Experiment 2-5. Wheatstone Bridge experiment

Size: px
Start display at page:

Download "Experiment 2-5. Wheatstone Bridge experiment"

Transcription

1 Experiment 2-5. Wheatstone Bridge experiment Use the Wheatstone Bridge to measure the unknown electrical resistance and learn the structure and principles of the Wheatstone Bridge. In the laboratory, the following devices are prepared for this experiment. 1 Ready-Set Wheatstone Bridge Experimental equipment A. DC power supply 5V B. Variable resistor 100Ω, 1kΩ, 10kΩ, 50kΩ, 100kΩ (5Steps) C Hundreds of Ω~Dozens of kω (12Steps) D Digital galvanometer 1μA E Stick-slip resistance wire 20cm F Vernier calipers for measurement 2 Multimeter 1EA 1) Connect the Wheatstone Bridge with fixed voltage 5V. 2) Rotate the A dial to set the unknown resistance 1 and turn on the galvanometer.

2 Fig.1 All-in-one Wheatstone Bridge Experimental equipment 3) Place the solenoid type stick-slip resistance wire terminal at the center position. Turn the dial to select so that no alarm sounds. If there is no such value, is selected as near as possible to the center. * The experimental system is designed to give a warning sound when a current exceeding a certain level is applied to the galvanometer, and it is advantageous that the experiment is performed near the center rather than at both extremes of the variable resistance. It is recommended that the experimental values at both extreme ends be measured by measuring the voltage according to the length of the variable resistor and correcting it through the relationship graph. 4) Adjust the position of the stick-slip resistance wire terminal so that the zero point of the galvanometer is adjusted to 0, and read the value through the attached Vernier calipers. 5) Calculate and record the unknown resistance from equation (5). 6) Rotate the dial to change the number of unknown resistances in the sequence of 2 to 12, and repeat steps 3) to 5). 7) Measure the unknown resistance directly with a multimeter and record the measured value. (Caution: 1. Even in the case of a ready-set experiment, it is the most basic step in the experiment to verify that the actual resistance is the same value as the indicated resistance. Let's see if the value shown is the same as the actual resistance. (Where the resistances are 1k, 5k, 10k, 15k, 20k from the top. Also, when checking these resistors, you should check the resistors to be checked without connecting them to the circuit) 2. The coil is wound on the bottom of the circuit. Basically, if the number of turns per unit

3 length is the same and the types of resistors are the same, the resistance will be divided by half in the middle. Is it really like that? Let's look for a location where the resistance is exactly half through a voltmeter.) 8) The results obtained from experiments and theories are compared with the results directly measured by the multimeter and the relative errors are obtained. It is recommended to write experiment notes in the following way. 1. Measurements and calculations Variable resistor Unknown resistor Measures Relative error (%) No. Variable resistor NO. (kω) Unknown resistor NO. Multimeter Measures(kΩ) (cm) (kω)

4 Error analysis 3. Conclusion and Discussion The Wheatstone bridge is a device that connects the resistances as shown in Figure 2, connects the galvanometer G between point B and point D, and finds the potential difference between the two points. is the unknown resistance that we want to measure, and is the known value of the known resistance. In the circuit shown in Fig.2, when the values of the resistors and are appropriately selected, the currents do not flow due to the equipotential between the point B and the point D. Since there is no current between BD, the same current flows in and, and the same current flows in and. From this, the potential difference across each resistor is (1) -

5 3 (2) and, from,, Fig..2 Wheatstone bridge is established. From equation (2), we can derive 4 (3) Therefore, the unknown resistance can be obtained by knowing the value of and the ratio of the two resistances.

6 Fig.3 Ready-Set Wheatstone bridge In the Ready-Set Wheatstone bridge as shown in Fig. 3, and are solenoid-type stick-slip resistance wire with a diameter, and the wire is a uniform resistance line with a resistivity and diameter of. If the length of the resistor is, and the length of the resistance is Each resistance value is, So, The ratio of two resistances is (4) and Substituting equation (4) into equation (3), Unknown resistance is So, the two lengths and of the sliding resistance line can be measured and the unknown resistance can be obtained from the known resistance. (5) 1) 김경헌외 15 인, 대학물리학, ( 청문각, 2007), 제 18 장.

7 2) D. Halliday et al, FUNDAMENTALS OF PHYSICS, (John Wiley & Sons, Inc /E), Chapter 31. 3) 한국물리학회, 일반물리학실험, ( 請文閣, 1997), p.357

Resistance Learning Outcomes

Resistance Learning Outcomes Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Resistors 1. Objectives. The objectives of this laboratory are a. to verify the linear dependence of resistance upon length of

More information

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Experiment #6. Thevenin Equivalent Circuits and Power Transfer Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn

More information

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law, Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

The Digital Multimeter (DMM)

The Digital Multimeter (DMM) The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Herefordshire College of Technology Center Number Student:

Herefordshire College of Technology Center Number Student: Herefordshire College of Technology Center Number 024150 Course: : BTEC Level 3 Subsidiary Diploma in Engineering / Diploma in Electrical/Electronic Engineering Student: Unit/s: 6 Electrical & Electronic

More information

Lab 4: The Classical Hall Effect

Lab 4: The Classical Hall Effect Lab 4: The Classical Hall Effect Background A particle with charge q moving with a velocity v in a uniform magnetic field B will experience a force F, F = q( v B ) (1) 1 Introduction Understanding the

More information

Lab E3: The Wheatstone Bridge

Lab E3: The Wheatstone Bridge E3.1 Lab E3: The Wheatstone Bridge Introduction The Wheatstone bridge is a circuit used to compare an unknown resistance with a known resistance. The bridge is commonly used in control circuits. For instance,

More information

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts.

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts. 15 2. Basic Electrical Parameters of Semiconductors: Sheet Resistivity, Resistivity and Conduction Type 2.1 Objectives 1. Familiarizing with experimental techniques used for the measurements of electrical

More information

Electric Field Mapping

Electric Field Mapping PC1143 Physics III Electric Field Mapping 1 Objectives Map the electric fields and potentials resulting from three different configurations of charged electrodes rectangular, concentric, and circular.

More information

meas (1) calc calc I meas 100% (2) Diff I meas

meas (1) calc calc I meas 100% (2) Diff I meas Lab Experiment No. Ohm s Law I. Introduction In this lab exercise, you will learn how to connect the to network elements, how to generate a VI plot, the verification of Ohm s law, and the calculation of

More information

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah CHAPTER 5 BRIDGES AND THEIR APPLICATION Resistance Measurements 1 RESISTANCE MEASUREMENTS Conventional Ways of Measuring Resistance:- 1) Using a Ohmmeter Convenient but inaccurate, requires calibration

More information

Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

More information

Bridge Method. Bridge Method

Bridge Method. Bridge Method ridge Method EIE 240 Electrical and Electronic Measurement Class 7, March 13, 2015 1 ridge Method Diode bridge is an arrangement of four or more diodes for AC/DC full-wave rectifier. Component bridge methods

More information

COE. DC. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

COE. DC. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe COE. DC Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 battery of internal resistance r and e.m.f. E can supply a current of 6.0 to a resistor R as shown in Fig

More information

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf 1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

More information

PHY 156 LABORATORY MANUAL

PHY 156 LABORATORY MANUAL COLLEGE OF STATEN ISLAND ENGINEERING SCIENCE & PHYSICS DEPARTMENT PHY 156 LABORATORY MANUAL CITY UNIVERSITY OF NEW YORK The Cit y Universit y of N ew York COLLEGE OF STATEN ISLAND Department of Engineering

More information

Experiment 5 Voltage Divider Rule for Series Circuits

Experiment 5 Voltage Divider Rule for Series Circuits Experiment 5 Voltage Divider Rule for Series Circuits EL - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives:. For the student

More information

Solar cells E Introduction. Equipment used for this experiment is displayed in Fig. 2.1.

Solar cells E Introduction. Equipment used for this experiment is displayed in Fig. 2.1. 2.0 Introduction Equipment used for this experiment is displayed in Fig. 2.1. Figure 2.1 Equipment used for experiment E2. List of equipment (see Fig. 2.1): A: Solar cell B: Solar cell C: Box with slots

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance. DC Circuits Objectives The objectives of this lab are: 1) to construct an Ohmmeter (a device that measures resistance) using our knowledge of Ohm's Law. 2) to determine an unknown resistance using our

More information

CHAPTER 5 DC AND AC BRIDGE

CHAPTER 5 DC AND AC BRIDGE 5. Introduction HAPTE 5 D AND A BIDGE Bridge circuits, which are instruments for making comparison measurements, are widely used to measure resistance, inductance, capacitance, and impedance. Bridge circuits

More information

ELECTRICAL MEASUREMENTS LAB MANUAL

ELECTRICAL MEASUREMENTS LAB MANUAL ELECTRICAL MEASUREMENTS LAB MANUAL Prepared by B.SAIDAMMA R13 Regulation Any 10 of the following experiments are to be conducted 1. Calibration and Testing of single phase energy Meter 2. Calibration of

More information

(a) (i) On the axes below, sketch a velocity-time graph for the motion of a raindrop. (2) (ii) Explain why terminal velocity is reached.

(a) (i) On the axes below, sketch a velocity-time graph for the motion of a raindrop. (2) (ii) Explain why terminal velocity is reached. 1 Raindrops reach terminal velocity within a few metres of starting to fall. (a) (i) On the axes below, sketch a velocity-time graph for the motion of a raindrop. Velocity Time (ii) Explain why terminal

More information

Experiment 9 Equivalent Circuits

Experiment 9 Equivalent Circuits Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 361-04 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

EE301 RESISTANCE AND OHM S LAW

EE301 RESISTANCE AND OHM S LAW Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

More information

Voltage Dividers, Nodal, and Mesh Analysis

Voltage Dividers, Nodal, and Mesh Analysis Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify

More information

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First Ultra High Vacuum (UHV) at GT can analyze sample surfaces with Leed and Auger. Problem: Can this wire be used

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

More information

MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS

MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS The laboratory report should be clear and concise. A well written laboratory report should have an acceptable form, and free of any grammatical

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

Exercise 1: Thermocouple Characteristics

Exercise 1: Thermocouple Characteristics The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

More information

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems Third WileyPlus homework set is posted Ch. 20: 90 and Ch. 21: 14,38 (Due today at 11:45 pm) Midterms and finals from previous 4 years are now posted on the website (under Exams link). Next week s lab:

More information

Experiment 4: Resistances in Circuits

Experiment 4: Resistances in Circuits Name: Partners: Date: Experiment 4: Resistances in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter Resistors Purpose The purpose of this lab is to begin experimenting with the variables

More information

The principles of conservation of energy and charge apply to electrical circuits. Properties of magnetic fields apply in nature and technology.

The principles of conservation of energy and charge apply to electrical circuits. Properties of magnetic fields apply in nature and technology. UIT E UMMARY KEY COCEPT CHAPTER UMMARY 11 The principles of conservation of energy and charge apply to electrical circuits. Electrical circuits Conventional current and electron flow Current, electrical

More information

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

More information

What to Add Next time you update?

What to Add Next time you update? What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review

More information

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes Module 1, Add on math lesson Simultaneous Equations 45 minutes eacher Purpose of this lesson his lesson is designed to be incorporated into Module 1, core lesson 4, in which students learn about potential

More information

Contents. Part One Tips for Scoring Higher. Topic-based Exercises. Part Three Revision Exercises. Appendices. Tips for Scoring Higher 3

Contents. Part One Tips for Scoring Higher. Topic-based Exercises. Part Three Revision Exercises. Appendices. Tips for Scoring Higher 3 Contents Preface iii Part One Tips for Scoring Higher Tips for Scoring Higher 3 Three advices Signs and directions Big picture Part Two Topic-based Exercises E1. Charge, E-field and Potential 11 Remember

More information

Chapter 6: Series-Parallel Circuits

Chapter 6: Series-Parallel Circuits Chapter 6: Series-Parallel Circuits Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Identifying series-parallel relationships Most practical

More information

Simple Resistive Circuits

Simple Resistive Circuits Simple Resistive Circuits Qi Xuan Zhejiang University of Technology September 2015 Electric Circuits 1 Structure Resistors in Series Resistors in Parallel The Voltage/Current- Divider Circuit Voltage/Current

More information

Chapter 6.2 : A C Bridges for measurement of Capacitances and Inductances. Discipline Course-I

Chapter 6.2 : A C Bridges for measurement of Capacitances and Inductances. Discipline Course-I Discipline Course-I Semester-II Paper No: Electricity and Magnetism Lesson: Chapter 6.2 : A C Bridges for measurement of Capacitances and Inductances Lesson Developer: Dr. Narmata Soni College/ Department:

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Name Section Theory Electromagnetic induction employs the concept magnetic flux. Consider a conducting loop of area A in a magnetic field with magnitude B. The flux Φ is proportional

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

Electronics Resistive Sensors and Bridge Circuits

Electronics Resistive Sensors and Bridge Circuits Electronics Resistive Sensors and Bridge Circuits Wilfrid Laurier University September 27, 2012 Switches in voltage dividers One of the simplest forms of voltage divider is where one of the elements is

More information

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4) UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

More information

Physics (2) Laboratory manual

Physics (2) Laboratory manual PHYS 104 Laboratory Physics (2) Laboratory manual Dr. Chokri Belgacem, Dr. Yazid Delenda, Dr. Magdi Hasan Department of Physics, Faculty of Sciences and Arts at Yanbu, Taibah University - Yanbu Branch,

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

STRAIN GAUGE MEASUREMENT

STRAIN GAUGE MEASUREMENT STRAIN GAUGE MEASUREMENT INTRODUCTION There are many possible ways of measuring strain gauges using a Datascan. All methods measure the change in resistance of the gauge within a bridge circuit and the

More information

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00 NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 2008 (12041002) (X-Paper) 09:00 12:00 EXEMPLAR This question paper consists of 7 pages. EXEMPLAR -2- NC(V) TIME: 3 HOURS

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

physics for you February 11 Page 68

physics for you February 11 Page 68 urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.

More information

PHY 161 LABORATORY MANUAL

PHY 161 LABORATORY MANUAL COLLEGE OF STATEN ISLAND PHYSICS & ASTRONOMY DEPARTMENT PHY 161 LABORATORY MANUAL CITY UNIVERSITY OF NEW YORK The Cit y Universit y of N ew York COLLEGE OF STATEN ISLAND Department of Physics & Astronomy

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011 ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011 COURSE NAME: PHYSICS 2 CODE: GROUP: ADET 1 DATE: JUNE 29 TIME: 1:00 DURATION: 2 HOUR INSTRUCTIONS: 1. This paper consists

More information

UNIVERSITY F P RTLAND Sch l f Engineering

UNIVERSITY F P RTLAND Sch l f Engineering UNIVERSITY F P RTLAND Sch l f Engineering EE271-Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems - p. 1 of 5 - Electrical

More information

Electric Charge and Electric field

Electric Charge and Electric field Electric Charge and Electric field ConcepTest 16.1a Electric Charge I Two charged balls are repelling each other as they hang from the ceiling. What can you say about their charges? 1) one is positive,

More information

Experiment 2-2. Equipotential Lines. - Electric Field and Gauss's Law

Experiment 2-2. Equipotential Lines. - Electric Field and Gauss's Law Experiment 2-2. Equipotential Lines - Electric Field and Gauss's Law Purpose of Experiment By introducing the concept of electric field, we can improve our understanding about force between separated charges.

More information

coil of the circuit. [8+8]

coil of the circuit. [8+8] Code No: R05310202 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 ELECTRICAL MEASUREMENTS (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used).

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used). Page 1 Score Problem 1: (35 pts) Problem 2: (25 pts) Problem 3: (25 pts) Problem 4: (25 pts) Problem 5: (15 pts) TOTAL: (125 pts) To receive full credit, you must show all your work (including steps taken,

More information

Summary Notes ALTERNATING CURRENT AND VOLTAGE

Summary Notes ALTERNATING CURRENT AND VOLTAGE HIGHER CIRCUIT THEORY Wheatstone Bridge Circuit Any method of measuring resistance using an ammeter or voltmeter necessarily involves some error unless the resistances of the meters themselves are taken

More information

Review of Circuit Analysis

Review of Circuit Analysis Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current

More information

Simple circuits - 3 hr

Simple circuits - 3 hr Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

More information

Experiment 2: Analysis and Measurement of Resistive Circuit Parameters

Experiment 2: Analysis and Measurement of Resistive Circuit Parameters Experiment 2: Analysis and Measurement of Resistive Circuit Parameters Report Due In-class on Wed., Mar. 28, 2018 Pre-lab must be completed prior to lab. 1.0 PURPOSE To (i) verify Kirchhoff's laws experimentally;

More information

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits Chapter 26 Direct-Current and Circuits - esistors in Series and Parallel - Kirchhoff s ules - Electric Measuring Instruments - -C Circuits . esistors in Series and Parallel esistors in Series: V ax I V

More information

Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2

Exam 2 Solutions. Answer: 3.0 W Solution: The total current is in the series circuit is 1 A, so the power dissipated in R 2 is i 2 R 2 Exam 2 Solutions Prof. Pradeep Kumar Prof. Paul Avery Mar. 21, 2012 1. A portable CD player does not have a power rating listed, but it has a label stating that it draws a maximum current of 159.0 ma.

More information

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

More information

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

More information

An investigation of the relationship between internal pressure and degree of carbonation of soda drinks

An investigation of the relationship between internal pressure and degree of carbonation of soda drinks Friday 2-5 Lab 3 An investigation of the relationship between internal pressure and degree of carbonation of soda drinks Tamanna Islam Urmi Lab Partner: Jack Greenfield 12/11/14 2.671 Measurement and Instrumentation

More information

DC Circuits Analysis

DC Circuits Analysis Western Technical College 10660117 DC Circuits Analysis Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 54.00 This course provides

More information

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 27-9 Apparatus:

More information

Page 1 of 15 Page 2 of 15 Ohm s Law Basic Electricity Worksheet Topics Question 1 For a given amount of water pressure, which will flow a greater rate of water: a small (restrictive) nozzle or a large

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test Name... Set... Don.... manner~ man makptb Winchester College Physics 3rd year Revision Test Electrical Circuits Common Time 2011 Mark multiple choice answers with a cross (X) using the box below. I A B

More information

Kirchhoff s laws. Figur 1 An electric network.

Kirchhoff s laws. Figur 1 An electric network. Kirchhoff s laws. Kirchhoff s laws are most central to the physical systems theory, in which modeling consists in putting simple building blocks together. The laws are commonly known within electric network

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Temperature Measurements

Temperature Measurements ME 22.302 Mechanical Lab I Temperature Measurements Dr. Peter Avitabile University of Massachusetts Lowell Temperature - 122601-1 Copyright 2001 A transducer is a device that converts some mechanical quantity

More information

To investigate further the series LCR circuit, especially around the point of minimum impedance. 1 Electricity & Electronics Constructor EEC470

To investigate further the series LCR circuit, especially around the point of minimum impedance. 1 Electricity & Electronics Constructor EEC470 Series esonance OBJECTIE To investigate further the series LC circuit, especially around the point of minimum impedance. EQUIPMENT EQUIED Qty Apparatus Electricity & Electronics Constructor EEC470 Basic

More information

AP Physics C. Inductance. Free Response Problems

AP Physics C. Inductance. Free Response Problems AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

ANDERSON S BRIDGE & SCHERING S BRIDGE

ANDERSON S BRIDGE & SCHERING S BRIDGE ANDERSON S BRIDGE & SCHERING S BRIDGE ANDERSON S BRIDGE AIM: A)To measure inductance of a given coil by Anderson s bridge. B) To determine the value of a given capacitor and to obtain for its dissipation

More information

Fig. 1-1 Current Flow in a Resistive load

Fig. 1-1 Current Flow in a Resistive load 1 Electric Circuits: Current flow in a resistive load flows either from (-) to () which is labeled below as Electron flow or the Conventional flow from () to (-). We will use conventional flow in this

More information

PHYSICS 221 LAB #3: ELECTROSTATICS

PHYSICS 221 LAB #3: ELECTROSTATICS Name: Partners: PHYSICS 221 LAB #3: ELECTROSTATICS The picture above shows several lines that each have a constant electric potential (equipotential lines) due to a person s beating heart. At the instant

More information

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2 OAKTON COMMUNITY COLLEGE COURSE SYLLABUS I. Course Course Course Prefix Number Name Credit: Lecture Lab PHY 132 College Physics II 4 3 2 II. Prerequisites: PHY 131 III. Course (catalog) Description: Course

More information

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT PHYSICS 202 203: CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT MM MARKS: 70] [TIME: 3 HOUR General Instructions: All the questions are compulsory Question no. to 8 consist of one marks questions, which

More information

Because the third wire carries practically no current (due to the voltmeter's extremely high internal resistance), its resistance will not drop any

Because the third wire carries practically no current (due to the voltmeter's extremely high internal resistance), its resistance will not drop any Strain gauges If a strip of conductive metal is stretched, it will become skinnier and longer, both changes resulting in an increase of electrical resistance end-to-end. Conversely, if a strip of conductive

More information

Resistance and Conductance

Resistance and Conductance 1 2 1 Resistance and Conductance Resistance, R (Ohm ), is the tendency of a material to impede the flow of electric charges through it. The instantaneous voltage across a resistor is directly proportional

More information

PHOENIX CONTACT - 04/2016. Features

PHOENIX CONTACT - 04/2016. Features Signal conditioner Data sheet 100238_de_06 1 Description PHOENIX CONTACT - 04/2016 Features The MCR-C-UI-UI(-450)-DCI(-NC) 3-way isolation amplifier is used to electrically isolate and convert analog signals.

More information