Relativistic Transformations

Size: px
Start display at page:

Download "Relativistic Transformations"

Transcription

1 Relativistic Transformations Lecture 7 1 The Lorentz transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow mainly from the postulate that there is a limiting velocity which no information propagation can exceed. These transformations are; x = x y = y z = γ(z V 0 t) t = γ(t (v 0 /c 2 )z) with γ = 1 1 β 2 and β = V 0 /c They have an inverse because we require a one-to-one map between the inertial systems. The inverse can be obtained by solving the equation set for the unprimed variables, or just noting that a symmetry operation would change the sign of the velocity. x = x y = y z = γ(z + V 0 t ) t = γ(t + (v 0 /c 2 )z ) We need both the equation sets in the next section. 2 Velocity Transformation The velocity transformation can be obtained in several ways. The most straightforward is to differentiate the spatial positions. We expect that the velocity transformations will preserve 1

2 the maximum velocity, c, as required when the Lorentz transformations were derived. Thus; U x = dx = dx dt dt The form of the transform for U y should be similar as the equations are symmetric perpendicular to the boost direction, z. Here we need dt dt, which are evaluated using the Lorentz transformations; dt = γ(1 + (V 0 /c)u z Then as x = x the velocity transformation is; U x = U x γ(1 + (V 0 /c 2 )U z ) For the velocity in the boost direction; U z = dz = dz dt dt As we have evaluated dt we need to evaluate; dz dt = γ(u z V 0 ) Combine this with the above expression and solve for U z. The transformation is U x = U z V 0 1 (V 0 /c 2 )U z Collecting the velocity transformation equations; U x U x = γ(1 (V 0 /c 2 )U z ) U y U = y γ(1 (V 0 /c 2 )U z ) U x = U z V 0 1 (V 0 /c 2 )U z 3 Acceleration Transformation To find the transformation of an acceleration, take the derivative of the velocities. a x = du x = du x dt dt 2

3 and; a z = du z = du z dt dt As previously take the appropriate derivatives of the velocity transformation equations. This results in; a x a x = (1/γ 2 ) [ (1 (V 0 U z )/c 2 ) 2 + (U xv 0 /c 2 )a z (1 (V 0 U z )/c 2 ) 3 ] a y a y = (1/γ2 ) [ (1 (V 0 U z )c 2 ) 2 + (U yv 0 /c 2 )a z (1 (V 0 U z )/c 2 ) 3 ] a z a z = (1/γ 3 ) [ (1 (V 0 U z )/c 2 ) 3 ] In a frame instantaneously at rest we place U x = U y = U z = 0. Then; a x = a x /γ2 a y = a y /γ2 a z = a z/γ 3 4 Images of a Lorentz Contraction Consider the figure of a rod traveling perpredincular to a distant observer as shown in Fig. 1. We want to take a picture of the rod as it passes, so that light from all points on the rod must reach the observer at the same time. Because some points are further away light from these points must have been emitted earlier than points closer to the observer. We know that the length of the rod is contracted by γ. Draw in the dottted figure of the rod as in figure 1. If the length of a side of the dotted figure is L the angle between the rod and the dotted line is cos(α) = 1/γ. Light from the far side corner of the rod travels a distance d in a time d/c. During this time the rod moves a distance (d/c)v. This makes the perpendicular side have a length βd/sin(α) = d. Therefore the rod appears as if it has rotated. Note we are able to see this side of the rod perpendicular to the direction of motion. Suppose we now look at a hoop moving perpendicular to its axis as shown in fig. 2. As with the above analysis we expect to see the back side of the hoop. In a way similar to the above analysis, we require simultaneous light rays to reach the observer. The hoop then appears rotated in the same way as the rod. 3

4 L d t = d/c βd α L γ V Figure 1: Rod traveling by a distant observer. Assume parallel ligh rays reach the observer at the same time. r γ tan( α) r a r γ α V Figure 2: A hoop traveling by a distant observer. Light from all points on the surface must reach an observer at the same time. 4

5 θ k k k V Figure 3: The wave vectors involved in the doppler shift. 5 Doppler Shift Consider a plane wave propagating with wave vector k. The phase of the wave has the form; φ = k x ωt The phase of the wave should have the same form in any inertial frame. Therefore we transform to a primed frame so that; φ = φ = k x ω t Substitute the Lorentz transformations to get the equation; k x ωt = γ(v/c) z (z V t) + k x x + k y y γ(ω t (V/c) 2 z) Collect terms in x, y, z, t which because of linear independence each must be equal to zero. γ( k V + ω ) = ω k = k γ(k + (ω /c 2 )V ) = k Because of the constantcy of the light velocity k /ω = k/ω = c As k = k cos(θ) in the fig. 3, we have the Doppler shift; ω = γ ω (1 + β cos(θ)) There is then a relation between the angles in the inertial frames between the wave vector and the propagation direction; 5

6 tan(θ) = k /k = tan(θ ) = sin(θ ) γ(cos(θ ) β) sin(θ ) γ(cos(θ ) + β) Note there is a transverse Doppler shift when the angle is not 0 or π. 6 Boosted Light Cone Now assume a light source in its rest frame that emitts light isotropically with total power, P 0. Thus the intensity defined as the power per unit area of surface; I = P 0 /(r 2 dr dω ) The radiant flux is therefore ; F = I dω The radiant flux is the same in a boosted frame, so that; F = I dω = F = I dω I(θ) = (P 0 /r 2 dr) dω dω = dsin(θ )dθ sin(θ)dθ Use the angle transformation as obtained above to show that at high values of β, this is very forward peaked around the boost direction. This is called the searchlight effect which produces a narrow beam of light in the moving frame even for isotropic emission in the rest frame. dcos(θ ) dcos(θ) = 1 β 2 (1 β cos(θ)) 2 The maximum value is obtained at θ = 0 and use β = 1 1 γ 2 which one can expand in a power series when 1/γ 2 is small. The maximum value is 4γ 2 I(θ ). Take (1/2) of this and find the angle where this occurs. 2γ 2 = 1 β 2 (1 β cos(θ)) 2 Solve for θ using power expansions to obtain 6

7 θ 2/γ 2 7 Twin Paradox Suppose we synchronize 2 clocks and place one on a rocket while the other remains at rest. The rocket travels a distance L at a velocity V and returns back to the starting point with velocity V where it brought back to rest. The clock at rest, A, sends signals at a frequency f to the clock on the rocket, B. The clock on the rocket sends signals to the clock A with the same rest frequency. We now determine the number of signals sent and received by each clock. To do this we will need the doppler shifted frequencies, f = f 1 ± β. We fill out 1 β Table 1 to find that both clocks agree as to the number of signals sent, which is the same as the number received by the other clock. However, the number of signals sent by the clock in motion is less than the one that remains at rest. Table 1: Times and counts related to the twin paradox Name A (earth rest) B (onboard rocket) Time τ = 2L/V τ = 2L/(γV ) No. Signals sent f τ f τ Time τ = 2L/V τ = 2L/(γV ) Time to B s Turn t = L/V + L/c t = L/(γV ) No Signals Reveived (f 1 β L/V )(1 + β) (f 1 β L/V ) 1 β 1 β 2 1 β Remaining Time t = L/V L/c t = L/(γV ) Signals Received (f 1 + β L/V )(1 β) (f 1 β L/V ) 1 + β 1 β 2 1 β Total signals received f τ f τ The reason that the problem is not symmetric, ie one cannot swap A and B and arrive at a symmetric answer, is that B must be accelerated to move away and return while A remains at rest. 8 Energy and Momentum To develop the relativistic momentum and energy we wish to preserve momentum conservation, which is a general principle of mechanics. Thus we will define a momentum as a mass µ(m 0, U) times a vector velocity. The mass µ is allowed to be a function of a constant, m 0 and the total speed of the object, U. We set up a collision in a reference frame between 2 7

8 1 before y 1 after x 2 after 2 before Figure 4: The collision of 2 particles of equal mass and equal velocities. Symmetry allows the velocities after the collision to be directly related to those before the collision. particles having equal incoming velocities and masses. This means that the total momentum of this system is 0 and we can look at symmetry to determine the velocities after the collision. Consider Fig. 4. Velocities before the collision; U I1x = U I2x = a U I1y = U I2y = b U I1z = U I2z = 0 Velocities after the collision; U F1x = U F2x = a U F1y = U F2y = b U F1z = U F2z = 0 We now work in 2-D dropping the terms in z. Now make a transformation to a frame moving with a velocity a in the x direction. We need to apply the velocity addition equations. Before the collision; U I1x = 0 U I2x = U I1y = 2a 1 + (a/c) 2 b 1 (a/c) U 1 (a/c) 2 I2y = (a/c) 2 b 8

9 U I1 = The values of U Ij b U 1 (a/c) 2 I2z = 4a 2 + b 2 (1 (a/c) 2 ) 1 + (a/c) 2 U F1x = 0 U F2x = U F1y = U F1 = are the total velocities. After the collision; 2a 1 + (a/c) 2 b 1 (a/c) 2 U F2y = b 1(a/c) 2 U F2 = 1 (a/c) (a/c) 2 b 4a2 + b 2 (1 (a/c) 2 ) 1 + (a/c) 2 Now we apply the expression for the momentum P = µ(m 0, U) U and require that the mass, µ, reduce to m 0 as U goes to zero. Momentum conservation requires P xitotal = P xftotal. This means; µ(m 0, U I1 ) = 1 (a/c)2 1 + (a/c) 2 µ(m 0, U F2 ) With U I1 and U F2 given above. The let b = 0 so that; µ(m 0, 0) = 1 (a/c)2 1 + (a/c) 2 µ(m 0, 2a 1 + (a/c) 2 ) Now µ(m 0, 0) = m 0 and we let u = ( 2a 1 + (a/c) 2 ). This results in; µ(m 0, u) = m 0 1 (u/c) 2 The relativistic momentum is then; Pc = γm 0 c 2 β Then power is obtained from the force by the equation; de dt = u P dt In the above U is the mechanical velocity and P is the momentum. This equation can be rewritten as; de dt = d dt mc 2 1 β 2 In the above β = U/c. This integrated to obtain; 9

10 E = γ m 0 c 2 + E 0 Now we want this to reduce to the non-relativistic value defined by T = E m 0 c 2 where T is the kinetic energy. For β 0 use a power expansion, γ = 1 + β 2 /2 + ; T = (1/2)m 0 V 2 Thus we must take the constant E 0 = 0 9 Transformation of a Force Force is no longer an invarient quantity. In fact it does not, in general, remain in the same direction upon tranformation. From the above, the force is; F = d dt (γm 0 u) We apply a lorentz transformation to obtain; F z = d dt (γm 0u z ) = F x = d dt (γm 0u x ) = m 0 u z 1 (uz /c) + m 0u z (u z /c) u z 2 (1 (u z /c) 2 ) 3/2 = m 0 u z (1 (u z /c) 2 ) 3/2 m 0 u x 1 (uz /c) + m 0u x (u z /c) u z 2 (1 (u z /c) 2 ) 3/2 If we let u y = u z = 0 and F x = m 0 a x then; a z = a x /γ3 and in a similar way; a x = a y/γ 2 Thus; F x = F z F x = F x /γ 10

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation Transformations 1 The Lorentz Transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow mainly from the postulate

More information

Lorentz Transformations

Lorentz Transformations Lorentz Transformations 1 The Lorentz Transformation In the last lecture the relativistic transformations for space/time between inertial frames was obtained. These transformations esentially follow from

More information

Module II: Relativity and Electrodynamics

Module II: Relativity and Electrodynamics Module II: Relativity and Electrodynamics Lecture 2: Lorentz transformations of observables Amol Dighe TIFR, Mumbai Outline Length, time, velocity, acceleration Transformations of electric and magnetic

More information

Lecture Notes on Relativity. Last updated 10/1/02 Pages 1 65 Lectures 1 10

Lecture Notes on Relativity. Last updated 10/1/02 Pages 1 65 Lectures 1 10 Lecture Notes on Relativity Last updated 10/1/02 Pages 1 65 Lectures 1 10 Special Relativity: Introduction Describes physics of fast motion i.e. when objects move relative to each other at very high speeds,

More information

Postulates of Special Relativity

Postulates of Special Relativity Relativity Relativity - Seen as an intricate theory that is necessary when dealing with really high speeds - Two charged initially stationary particles: Electrostatic force - In another, moving reference

More information

The Lorentz Transformation

The Lorentz Transformation The Lorentz Transformation During the fourth week of the course, we spent some time discussing how the coordinates of two different reference frames were related to each other. Now that we know about the

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

Consequences of special relativity.

Consequences of special relativity. PHYS419 Lecture 12 Consequences of special relativity 1 Consequences of special relativity. The length of moving objects. Recall that in special relativity, simultaneity depends on the frame of reference

More information

Consequences of special relativity.

Consequences of special relativity. PHYS419 Lecture 12 Consequences of special relativity 1 Consequences of special relativity. The length of moving objects. Recall that in special relativity, simultaneity depends on the frame of reference

More information

Vectors in Special Relativity

Vectors in Special Relativity Chapter 2 Vectors in Special Relativity 2.1 Four - vectors A four - vector is a quantity with four components which changes like spacetime coordinates under a coordinate transformation. We will write the

More information

Special relativity and light RL 4.1, 4.9, 5.4, (6.7)

Special relativity and light RL 4.1, 4.9, 5.4, (6.7) Special relativity and light RL 4.1, 4.9, 5.4, (6.7) First: Bremsstrahlung recap Braking radiation, free-free emission Important in hot plasma (e.g. coronae) Most relevant: thermal Bremsstrahlung What

More information

Chapter 11. Special Relativity

Chapter 11. Special Relativity Chapter 11 Special Relativity Note: Please also consult the fifth) problem list associated with this chapter In this chapter, Latin indices are used for space coordinates only eg, i = 1,2,3, etc), while

More information

Quantum Black Hole and Information. Lecture (1): Acceleration, Horizon, Black Hole

Quantum Black Hole and Information. Lecture (1): Acceleration, Horizon, Black Hole Quantum Black Hole and Information Soo-Jong Rey @ copyright Lecture (1): Acceleration, Horizon, Black Hole [Convention: c = 1. This can always be reinstated from dimensional analysis.] Today, we shall

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 6. Relativistic Covariance & Kinematics Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Practise, practise, practise... mid-term, 31st may, 9.15-11am As we

More information

Inflation, vacua and the end of the Universe

Inflation, vacua and the end of the Universe Inflation, 10 500 vacua and the end of the Universe Homework Problems: 1-7 (15 points) 1-10 (25 points) 2-9 (20 points) 2-13 (20 points) from Spacetime Physics Physics 311 Special Relativity Lecture 4:

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Velocities in Special Relativity - As was done in Galilean relativity,

More information

Examples - Lecture 8. 1 GPS System

Examples - Lecture 8. 1 GPS System Examples - Lecture 8 1 GPS System The global positioning system, GPS, was established in 1973, and has been updated almost yearly. The GPS calculates postion on the earth s surface by accurately measuring

More information

2.3 The Lorentz Transformation Eq.

2.3 The Lorentz Transformation Eq. Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 3 HW1 (due 9/13) Chapter 2 20, 26, 36, 41, 45, 50, 51, 55, 58 Sep. 6, 2016 2.3 The Lorentz Transformation

More information

4 Relativistic kinematics

4 Relativistic kinematics 4 Relativistic kinematics In astrophysics, we are often dealing with relativistic particles that are being accelerated by electric or magnetic forces. This produces radiation, typically in the form of

More information

The spacetime of special relativity

The spacetime of special relativity 1 The spacetime of special relativity We begin our discussion of the relativistic theory of gravity by reviewing some basic notions underlying the Newtonian and special-relativistic viewpoints of space

More information

Chapter 37. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Chapter 37. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapter 37 Relativity PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun 37. Relativity 1. Maxwell s equations (and especially the wave

More information

Tensors and Special Relativity

Tensors and Special Relativity Tensors and Special Relativity Lecture 6 1 Introduction and review of tensor algebra While you have probably used tensors of rank 1, i.e vectors, in special relativity, relativity is most efficiently expressed

More information

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October MIT Course 8.33, Fall 6, Relativistic Kinematics Max Tegmark Last revised October 17 6 Topics Lorentz transformations toolbox formula summary inverse composition (v addition) boosts as rotations the invariant

More information

2. Special Relativity (SR) explicit Lorentz transformations Particles with m > 0 can always be seen as boosted from their rest frame

2. Special Relativity (SR) explicit Lorentz transformations Particles with m > 0 can always be seen as boosted from their rest frame 2. Special Relativity (SR) explicit Lorentz transformations Particles with m > 0 can always be seen as boosted from their rest frame in frame O we see the particle as p µ = (E, p) =. (E,p,0,0) in its rest

More information

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F.

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F. Classical Physics Inertial Reference Frame (Section 5.2): a reference frame in which an object obeys Newton s Laws, i.e. F = ma and if F = 0 (object does not interact with other objects), its velocity

More information

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson V October 1, 2015

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson V October 1, 2015 Modern Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson V October 1, 2015 L. A. Anchordoqui (CUNY) Modern Physics 10-1-2015 1 / 20 Table

More information

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 1 Main Headings I Introduction and relativity pre Einstein II Einstein s principle of relativity and a new concept of spacetime III

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

Massachusetts Institute of Technology Department of Physics. Physics Out: Friday 29 September 2006 Due: Friday 6 October 2006.

Massachusetts Institute of Technology Department of Physics. Physics Out: Friday 29 September 2006 Due: Friday 6 October 2006. Massachusetts Institute of Technology Department of Physics Physics 8.033 Out: Friday 29 September 2006 Due: Friday 6 October 2006 Problem Set 4 Due: Friday 6 October 2006 at 4:00PM. Please deposit the

More information

Special Relativity. Christopher R. Prior. Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K.

Special Relativity. Christopher R. Prior. Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K. Special Relativity Christopher R. Prior Fellow and Tutor in Mathematics Trinity College, Oxford Accelerator Science and Technology Centre Rutherford Appleton Laboratory, U.K. The principle of special relativity

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.0 IAP 005 Introduction to Special Relativity Midterm Exam Solutions. (a). The laws of physics should take the same form in all inertial

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity Announcement PHYS-3301 Lecture 3 Sep. 5, 2017 2 Einstein s Postulates of Relativity: Chapter 2 Special Relativity 1. Basic Ideas 6. Velocity Transformation 2. Consequences of Einstein s Postulates 7. Momentum

More information

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS Section A A1. (Based on previously seen problem) Displacement as function of time: x(t) = A sin ωt Frequency f = ω/2π. Velocity of mass is v(t) = dx

More information

Examples. Figure 1: The figure shows the geometry of the GPS system

Examples. Figure 1: The figure shows the geometry of the GPS system Examples 1 GPS System The global positioning system was established in 1973, and has been updated almost yearly. The GPS calcualtes postion on the earth ssurface by accurately measuring timing signals

More information

Instructor: Sudipta Mukherji, Institute of Physics, Bhubaneswar

Instructor: Sudipta Mukherji, Institute of Physics, Bhubaneswar Chapter 1 Lorentz and Poincare Instructor: Sudipta Mukherji, Institute of Physics, Bhubaneswar 1.1 Lorentz Transformation Consider two inertial frames S and S, where S moves with a velocity v with respect

More information

2.4 The Lorentz Transformation

2.4 The Lorentz Transformation Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 4 Jan. 27, 2015 Lecture Notes, HW Assignments, Physics Colloquium, etc.. 2.4 The Lorentz Transformation

More information

Relativistic Effects. 1 Introduction

Relativistic Effects. 1 Introduction Relativistic Effects 1 Introduction 10 2 6 The radio-emitting plasma in AGN contains electrons with relativistic energies. The Lorentz factors of the emitting electrons are of order. We now know that the

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

Physics 8.20 Special Relativity IAP 2008

Physics 8.20 Special Relativity IAP 2008 Physics 8.20 Special Relativity IAP 2008 Problem Set # 2 Solutions Problems 1. A Moving Clock (7 points) A clock moves along the x-axis in your reference frame at a speed of 0.80c and reads zero as it

More information

Rotational Mechanics and Relativity --- Summary sheet 1

Rotational Mechanics and Relativity --- Summary sheet 1 Rotational Mechanics and Relativity --- Summary sheet 1 Centre of Mass 1 1 For discrete masses: R m r For continuous bodies: R dm i i M M r body i Static equilibrium: the two conditions for a body in static

More information

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT Announcements HW1: Ch.2-20, 26, 36, 41, 46, 50, 51, 55, 58, 63, 65 Lab start-up meeting with TA tomorrow (1/26) at 2:00pm at room 301 Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Chapter 2 Radiation of an Accelerated Charge

Chapter 2 Radiation of an Accelerated Charge Chapter 2 Radiation of an Accelerated Charge Whatever the energy source and whatever the object, (but with the notable exception of neutrino emission that we will not consider further, and that of gravitational

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

Final Review Prof. WAN, Xin

Final Review Prof. WAN, Xin General Physics I Final Review Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ About the Final Exam Total 6 questions. 40% mechanics, 30% wave and relativity, 30% thermal physics. Pick

More information

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame.

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame. Chapter 2: The Special Theory of Relativity What is a reference frame? A reference fram is inertial if Newton s laws are valid in that frame. If Newton s laws are valid in one reference frame, they are

More information

Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

More information

A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens , Greece

A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens , Greece SPECIAL RELATIVITY A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens 157 71, Greece Abstract We give an introduction to Einstein s Special Theory of Relativity.

More information

Midterm Solutions. 1 1 = 0.999c (0.2)

Midterm Solutions. 1 1 = 0.999c (0.2) Midterm Solutions 1. (0) The detected muon is seen km away from the beam dump. It carries a kinetic energy of 4 GeV. Here we neglect the energy loss and angular scattering of the muon for simplicity. a.

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

General Physics I. Lecture 21: Relativistic Energy and Momentum. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 21: Relativistic Energy and Momentum. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 21: Relativistic Energy and Momentum Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Relativistic velocity, momentum, and energy The mass-energy

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 3: Relativistic effects I Dr. J. Hatchell, Physics 407, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics. Radiative transfer.

More information

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Physics 228 Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Lorentz Transformations vs. Rotations The Lorentz transform is similar

More information

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame.

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame. Special Theory of Relativity (I) Newtonian (Classical) Relativity Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Assumption It is assumed that

More information

Special Relativity. Chris Prior. Trinity College Oxford. and

Special Relativity. Chris Prior. Trinity College Oxford. and Special Relativity Chris Prior ASTeC RAL Trinity College Oxford and 1 Overview The principle of special relativity Lorentz transformation and consequences Space-time 4-vectors: position, velocity, momentum,

More information

Class 1: Special Relativity

Class 1: Special Relativity Class 1: Special Relativity In this class we will review some important concepts in Special Relativity, that will help us build up to the General theory Class 1: Special Relativity At the end of this session

More information

Chapter 1. Relativity 1

Chapter 1. Relativity 1 Chapter 1 Relativity 1 Classical Relativity inertial vs noninertial reference frames Inertial Reference Frames Galilean transformation: x = x vt; y = y; z = z; t = t u x = u x v; u y = u y ; u z = u z

More information

Relativity. Overview & Postulates Events Relativity of Simultaneity. Relativity of Time. Relativity of Length Relativistic momentum and energy

Relativity. Overview & Postulates Events Relativity of Simultaneity. Relativity of Time. Relativity of Length Relativistic momentum and energy Relativity Overview & Postulates Events Relativity of Simultaneity Simultaneity is not absolute Relativity of Time Time is not absolute Relativity of Length Relativistic momentum and energy Relativity

More information

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Phys 2435: Chap. 37, Pg 1 Two postulates New Topic Phys 2435:

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Introduction to Relativity

SCHOOL OF MATHEMATICS AND STATISTICS. Introduction to Relativity SCHOOL OF MATHEMATICS AND STATISTICS Introduction to Relativity Autumn Semester 2016 17 2 hours Answer four questions. If you answer more than four questions, only your best four will be counted. 1 i State

More information

Relativity and Quantum Electrodynamics in the Theory of Reference Frames: the Origin of Physical Time

Relativity and Quantum Electrodynamics in the Theory of Reference Frames: the Origin of Physical Time Relativity and Quantum Electrodynamics in the Theory of Reference Frames: the Origin of Physical Time Abstract Daniele Sasso * In this paper the main aspects of the Theory of Reference Frames are presented:

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

1 Tensors and relativity

1 Tensors and relativity Physics 705 1 Tensors and relativity 1.1 History Physical laws should not depend on the reference frame used to describe them. This idea dates back to Galileo, who recognized projectile motion as free

More information

Primer in Special Relativity and Electromagnetic Equations (Lecture 13)

Primer in Special Relativity and Electromagnetic Equations (Lecture 13) Primer in Special Relativity and Electromagnetic Equations (Lecture 13) January 29, 2016 212/441 Lecture outline We will review the relativistic transformation for time-space coordinates, frequency, and

More information

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc.

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc. Chapter 36 The Special Theory of Relativity Units of Chapter 36 Galilean Newtonian Relativity The Michelson Morley Experiment Postulates of the Special Theory of Relativity Simultaneity Time Dilation and

More information

The Foundations of Special Relativity

The Foundations of Special Relativity The Foundations of Special Relativity 1 Einstein's postulates of SR: 1. The laws of physics are identical in all inertial reference frames (IFs). 2. The speed of light in vacuum, c, is the same in all

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Momentum and Energy Conservation Albert Einstein 879-955 Review: Transforming Velocity Remember: u = dx dt x = γ ν (x + vt ) t = γ ν ( v c 2 x + t ) From this

More information

Inconsistencies in Special Relativity? Sagnac Effect and Twin Paradox

Inconsistencies in Special Relativity? Sagnac Effect and Twin Paradox Inconsistencies in Special Relativity? Sagnac Effect and Twin Paradox Olaf Wucknitz Astrophysics Seminar Potsdam University, Germany 7 July 2003 And now for something completely different... Special relativity

More information

Modern Physics Part 2: Special Relativity

Modern Physics Part 2: Special Relativity Modern Physics Part 2: Special Relativity Last modified: 23/08/2018 Links Relative Velocity Fluffy and the Tennis Ball Fluffy and the Car Headlights Special Relativity Relative Velocity Example 1 Example

More information

3 The Friedmann-Robertson-Walker metric

3 The Friedmann-Robertson-Walker metric 3 The Friedmann-Robertson-Walker metric 3.1 Three dimensions The most general isotropic and homogeneous metric in three dimensions is similar to the two dimensional result of eq. (43): ( ) dr ds 2 = a

More information

dt = p m, (2.1.1) dt = p

dt = p m, (2.1.1) dt = p Chapter 2 Special relativity 2.1 Galilean relativity We start our discussion of symmetries by considering an important example of an invariance, i.e. an invariance of the equations of motion under a change

More information

The Theory of Relativity

The Theory of Relativity At end of 20th century, scientists knew from Maxwell s E/M equations that light traveled as a wave. What medium does light travel through? There can be no doubt that the interplanetary and interstellar

More information

Physics 214 Examples of four-vectors Winter 2017

Physics 214 Examples of four-vectors Winter 2017 Physics 214 Examples of four-vectors Winter 2017 1. The velocity four-vector The velocity four-vector of a particle is defined by: u µ = dxµ dτ = γc; γ v), 1) where dτ = γ 1 is the differential proper

More information

Special Relativity 05/09/2008. Lecture 14 1

Special Relativity 05/09/2008. Lecture 14 1 How Fast Are You Moving Right Now? Special Relativity Einstein messes with space and time 0 m/s relative to your chair 400 m/s relative to earth center (rotation) 30,000 m/s relative to the sun (orbit)

More information

Space, Time and Simultaneity

Space, Time and Simultaneity PHYS419 Lecture 11: Space, Time & Simultaneity 1 Space, Time and Simultaneity Recall that (a) in Newtonian mechanics ( Galilean space-time ): time is universal and is agreed upon by all observers; spatial

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

Massachusetts Institute of Technology Physics Department. Midterm

Massachusetts Institute of Technology Physics Department. Midterm Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 18, 2005 7:30 9:30 pm Midterm Instructions This exam contains SIX problems pace yourself accordingly!

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Special Relativity: Basics

Special Relativity: Basics Special Relativity: Basics High-energy astrophysics involves not only light, which is intrinsically relativistic, but also particles that are accelerated to nearly the speed of light. Newtonian mechanics

More information

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology PHY49: Nuclear & Particle Physics Lecture 3 Homework 1 Nuclear Phenomenology Measuring cross sections in thin targets beam particles/s n beam m T = ρts mass of target n moles = m T A n nuclei = n moles

More information

CHAPTER 2 Special Theory of Relativity Part 2

CHAPTER 2 Special Theory of Relativity Part 2 CHAPTER 2 Special Theory of Relativity Part 2 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Special Relativity & Radiative Processes

Special Relativity & Radiative Processes Special Relativity & Radiative Processes Special Relativity Special Relativity is a theory describing the motion of particles and fields at any speed. It is based on two principles: 1. All inertial frames

More information

PH-101:Relativity and Quantum Mechanics

PH-101:Relativity and Quantum Mechanics PH-101:Relativity and Quantum Mechanics Special Theory of Relativity (5 Lectures) Text Book:1. An Introduction to Mechanics Author: Danieal Kleppner & Robert Kolenkow 2. Introduction to Special Relativity

More information

Physics H7C Midterm 2 Solutions

Physics H7C Midterm 2 Solutions Physics H7C Midterm 2 Solutions Eric Dodds 21 November, 2013 1 Qualitative questions a) The angular resolution of a space based telescope is limited by the wave properties of light, that is, by diffraction.

More information

Extra notes on rela,vity. Wade Naylor

Extra notes on rela,vity. Wade Naylor Extra notes on rela,vity Wade Naylor Over 105 years since Einstein s Special theory of relativity A. Einstein, 1879-1955 The postulates of special relativity 1. The principle of relativity (Galileo) states

More information

3.1 Transformation of Velocities

3.1 Transformation of Velocities 3.1 Transformation of Velocities To prepare the way for future considerations of particle dynamics in special relativity, we need to explore the Lorentz transformation of velocities. These are simply derived

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

The Special Theory of relativity

The Special Theory of relativity Chapter 1 The Special Theory of relativity 1.1 Pre - relativistic physics The starting point for our work are Newtons laws of motion. These can be stated as follows: Free particles move with constant velocity.

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Special. Relativity. Todd Huffman. Steve

Special. Relativity. Todd Huffman. Steve Special Steve Relativity Todd Huffman Einstein s Two Postulates of Special Relativity: I. The laws of physics are identical in all inertial frames II. Light propagates in vacuum rectilinearly, with the

More information

JF Theoretical Physics PY1T10 Special Relativity

JF Theoretical Physics PY1T10 Special Relativity JF Theoretical Physics PY1T10 Special Relativity 12 Lectures (plus problem classes) Prof. James Lunney Room: SMIAM 1.23, jlunney@tcd.ie Books Special Relativity French University Physics Young and Freedman

More information

High-Energy Astrophysics

High-Energy Astrophysics M.Phys. & M.Math.Phys. High-Energy Astrophysics Garret Cotter garret.cotter@physics.ox.ac.uk High-Energy Astrophysics MT 2016 Lecture 2 High-Energy Astrophysics: Synopsis 1) Supernova blast waves; shocks.

More information

Rotational Behavior of Einsteinian Space

Rotational Behavior of Einsteinian Space Rotational Behavior of Einsteinian Space Ling Jun Wang Published in IL Nuovo Cimento, Vol. 5B, N.6, pp65-624, 2 Department of Physics, Geology and Astronomy University of Tennessee at Chattanooga Chattanooga,

More information

Examples of relativistic transformations

Examples of relativistic transformations Examples of relativistic transformations Lecture 9 1 Field transformations In the last lecture we obtained the field transformation equations. For a boost in the 1 direction E 1 = E 1 ; B 1 = B 1 E 2 =

More information