LESSON 2-2: Motion With Constant Acceleration

Size: px
Start display at page:

Download "LESSON 2-2: Motion With Constant Acceleration"

Transcription

1 DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS 2 LESSON 2-2: Motion With Constant Acceleration 1. Objectives. By the end of this class you should be able to: a) Recognize situations of accelerated motion and to define acceleration as. b) Describe a motion given a graph for that motion. c) Understand that the slope of a displacementtime graph is the velocity. d) Understand that the slope of a velocity-time graph is the acceleration and the area under a velocity-time graph is the change in displacement

2 e) Analyze motion from ticker tape, stroboscopic pictures, and photogate data f) Solve problems of kinematics for motion in a straight line with constant acceleration using: 2. Average acceleration a) the change in velocity divided by the time required to make this change b) the bar over the a indicates average c) means change in d) acceleration can be either positive or negative i) negative acceleration is often called deceleration 3. Units a) typical units for acceleration are m/s 2

3 b) but can be any unit of length over, or per, unit of time squared 4. Instantaneous acceleration a) the change in velocity over an infinitesimally short period of time SAMPLE PROBLEMS 1. I am driving at 15 m/s behind a big truck. I punch the accelerator to pass the truck and 18 seconds later I am at 25 m/s. What was my average acceleration? 2. While travelling at 30m/s, I decide to stop using an average acceleration (deceleration) of -2.13m/s 2. How long will it take me to stop?

4 Units: 5. Uniformly accelerated motion occurs when acceleration is constant and in a straight line a) Assume that we are starting at a time of zero, so b) Therefore, the equation for average velocity becomes (since t 0 = 0) c) The equation for constant acceleration becomes

5 (no bar over a because it is now constant instead of an average) d) A common problem is to find the velocity after an object has accelerated for a given period of time. To do this, we solve the constant acceleration equation for velocity: e) Next, we will find position after traveling at a certain average velocity for a given period of time:

6 f) Now we will find the position of an object after undergoing constant acceleration for a given time, t: Average velocity is the velocity midway between initial and final velocities: This can be substituted into our equation for displacement: We can then substitute our equation for v ( ) into the above equation:

7 If we multiply it out: g) We now derive a fourth equation that is useful when elapsed time is not known. We start at a point near the beginning of the last derivation: Next, we solve the equation for t: We not substitute this value of t into the displacement equation above:

8 Using FOIL (or difference of two squares) we can multiply this out to: We now solve for v 2 : Rearranging we get: h) Anybody need an aspirin? 6. Summary of 1 dimensional motion at constant acceleration: a) The following four equations apply when a is constant:

9 7. Acceleration Due To Gravity a) Since the earth is rotating, why don t we all fly off into space like a kid falling off a merry-goround? b) Law of gravitational attraction: c) What order of magnitude is the force? d) Is acceleration due to gravity 9.81 m/s 2 everywhere on earth? e) Signs of the times. 8. Graphical Analysis of Motion

10 Circumference C/mm y = x R² = Diameter d/mm a) Displacement vs Time Graphs

11 Period 5 STOPPED HERE

12 b) Velocity-Time Graph

13

14

15 c) Acceleration-Time Graphs Measuring Speed and Acceleration See Text

16 SUMMARY 5. Objectives. By the end of this class you should be able to: a) Recognize situations of accelerated motion and to define acceleration as. b) Describe a motion given a graph for that motion. c) Understand that the slope of a displacementtime graph is the velocity. d) Understand that the slope of a velocity-time graph is the acceleration and the area under a velocity-time graph is the change in displacement e) Analyze motion from ticker tape, stroboscopic pictures, and photogate data f) Solve problems of kinematics for motion in a straight line with constant acceleration using:

17

LESSON 2-4: Acceleration

LESSON 2-4: Acceleration DEVIL PHYSICS BADDEST CLASS ON CAMPUS PRE-IB PHYSICS LESSON 2-4: Acceleration 1. Objectives. By the end of this class you should be able to: a) SC.912.P.12.2: Analyze the motion of an object in terms of

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Derivation of Kinematic Equations. View this after Motion on an Incline Lab

Derivation of Kinematic Equations. View this after Motion on an Incline Lab Derivation of Kinematic Equations View this after Motion on an Incline Lab Constant velocity Average velocity equals the slope of a position vs time graph when an object travels at constant velocity. v

More information

ONE-DIMENSIONAL KINEMATICS

ONE-DIMENSIONAL KINEMATICS ONE-DIMENSIONAL KINEMATICS Chapter 2 Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s rotation

More information

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2 PPER. particle moves in a straight line and passes through a fixed point O, with a velocity of m s. Its acceleration, a m s, t seconds after passing through O is given by a 8 4t. The particle stops after

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

an expression, in terms of t, for the distance of the particle from O at time [3]

an expression, in terms of t, for the distance of the particle from O at time [3] HORIZON EDUCATION SINGAPORE Additional Mathematics Practice Questions: Kinematics Set 1 1 A particle moves in a straight line so that t seconds after passing through O, its velocity v cm s -1, is given

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Displacement, Velocity & Acceleration

Displacement, Velocity & Acceleration Displacement, Velocity & Acceleration Honors/AP Physics Mr. Velazquez Rm. 254 1 Velocity vs. Speed Speed and velocity can both be defined as a change in position or displacement over time. However, speed

More information

Describing motion: Kinematics in one dimension

Describing motion: Kinematics in one dimension Describing motion: Kinematics in one dimension Scientist Galileo Galilei Issac Newton Vocabulary Mechanics Kinematics Dynamics Translational Motion Particle Frame of Reference Coordinate axes Position

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter One-Dimensional Kinematics Units of Chapter Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications of

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 2-1, KINEMATICS Questions From Reading Activity? Assessment Statements Topic 2.1, Kinematics: Define displacement, velocity, speed, and acceleration.

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc.

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc. Car Lab: Results Were you able to plot: Position versus Time? Velocity versus Time? Chapter 2.2: Acceleration Acceleration Acceleration is the rate at which velocity changes with time. Average acceleration:

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

CHAPTER 1 TEST REVIEW

CHAPTER 1 TEST REVIEW PRE-IB PHYSICS Name: DEVIL PHYSICS Period: Date: # Marks: 48 Raw Score: IB Curve: BADDEST CLASS ON CAMPUS CHAPTER 1 TEST REVIEW OVERALL OBJECTIVE: SC.912.P.12.2. Analyze the motion of an object in terms

More information

Motion Along a Straight Line (Motion in One-Dimension)

Motion Along a Straight Line (Motion in One-Dimension) Chapter 2 Motion Along a Straight Line (Motion in One-Dimension) Learn the concepts of displacement, velocity, and acceleration in one-dimension. Describe motions at constant acceleration. Be able to graph

More information

CHAPTER 1 TEST REVIEW

CHAPTER 1 TEST REVIEW PRE-DP PHYSICS Name: DEVIL PHYSICS Period: Date: # Marks: Raw Score: IB Curve: BADDEST CLASS ON CAMPUS CHAPTER 1 TEST REVIEW OVERALL OBJECTIVE: SC.912.P.12.2. Analyze the motion of an object in terms of

More information

Chapter 3: Introduction to Kinematics

Chapter 3: Introduction to Kinematics Chapter 3: Introduction to Kinematics Kari Eloranta 2018 Jyväskylän Lyseon lukio Pre Diploma Program Year October 11, 2017 1 / 17 3.1 Displacement Definition of Displacement Displacement is the change

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the motion

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

PhET Pendulum Lab. l g. f 1. Part I: Pendulum Basics

PhET Pendulum Lab. l g. f 1. Part I: Pendulum Basics IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS PhET Pendulum Lab Introduction: Old grandfather clocks have large pendulums that swing back and forth to keep time. A Foucault pendulum

More information

Chapter 2 1D KINEMATICS

Chapter 2 1D KINEMATICS Chapter 2 1D KINEMATICS The motion of an American kestrel through the air can be described by the bird s displacement, speed, velocity, and acceleration. When it flies in a straight line without any change

More information

Motion Graphs Refer to the following information for the next four questions.

Motion Graphs Refer to the following information for the next four questions. Motion Graphs Refer to the following information for the next four questions. 1. Match the description provided about the behavior of a cart along a linear track to its best graphical representation. Remember

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

SPH3U1 Lesson 08 Kinematics

SPH3U1 Lesson 08 Kinematics EQUATIONS OF CONSTANT ACCELERATION LEARNING GOALS Students will Derive the five key equations of accelerated motion apply to motion with uniform (constant) acceleration. Select which equation(s) to use

More information

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction.

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction. DISPLACEMENT (s) / metre (m) 1 Candidates should be able to : Define displacement, instantaneous speed, average speed, velocity and acceleration. Select and use the relationships : average speed = distance

More information

Lesson 3 Velocity Graphical Analysis

Lesson 3 Velocity Graphical Analysis Physics 2 Lesson 3 Velocity Graphical Analysis I. Pearson Textbook Reference Refer to pages 11 to 2. II. Position-time Graphs Position-time graphs indicate the position of an object relative to a reference

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

2.1 KINEMATICS HW/Study Packet

2.1 KINEMATICS HW/Study Packet 2.1 KINEMATICS HW/Study Packet Required: READ Hamper pp 17-28 READ Tsokos, pp 38-62 SL/HL Supplemental: Cutnell and Johnson, pp 28-52 Giancoli, pp 19-38 ü ü ü ü ü REMEMBER TO. Work through all of the example

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-1 SIMPLE HARMONIC MOTION Introductory Video: Simple Harmonic Motion IB Assessment Statements Topic 4.1, Kinematics of Simple Harmonic

More information

Chapter 2 Motion Along A Straight Line

Chapter 2 Motion Along A Straight Line Chapter 2 Motion Along A Straight Line Kinematics: Description of Motion Motion in one dimension (1-D) Motion of point particles Treat larger objects as particles center of mass Chapter 2 Motion in 1-D

More information

Physics 1120: 1D Kinematics Solutions

Physics 1120: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 Physics 1120: 1D Kinematics Solutions 1. Initially, a ball has a speed of 5.0 m/s as it rolls up an incline. Some time later, at a distance of 5.5 m up the incline, the ball has

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Chapter 2 Physics Table of Contents Position and Displacement Velocity Acceleration Motion with Constant Acceleration Falling Objects The Big Idea Displacement is a change of position

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics-B Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

Graphing. C= d (1) Under constant acceleration, the relationship between the distance s an object moves and the time t it takes is given by

Graphing. C= d (1) Under constant acceleration, the relationship between the distance s an object moves and the time t it takes is given by Graphing Name Section Physics itself is all about mathematical relationships between variables. In class, you will study some of the more important relationships that have been found to exist. In the lab,

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous.

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous. General: Typically, there will be multiple choice, short answer, and big problems. Multiple Choice and Short Answer On the multiple choice and short answer, explanations are typically not required (only

More information

Topic 2.1 Motion. Topic 2.1 Motion. Kari Eloranta Jyväskylän Lyseon lukio. August 18, Kari Eloranta 2017 Topic 2.

Topic 2.1 Motion. Topic 2.1 Motion. Kari Eloranta Jyväskylän Lyseon lukio. August 18, Kari Eloranta 2017 Topic 2. Topic 2.1 Motion Kari Eloranta 2017 Jyväskylän Lyseon lukio August 18, 2017 Velocity and Speed 2.1: Kinematic Quanties: Displacement Definition of Displacement Displacement is the change in position. The

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

HW: U1 5 (pink) 11/15 U1 7 (salmon) 11/16. Next Test: Friday! PICK UP 1. Papers & calculator TURN IN

HW: U1 5 (pink) 11/15 U1 7 (salmon) 11/16. Next Test: Friday! PICK UP 1. Papers & calculator TURN IN U1 PICK UP 1. Papers & calculator TURN IN DO NOW 1. On a half sheet solve using GUESS: If you are displaced 5m behind where you started over a time of 2 seconds. What is your velocity? HW: U1 5 (pink)

More information

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis.

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis. KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ]

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ] Chapter 8 : Motion KEY CONCEPTS [ *rating as per the significance of concept ] 1 Motion **** 2 Graphical Representation of Motion *** & Graphs 3 Equation of motion **** 4 Uniform Circular Motion ** 1 Motion

More information

Kinematics. Chapter 2. Position-Time Graph. Position

Kinematics. Chapter 2. Position-Time Graph. Position Kinematics Chapter 2 Motion in One Dimension Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Motion Point object Motion in one, two and three dimensions one dimensional motion. two dimensional Motion. three dimensional motion.

Motion Point object Motion in one, two and three dimensions one dimensional motion. two dimensional Motion. three dimensional motion. Motion An object is said to be in motion, if its position changes with respect to time. This is related to the observer. If its position is not changing, the object is said to be at rest. Point object

More information

AP Physics C: One Dimensional Kinematics

AP Physics C: One Dimensional Kinematics Slide 1 / 33 P Physics : One imensional Kinematics Multiple hoice Questions Slide 2 / 33 1 In the absence of air resistance, a ball dropped near the surface of the arth experiences a constant acceleration

More information

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

11.3 Acceleration. What Is Acceleration? How are changes in velocity described? What Is Acceleration? How are changes in velocity described? What Is Acceleration? Changes in Speed In science, acceleration applies to Acceleration can be caused by Deceleration is DOK question Predict

More information

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment Chapter Assessment Motion. A snail moving across the lawn for her evening constitutional crawl is attracted to a live wire. On reaching the wire her speed increases at a constant rate and it doubles from.

More information

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13 KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion 2-1 Uniformly Accelerated Motion INTRODUCTION All objects on the earth s surface are being accelerated toward the center of the earth at a rate of 9.81 m/s 2. 1 This means

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration Chapter 2 What You Will Learn In This Chapter Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration 2.1 Introduction to kinematics Kinematics is the study

More information

Teacher Toolkit. Interactive Simulations: 1. Graph Matching Motion Model Simulation/computer model

Teacher Toolkit. Interactive Simulations: 1. Graph Matching Motion Model Simulation/computer model From The Physics Classroom s Teacher Toolkit http://www.physicsclassroom.com/teacher-toolkits Topic: Position - Velocity - Acceleration Teacher Toolkit Objectives: 1. Students should understand the difference

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

AP Physics 1 Summer Assignment (2014)

AP Physics 1 Summer Assignment (2014) Name: Date: AP Physics 1 Summer Assignment (2014) Instructions: 1. Read and study Chapter 2 Describing Motion: Kinematics in One Dimension. 2. Answer the questions below. 3. Submit your answers online

More information

1.1 Graphing Motion. IB Physics 11 Kinematics

1.1 Graphing Motion. IB Physics 11 Kinematics IB Physics 11 Kinematics 1.1 Graphing Motion Kinematics is the study of motion without reference to forces and masses. We will need to learn some definitions: A Scalar quantity is a measurement that has

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS GIANCOLI CHAPTER 5: CIRCULAR MOTION; GRAVITATION LSN 5-1: KINEMATICS OF UNIFORM CIRCULAR MOTION LSN 5-2: DYNAMICS OF UNIFORM CIRCULAR MOTION LSN 5-3:

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Introduction: Study of the motion of objects Physics studies: Properties of matter and energy: solid state physics, thermal physics/ thermodynamics, atomic physics,

More information

BHASVIC MαTHS. Convert the below into the form ax m + bx n : (b) (c) (e) (f)

BHASVIC MαTHS. Convert the below into the form ax m + bx n : (b) (c) (e) (f) Convert the below into the form ax m + bx n : (a) 1+5x 4x 1 (b) 3x 4 x x 3 (c) 4 16x 3 3 27x 3 2x 2 (d) 4 5x 3x 2 (e) (f) 4x 3 1 2x 3 x 4x+ 81x2 9 x 2 Co-ordinate Geometry line The equation of straight

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Highland Park Physics I Curriculum Semester I Weeks 1-4

Highland Park Physics I Curriculum Semester I Weeks 1-4 NAME OF UNIT: Kinematics Components Unit Name Introduction Short Descriptive Overview Concepts Weeks 1-4 Survival Physics Describing Motion Mathematical Model of Motion In Physics, students conduct field

More information

Chapter 2. Motion in One Dimension. Professor Wa el Salah

Chapter 2. Motion in One Dimension. Professor Wa el Salah Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now, will consider motion in one dimension Along a straight

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

average speed instantaneous origin resultant average velocity position particle model scalar

average speed instantaneous origin resultant average velocity position particle model scalar REPRESENTING MOTION Vocabulary Review Write the term that correctly completes the statement. Use each term once. average speed instantaneous origin resultant average velocity position particle model scalar

More information

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion Unit 3: Kinematics Uniform Rectilinear Motion (velocity is constant) Uniform Accelerated Rectilinear Motion The Motion of Projectiles Jan 31 8:19 PM Chapter 9: Uniform Rectilinear Motion Position: point

More information

CHAPTER 2 MOTION IN ONE DIMENSION. Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 2 MOTION IN ONE DIMENSION. Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 2 MOTION IN ONE DIMENSION Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University OUTLINE 1. Position, Velocity and Speed 2. Instantaneous Velocity and Speed 3. Motion

More information

Chapter 3. Motion in One Dimension

Chapter 3. Motion in One Dimension Chapter 3 Motion in One Dimension Outline 3.1 Position, Velocity and Speed 3.2 Instantaneous Velocity and Speed 3.3 Acceleration 3.4 Motion Diagrams 3.5 One-Dimensional Motion with Constant Acceleration

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

Merrily We Roll Along!

Merrily We Roll Along! Chapter 4: Linear Motion Accelerated Motion Merrily We Roll Along! Purpose To investigate the relationship between distance and time for a ball rolling down an incline Required Equipment/Supplies Experiment

More information

CHAPTER 6 TEST REVIEW -- MARKSCHEME

CHAPTER 6 TEST REVIEW -- MARKSCHEME Force (N) AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement Kinematics 1. Introduction to Kinematics. Scalars & vectors 2. Position & displacement 3. Velocity 4. Acceleration 5. Uniform linear motion 6. Uniformly accelerated motion 7. Uniform circular motion 1.

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

SUMMARY. ) t, UNIT. Constant velocity represents uniform motion. Acceleration causes a change in velocity.

SUMMARY. ) t, UNIT. Constant velocity represents uniform motion. Acceleration causes a change in velocity. UNIT A SUMMARY KEY CONCEPTS CHAPTER SUMMARY 1 Constant velocity represents uniform motion. Distance and Displacement Position-time graphs Average speed and average velocity Positive, negative, and zero

More information