacitance and transistor resistance comparable rise and fall times (under the appropriate transistor sizing conditions) ynamic MO  relies on temporary storage of signal values on the capacitance of highimpedance circuit nodes simpler, faster gates increased sensitivity to noise 9/4/5 VLI esign I;. Milenkovic Pullup network () and pulldown network (PN) In In In N In In In N PN PMO transistors only pullup: make a connection from to F when F(In,In, In N ) = F(In,In, In N ) pulldown: make a connection from F to when F(In,In, In N ) = NMO transistors only and PN are dual logic networks 9/4/5 VLI esign I;. Milenkovic Threshold rops Threshold rops V G V Tn L L L L PN L L PN L V G L V Tp 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 4 VLI esign I;. Milenkovic 4
5 onstruction of PN NMO devices in series implement a NN function NMO devices in parallel implement a NOR function + ual and PN and PN are dual networks emorgan s theorems + = = + [!( + ) =!! or!( ) =! &!] [!( ) =! +! or!( & ) =!!] a parallel connection of transistors in the corresponds to a series connection of the PN omplementary gate is naturally inverting (NN, NOR, OI, OI) Number of transistors for an Ninput logic gate is N 9/4/5 VLI esign I;. Milenkovic 5 9/4/5 VLI esign I;. Milenkovic 6 MO NN MO NN F NN F = NN(,) F = = F= = = F= = = F= = = F= 9/4/5 VLI esign I;. Milenkovic 7 9/4/5 VLI esign I;. Milenkovic 8 MO NOR MO NOR F NOR F = NOR(,) F + = = = = = F= = F= = F= = F= 9/4/5 VLI esign I;. Milenkovic 9 9/4/5 VLI esign I;. Milenkovic 3 VLI esign I;. Milenkovic 5
6 omplex MO Gate omplex MO Gate OUT =!( + ( + )) OUT =!( + ( + )) 9/4/5 VLI esign I;. Milenkovic 3 9/4/5 VLI esign I;. Milenkovic 3 NOR NOR/OR Implementation 9/4/5 VLI esign I;. Milenkovic 33 How many transistors in each? OR an you create the stick transistor layout for the lower left circuit? ombinational Logic ells MO logic cells NORINVERT (OI) ORNINVERT(OI) Example: OI Z = (* + * + E) Z = OI(,,,, E) Exercise: onstruct this logic cell? Example: OI3 Z = [(++)*(+E)*F] Z = OI3(,,,, E, F) Exercise: onstruct this logic cell? OI nd Or Inverter 9/4/5 VLI esign I;. Milenkovic 34 E Z OI tandard ell Layout Methodology Routing channel E signals Z E 9/4/5 VLI esign I;. Milenkovic 35 What logic function is this? 9/4/5 VLI esign I;. Milenkovic 36 VLI esign I;. Milenkovic 6
7 OI Logic Graph Two tick Layouts of!( ( + )) j i =!( ( + )) i j PN uninterrupted diffusion strip 9/4/5 VLI esign I;. Milenkovic 37 9/4/5 VLI esign I;. Milenkovic 38 onsistent Euler Path n uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph Euler path: a path through all nodes in the graph such that each edge is visited once and only once. onsistent Euler Path n uninterrupted diffusion strip is possible only if there exists a Euler path in the logic graph Euler path: a path through all nodes in the graph such that each edge is visited once and only once. i i j j For a single poly strip for every input signal, the Euler paths in the and PN must be consistent (the same) 9/4/5 VLI esign I;. Milenkovic 39 For a single poly strip for every input signal, the Euler paths in the and PN must be consistent (the same) 9/4/5 VLI esign I;. Milenkovic 4 OI Logic Graph OI Layout =!((+) (+)) PN ome functions have no consistent Euler path like x =!(a + bc + de) (but x =!(bc + a + de) does!) 9/4/5 VLI esign I;. Milenkovic 4 9/4/5 VLI esign I;. Milenkovic 4 VLI esign I;. Milenkovic 7
8 ombinational Logic ells (cont d) The OI family of cells with 3 index numbers or less = {OI, OI, O, O}; a,b,c={,3} ell Type a a ab ab abc Total, 3, 3 ells, 33, 3, 3, 33, 333, 33, 3 Number of Unique ells /4/5 VLI esign I;. Milenkovic 43 V G = V V V G = V M 3 M 4 M M VT is ataependent F= int 9/4/5 VLI esign I;. Milenkovic 44 3 weaker.5µ/.5µ NMO.75µ /.5µ PMO,: > =, : > =, :> The threshold voltage of M is higher than M due to the body effect (γ) V Tn = V Tn V Tn = V Tn + γ( ( φ F + t )  φ F ) since V of M is not zero (when V = ) due to the presence of int tatic MO Full dder ircuit! out =! in & (!!) (! &!) tatic MO Full dder ircuit!um = out & (!!! in ) (! &! &! in ) in in in! out!um in in in! out!um in in in in out = in & ( ) ( & ) um =! out & ( in ) ( & & in ) 9/4/5 VLI esign I;. Milenkovic 45 9/4/5 VLI esign I;. Milenkovic 46 VLI esign I;. Milenkovic 8
VLSI Design I; A. Milenkovic 1
ourse dministration PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka )
More informationVLSI Design I; A. Milenkovic 1
PE/EE 47, PE 57 VLI esign I L6: tatic MO Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka ) www. ece.uah.edu/~milenka/cpe573f
More informationCPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look
CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates epartment of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )
More informationCMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.
CMOS Inverter: Steady State Response CPE/EE 47, CPE 57 VLSI esign I L6: CMOS Inverter, CMOS Logic Gates R p V OL = V OH = V M = f(r n, R p ) epartment of Electrical and Computer Engineering University
More informationCPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationCPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles
PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit
More informationCMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)
CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN
More informationCPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville
CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: CMOS Circuit
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationDigital Integrated Circuits A Design Perspective
Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In
More informationEEE 421 VLSI Circuits
EEE 421 CMOS Properties Full railtorail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady
More informationPassTransistor Logic
all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material
More informationBased on slides/material by. Topic 34. Combinational Logic. Outline. The CMOS Inverter: A First Glance
ased on slides/material by Topic 3 J. Rabaey http://bwrc.eecs.berkeley.edu/lasses/icook/instructors.html Digital Integrated ircuits: Design Perspective, Prentice Hall D. Harris http://www.cmosvlsi.com/coursematerials.html
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationDC and Transient Responses (i.e. delay) (some comments on power too!)
DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02  CMOS Transistor Theory & the Effects of Scaling
More informationB.Supmonchai August 1st, q Indepth discussion of CMOS logic families. q Optimizing gate metrics. q High Performance circuitdesign techniques
ugust st, 4 Goals of This hapter hapter 6 Static MOS ircuits oonchuay Supmonchai Integrated esign pplication Research (IR) Laboratory ugust, 4; Revised  June 8, 5 Indepth discussion of MOS logic families
More informationCMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits
Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationCPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline
CPE/EE 47, CPE 57 VLI Design I L8: Circuit Families Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe5705f
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationCourse Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance
Course Administration CPE/EE 7, CPE 7 VLI esign I L: MO Transistors epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationECE 342 Solid State Devices & Circuits 4. CMOS
ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 12 The CMOS Inverter: static behavior guntzel@inf.ufsc.br
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationEE5780 Advanced VLSI CAD
EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationMOSFET and CMOS Gate. Copy Right by Wentai Liu
MOSFET and CMOS Gate CMOS Inverter DC Analysis  Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationVLSI Design I; A. Milenkovic 1
Review: implified CMO Inverter Process CPE/EE 7, CPE 7 VLI esign I L: MO Transistor cut line epartment of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic (
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationLecture 6: DC & Transient Response
Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationCMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic
CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded
More informationDC & Transient Responses
ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = > = When = > = In between, depends on transistor size and current
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationHomework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout
0/6/06 Homework # Lecture 8, 9: Sizing and Layout of omplex MOS Gates Reading: hapter 4, sections 4.34.5 October 3 & 5, 06 hapter, section.5.5 Prof. R. Iris ahar Weste & Harris vailable on course webpage
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Designing Combinational Logic Circuits Fuyuzhuo School of Microelectronics,SJTU Introduction Digital IC Dynamic Logic Introduction Digital IC 2 EE141 Dynamic
More information2007 Fall: Electronic Circuits 2 CHAPTER 10. DeogKyoon Jeong School of Electrical Engineering
007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits DeogKyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationStatic CMOS Circuits
Static MOS ircuits l onventional (ratioless) static MOS» overed so far l Ratioed logic (depletion load, pseudo nmos) l ass transistor logic ombinational vs. Sequential Logic In Logic ircuit In Logic
More informationDC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.
DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575604 yrpeng@uark.edu Pass Transistors We have assumed source is
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationEECS 141 F01 Lecture 17
EECS 4 F0 Lecture 7 With major inputs/improvements From MaryJane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND
More informationDigital EE141 Integrated Circuits 2nd Combinational Circuits
Digital Integrated Circuits Designing i Combinational Logic Circuits 1 Combinational vs. Sequential Logic 2 Static CMOS Circuit t every point in time (except during the switching transients) each gate
More informationIntegrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits  2 guntzel@inf.ufsc.br
More informationEE141. Administrative Stuff
Spring 2004 Digital Integrated ircuits Lecture 15 Logical Effort Pass Transistor Logic 1 dministrative Stuff First (short) project to be launched next Th. Overall span: 1 week Hardware lab this week Hw
More informationVLSI Circuit Design (EEC0056) Exam
Mestrado Integrado em Engenharia Eletrotécnica e de omputadores VLSI ircuit esign (EE0056) Exam 205/6 4 th year, 2 nd sem. uration: 2:30 Open notes Note: The test has 5 questions for 200 points. Show all
More informationCOMP 103. Lecture 16. Dynamic Logic
COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03
More informationDigital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo
Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Dynamic Logic Introduction Digital IC EE141 2 Dynamic logic outline Dynamic logic principle Dynamic logic
More informationMotivation for Lecture. For digital design we use CMOS transistors. Gate Source. CMOS symboler. MOS transistor. Depletion. A channel is created
Motivation for Lecture igital Integrated ircuits iktor Öwall o see how standard gates are implemented with transistors? How does technology affect the performance, e.g. speed and power consumption? What
More informationVLSI Design I; A. Milenkovic 1
Review Voltage wing of PT Driving an Inverter PE/EE 47, PE 57 VLI Design I L9: MO & Wire apacitances Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic
More informationLecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:308:00pm in 105 Northgate
EE4Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:308:00pm in 05 Northgate Exam is
More information4.10 The CMOS Digital Logic Inverter
11/11/2004 section 4_10 The CMOS Digital Inverter blank.doc 1/1 4.10 The CMOS Digital Logic Inverter Reading Assignment: pp. 336346 Complementary MOSFET (CMOS) is the predominant technology for constructing
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationLecture 12 Circuits numériques (II)
Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationVLSI Design and Simulation
VLSI Design and Simulation CMOS Inverters Topics Inverter VTC Noise Margin Static Load Inverters CMOS Inverter FirstOrder DC Analysis R p V OL = 0 V OH = R n =0 = CMOS Inverter: Transient Response R p
More informationTopics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut
Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance
More informationECE321 Electronics I
ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman ZarkeshHa Office: ECE Bldg. 30B Office hours: Tuesday :003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 CMOS
More informationCHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS
CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power
More informationVLSI Design I; A. Milenkovic 1
Why Power Matters PE/EE 47, PE 57 VLSI Design I L5: Power and Designing for Low Power Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationVLSI Design I; A. Milenkovic 1
ourse dmnstraton PE/EE 47, PE 57 VLI esgn I L8: Pass Transstor Logc epartment of Electrcal and omputer Engneerng Unversty of labama n Huntsvlle leksandar Mlenkovc ( www. ece.uah.edu/~mlenka ) www. ece.uah.edu/~mlenka/cpe57
More informationLecture 4: Implementing Logic in CMOS
Lecture 4: Implementing Logic in CMOS Mark Mcermott Electrical and Computer Engineering The University of Texas at ustin Review of emorgan s Theorem Recall that: () = + and = ( + ) (+) = and + = ( ) ()
More informationImportant! EE141 Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model
 Fall 00 Lecture 5 CMO Inverter MO Transistor Model Important! Lab 3 this week You must show up in one of the lab sessions this week If you don t show up you will be dropped from the class» Unless you
More informationCMOS Technology for Computer Architects
CMOS Technology for Computer Architects Recap Technology Trends Lecture 2: Transistor Inverter Iakovos Mavroidis Giorgos Passas Manolis Katevenis FORTHICS (University of Crete) 1 2 Recap Threshold Voltage
More informationLecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.
ESE 570: igital Integrated ircuits and VLSI undamentals Lec 16: March 19, 2019 Euler Paths and Energy asics & Optimization Lecture Outline! Pass Transistor Logic! Logic omparison! Transmission Gates! Euler
More informationName: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Midterm 1 Monday, September 28 5 problems
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay s CSE477 slides
More informationDigital Integrated Circuits
Chapter 6 The CMOS Inverter 1 Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Shortcircuit current The CMOS inverter :
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationMidterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!
More informationChapter # 3: MultiLevel Combinational Logic
hapter # 3: MultiLevel ombinational Logic ontemporary Logic esign Randy H. Katz University of alifornia, erkeley June 993 No. 3 hapter Overview MultiLevel Logic onversion to NNNN and  Networks emorgan's
More informationEE5311 Digital IC Design
EE5311 Digital IC Design Module 3  The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM
More informationEE40 Lec 20. MOS Circuits
EE40 Lec 20 MOS Circuits eading: Chap. 12 of Hambley Supplement reading on MOS Circuits http://www.inst.eecs.berkeley.edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Bias circuits OUTLINE Smallsignal
More informationECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model
ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input
More informationEE 330 Lecture 6. Improved SwitchLevel Model Propagation Delay Stick Diagrams Technology Files
EE 330 Lecture 6 Improved witchlevel Model Propagation elay tick iagrams Technology Files Review from Last Time MO Transistor Qualitative iscussion of nchannel Operation Bulk ource Gate rain rain G Gate
More informationVLSI Design I; A. Milenkovic 1
The bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka
More informationLecture 13  Digital Circuits (II) MOS Inverter Circuits. March 20, 2003
6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS
More informationDigital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman
Digital Microelectronic ircuits (36113021 ) Presented by: Mr. Adam Teman Lecture 8: atioed Logic 1 Motivation In the previous lecture, we learned about Standard MOS Digital Logic design. MOS is unquestionably
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationPower Dissipation. Where Does Power Go in CMOS?
Power Dissipation [Adapted from Chapter 5 of Digital Integrated Circuits, 2003, J. Rabaey et al.] Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit
More informationESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15
ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS 1 VDD Vout Vin Ideal VTC Logic 0 = 0 V Logic 1 = VDD 0 2 VOH VDD VOL 0 o.c. Cout For DC steadystate Cout is open circuit. VDD 0 VDD VOL VT0n
More informationCMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance
CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis
More informationLow Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 08 MOS Inverters  III Hello, and welcome to today
More informationFieldEffect (FET) transistors
FieldEffect (FET) transistors References: Barbow (Chapter 8), Rizzoni (chapters 8 & 9) In a fieldeffect transistor (FET), the width of a conducting channel in a semiconductor and, therefore, its currentcarrying
More informationThe CMOS Inverter: A First Glance
The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full railtorail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power
More information