arxiv:hep-ph/ v1 5 Oct 2005

Size: px
Start display at page:

Download "arxiv:hep-ph/ v1 5 Oct 2005"

Transcription

1 Preprint typeset in JHEP style - HYPER VERSION RITS-PP-003 arxiv:hep-ph/ v1 5 Oct 2005 Constraint on the heavy sterile neutrino mixing angles in the SO10) model with double see-saw mechanism Takeshi Fukuyama, Tatsuru Kikuchi, and Koichi Matsuda Department of Physics, Ritsumeikan University Kusatsu, Shiga, , Japan fukuyama@se.ritsumei.ac.jp, rp009979@se.ritsumei.ac.jp Department of Physics, Osaka University Toyonaka, Osaka, , Japan matsuda@het.phys.sci.osaka-u.ac.jp Abstract: Constraints on the heavy sterile neutrino mixing angles are studied in the framework of a minimal supersymmetric SO10) model with double see-saw mechanism. A new singlet matter in addition to the right-handed neutrinos is introduced to realize the double see-saw mechanism. The minimal SO10) model gives an unambiguous Dirac neutrino mass matrix, which enables us to predict the masses and the mixing angles in the enlarged 9 9 neutrino mass matrix. Mixing angles between the light Majorana neutrinos and the heavy sterile neutrinos are shown to be within the LEP experimental bound on all ranges of the Majorana phases. Keywords: Neutrino Physics, Beyond Standard Model, GUT.

2 Recent neutrino oscillation data opened up a new window to prove physics beyond the Standard Model. The see-saw mechanism [1] can give a guideline to construct models of new physics through the existence of the right-handed neutrinos. Although the essential concept of the see-saw mechanism is the same, there can be many possibilities according to the types of the see-saw mechanism. For instance, as motivated by the superstring inspired E 6 models, we come to consider the double see-saw mechanism [2, 3, 4, 5, 6] and it s extension, the type-iii see-saw mechanism [7, 8]. In this letter we add some new aspects on the mixing angles between active and sterile neutrinos in the enlarged 9 9 mass matrix. The constraints on the mixing angles are imposed so as to satisfy the current neutrino oscillation data. We accept the same Lagrangian as in [5]. That is, we add a new singlet matter S) in addition to the right-handed neutrino ν c ) per a generation. The Lagrangian in this model is given by L Y = Y ij ν ν c i L j H u + Y ij s ν c i S j H s + µ s S 2 i + h.c., 1) where L j is the lepton doublet, and H u, H s are the SU2) L doublet, singlet Higgs fields. The mass terms of the Lagrangian 1) are re-written in a matrix form in the base with {ν, ν c, S} as follows [2, 3, 4, 5, 6], M = 0 m D 0 0 M D 0 MD T µ s I m T D. 2) Here m D Y ν H u, M D Y s H s, and I diag1,1,1). In this paper we assume that the mass matrix M D is written in terms of a unitary matrix V as M D ) ij = Vij M Dj where the unitary matrix V diagonalises a combination M D MD T, V T M D M T D V = diag M 2 D1,M2 D2,M2 D3). 3) On the other hand, the full 9 9 mass matrix 2) can be diagonalised by using a unitary matrix U as U T M U = diagm 1,m 2,m 3, m N1,m N2,,m N5,m }{{ N6 ), 4) } heavy isosinglet neutrinos where m N1 m N2 < m N3 m N4 < m N5 m N6. If the eigenvalues of each 3 3 matrix satisfy µ s m Di M Di as was assumed in [5], the light mass eigenvalue is roughly given by M ν µ s m D /M D ) 2. The MNS mixing matrix U MNS is the first 3 3 part of this unitary matrix U, U ea U MNS U µa U = U τa. 5) Here the label A runs over the extra mass eigenstates A = 4,, 9, and the extraordinary matrix element U ea gives a sterile to active neutrino mixing angle that have to be small 1

3 enough so as to satisfy the current experimental bound, which is obtained from the invisible decays of the Z boson measured in L3 experiment at LEP. After integrating out the heavy singlets, ν c and S, we obtain the effective light neutrino mass matrix as M ν = MD 1 m ) T D µs M 1 D m D). 6) This light Majorana mass matrix can be diagonalised by the MNS matrix, U T MNS M ν U MNS = diag m 1,m 2,m 3 ). 7) In order to make a prediction on the Dirac neutrino mass matrix m D, we make use of the minimal SO10) model [9], which becomes compatible with neutrino oscillation data by considering the CP phases [10, 11] and furthermore the RGE effects [12]. See also [13, 14, 15, 16, 17] for the type-ii see-saw and [18, 19] for fitting refinement. In the minimal SO10) model the Dirac neutrino mass matrix m D is almost unambiguously fixed from the data of 9 masses of charged fermions and 3 mixing angles and 1 CP phase in the CKM matrix, irrespective to the types of the see-saw mechanism. The type of the see-saw mechanism affects on the choice of the input data like the masses of strange and top quarks. The compact review of fixing m D should be addressed to [5]. For the light Dirac neutrino mass matrix m D, we input the values which are predicted in the previous paper [5]. However, unlike the case of minimal SO10) GUT model, we can not fix σ the only unknown parameter in the minimal SO10) model before fitting with neutrino oscillation data [10]). So we can obtain the heavy Dirac neutrino mass matrix M D as a function of µ s and the three undetermined parameters, σ, two Majorana phases ϕ 1 and ϕ 2 in the MNS mixng matrix for fixed U e3 = 0. We note that the Dirac phase has little effect on our calculations if U e3 has non-zero tiny values. Then, we get a prediction on the mass spectra and the active to sterile neutrino mixing angles for µ s = 1 [kev] in Fig. 1 and 3. In these Figures we varied the parameters ϕ 1, ϕ 2 and σ from 0 to 2π. The same results for the case of µ s = 100 [ev] are shown in Fig. 2 and 4. This shows that if the parameter µ s varies from 1 [kev] to 100 [ev], then we obtain the result which shows one order of magnitude larger mixing angles and one half order of magnitude smaller mass eigenvalues. That is similar for the case of larger value of the parameter µ s. The results in Fig. 3 and 4 show that there exists a parameter space for µ s around kev scale, which is allowed by the present experiments [20]. The allowed ranges for each mass eigenvalues and the mixing angles are listed in Table 1 and 2. Also it may be worthwhile noticing that such kev scale lepton number violation may lead to an interesting signature in the neutrinoless double beta decay [21] or becomes a possible candidate for the cold dark matter [22]. These subjects are the topics for the future study. Acknowledgments The authors thank the Yukawa Institute for Theoretical Physics at Kyoto University. Discussions during the YITP workshop YITP-W on Progress in Particle Physics 2005 were useful to complete this work. The work of T.F. is supported in part by the Grant-in- Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan 2

4 The allowed ranges for mass eigenvalues The allowed ranges for mixing angles [GeV] < m N1 < [GeV] < log 10 Ue4 2) < [GeV] < m N2 < [GeV] < log 10 Ue5 2) < [GeV] < m N3 < [TeV] < log 10 Ue6 2) < [GeV] < m N4 < [TeV] < log 10 Ue7 2) < [TeV] < m N5 < [TeV] < log 10 Ue8 2) < [TeV] < m N6 < [TeV] < log 10 Ue9 2) < Table 1: The allowed ranges for each mass eigenvalues and the mixing angles in case of µ s = 1 [kev]. The allowed ranges for mass eigenvalues The allowed ranges for mixing angles [GeV] < m N1 < [GeV] < log 10 Ue4 2) < [GeV] < m N2 < [GeV] < log 10 Ue5 2) < [GeV] < m N3 < [GeV] < log 10 Ue6 2) < [GeV] < m N4 < [GeV] < log 10 Ue7 2) < [TeV] < m N5 < [TeV] < log 10 Ue8 2) < [TeV] < m N6 < [TeV] < log 10 Ue9 2) < Table 2: The allowed ranges for each mass eigenvalues and the mixing angles in case of µ s = 100 [ev]. # ). The work of T.K. and K.M. are supported by the Research Fellowship of the Japan Society for the Promotion of Science #7336 and #3700). References [1] T. Yanagida, Horizontal Gauge Symmetry and Masses of Neutrinos, in Proceedings of the workshop on the Unified Theory and Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto KEK, Tsukuba, 1979); M. Gell-Mann, P. Ramond, and R. Slansky, The family group in grand unified theories, in Supergravity, edited by D. Freedman and P. van Niewenhuizen north-holland, Amsterdam 1979); R. N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44, ). [2] E. Witten, New Issues In Manifolds Of SU3) Holonomy, Nucl. Phys. B 268, ). [3] R. N. Mohapatra, Mechanism For Understanding Small Neutrino Mass In Superstring Theories, Phys. Rev. Lett ) 561. [4] R. N. Mohapatra and J. W. F. Valle, Neutrino Mass And Baryon-Number Nonconservation In Superstring Models, Phys. Rev. D 34, ). [5] T. Fukuyama, A. Ilakovac, T. Kikuchi and K. Matsuda, Neutrino oscillations in a supersymmetric SO10) model with type-iii see-saw mechanism, JHEP 0506, ) [arxiv:hep-ph/ ]. [6] M. Malinsky, J. C. Romao and J. W. F. Valle, Novel supersymmetric SO10) seesaw mechanism, [arxiv:hep-ph/ ]. 3

5 [7] S. M. Barr, A different see-saw formula for neutrino masses, Phys. Rev. Lett. 92, ) [arxiv:hep-ph/ ]. [8] S. M. Barr and I. Dorsner, A prediction from the type III see-saw mechanism, [arxiv:hep-ph/ ]. [9] K. S. Babu and R. N. Mohapatra, Predictive neutrino spectrum in minimal SO10) grand unification, Phys. Rev. Lett. 70, ) [arxiv:hep-ph/ ]. [10] K. Matsuda, Y. Koide and T. Fukuyama, Can the SO10) model with two Higgs doublets reproduce the observed fermion masses?, Phys. Rev. D 64, ) [arxiv:hep-ph/ ]. [11] K. Matsuda, Y. Koide, T. Fukuyama and H. Nishiura, How far can the SO10) two Higgs model describe the observed neutrino masses and mixings?, Phys. Rev. D 65, ) [Erratum-ibid. D 65, )] [arxiv:hep-ph/ ]; [12] T. Fukuyama and N. Okada, Neutrino oscillation data versus minimal supersymmetric SO10) model, JHEP 0211, ) [arxiv:hep-ph/ ]. [13] B. Bajc, G. Senjanović and F. Vissani, b - tau unification and large atmospheric mixing: A case for non-canonical see-saw, Phys. Rev. Lett. 90, ) [arxiv:hep-ph/ ]. [14] H. S. Goh, R. N. Mohapatra and S. P. Ng, Minimal SUSY SO10), b tau unification and large neutrino mixings, Phys. Lett. B 570, ) [arxiv:hep-ph/ ]. [15] H. S. Goh, R. N. Mohapatra and S. P. Ng, Minimal SUSY SO10) model and predictions for neutrino mixings and leptonic CP violation, Phys. Rev. D 68, ) [arxiv:hep-ph/ ]. [16] B. Dutta, Y. Mimura and R. N. Mohapatra, CKM CP violation in a minimal SO10) model for neutrinos and its implications, Phys. Rev. D 69, ) [arxiv:hep-ph/ ]. [17] S. Bertolini and M. Malinsky, On CP violation in minimal renormalizable SUSY SO10) and beyond, [arxiv:hep-ph/ ]. [18] K. Matsuda, Phenomenological analysis of lepton and quark Yukawa couplings in SO10) two Higgs model, Phys. Rev. D 69, ) [arxiv:hep-ph/ ]. [19] K. S. Babu and C. Macesanu, Neutrino masses and mixings in a minimal SO10) model, [arxiv:hep-ph/ ]. [20] P. Achard et al. [L3 Collaboration], Search for heavy isosinglet neutrino in e+ e- annihilation at LEP, Phys. Lett. B 517, ) [arxiv:hep-ex/ ]. [21] Z. G. Berezhiani, A. Y. Smirnov and J. W. F. Valle, Observable Majoron emission in neutrinoless double beta decay, Phys. Lett. B 291, ) [arxiv:hep-ph/ ]. [22] V. Berezinsky and J. W. F. Valle, The KeV majoron as a dark matter particle, Phys. Lett. B 318, ) [arxiv:hep-ph/ ]. 4

6 0 µ = 1 [kev] s 2 Log U ) ea Log m [GeV]) 10 Ni Figure 1: Constraint on the heavy sterile mixing angles in cases of µ s = 1 [kev] with varied ϕ 1, ϕ 2 and σ from 0 to 2π. 0 µ = 100 [ev] s -2 2 Log U ) ea Log m [GeV]) 10 Ni Figure 2: Constraint on the heavy sterile mixing angles in cases of µ s = 100 [ev] with varied ϕ 1, ϕ 2 and σ from 0 to 2π. 5

7 Figure 3: The same figure as of Figure 1 but overwritten in the LEP experimental bound [20]. 6

8 Figure 4: The same figure as of Figure 2 but overwritten in the LEP experimental bound [20]. 7

Proton Decay and Flavor Violating Thresholds in the SO(10) Models

Proton Decay and Flavor Violating Thresholds in the SO(10) Models Proton Decay and Flavor Violating Thresholds in the SO(10) Models Yukihiro Mimura (Texas A&M University) Based on Proton decay in Collaboration with B. Dutta and R.N. Mohapatra Phys. Rev. Lett. 94, 091804

More information

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays Journal of Physics: Conference Series OPEN ACCESS Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays To cite this article: Emiliano Molinaro 013 J. Phys.: Conf. Ser. 447 0105 View the article

More information

Majoron as the QCD axion in a radiative seesaw model

Majoron as the QCD axion in a radiative seesaw model Majoron as the QCD axion in a radiative seesaw model 1 2 How to explain small neutrino mass ex) Type I Seesaw Heavy right-hand neutrino is added. After integrating out, neutrino Majorana mass is created.

More information

DETECTING MAJORANA NATURE OF NEUTRINOS IN MUON AND TAU DECAY

DETECTING MAJORANA NATURE OF NEUTRINOS IN MUON AND TAU DECAY Available at: http://publications.ictp.it IC/008/08 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th Pseudo Dirac Neutrinos in Seesaw model Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 8 9, India Abstract Specic class of textures for the Dirac and

More information

arxiv:hep-ph/ v2 26 Aug 2006

arxiv:hep-ph/ v2 26 Aug 2006 hep-ph/688 arxiv:hep-ph/688v 6 Aug 6 Axion and PVLAS data in a Little Higgs model Takeshi Fukuyama a, 1 and Tatsuru Kikuchi b, a Department o Physics, Ritsumeikan University, Kusatsu, Shiga, 55-8577, Japan

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

P, C and Strong CP in Left-Right Supersymmetric Models

P, C and Strong CP in Left-Right Supersymmetric Models P, C and Strong CP in Left-Right Supersymmetric Models Rabindra N. Mohapatra a, Andrija Rašin b and Goran Senjanović b a Department of Physics, University of Maryland, College Park, MD 21218, USA b International

More information

arxiv:hep-ph/ v1 15 Sep 2000

arxiv:hep-ph/ v1 15 Sep 2000 CU-TP/00-09 Small Violation of Universal Yukawa Coupling and Neutrino Large Mixing arxiv:hep-ph/0009181v1 15 Sep 2000 T. Teshima ) and T. Asai Department of Applied Physics, Chubu University Kasugai 487-8501,

More information

Nonzero θ 13 and Models for Neutrino Masses and Mixing

Nonzero θ 13 and Models for Neutrino Masses and Mixing Nonzero θ 13 and Models for Neutrino Masses and Mixing Xiao-Gang He NCTS&NTHU&SJTU&NTU θ 13 has been measured T. Schwetz Neutrinos masses, m1, m2, m3. Forero et al, arxiv:1205.4018 Fogli et al, arxiv:1205.3204

More information

arxiv:hep-ph/ v1 19 Jun 2004

arxiv:hep-ph/ v1 19 Jun 2004 Democratic Neutrino Mixing Reexamined Harald Fritzsch Sektion Physik, Universität München, Theresienstrasse 7A, 80 Munich, Germany arxiv:hep-ph/0400 v1 19 Jun 004 Zhi-zhong Xing Institute of High Energy

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

arxiv:hep-ph/ v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2

arxiv:hep-ph/ v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2 OSU-HEP-00-02 BA-00-19 A Mass Relation for Neutrinos arxiv:hep-ph/0004118v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2 1 Department of Physics, Oklahoma State University Stillwater, OK 74078, USA 2 Bartol

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

arxiv:hep-ph/ v1 18 Apr 2001

arxiv:hep-ph/ v1 18 Apr 2001 Resonance in the seesaw mechanism Haijun Pan and G. Cheng 2,3 Lab of Quantum Communication and Quantum Computation, and Center of Nonlinear Science, University of Science and Technology of China, Heifei,

More information

The gauge coupling unication is one of the remarkable successes of the minimal supersymmetric standard model (MSSM) [1] and provides us with a strong

The gauge coupling unication is one of the remarkable successes of the minimal supersymmetric standard model (MSSM) [1] and provides us with a strong KUNS-1534 HE(TH)98/15 hep-ph/981004 Right-handed neutrino mass and bottom-tau ratio in strong coupling unication Masako Bando and Koichi Yoshioka y Aichi University, Aichi 470-0, Japan y Department of

More information

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model Journal: Canadian Journal of Physics Manuscript ID cjp-2017-0783.r1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Proton decay theory review

Proton decay theory review Proton decay theory review Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Lyon, 12 1 Introduction STANDARD MODEL: renormalizable level: accidental B and L conservation (no invariants that violate

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University Flavor Violation at the LHC Bhaskar Dutta Texas A&M University Sixth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - FPCapri2016, June 13th, 2016 1 Outline 1. Colored, Non colored

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

arxiv: v2 [hep-ph] 26 Jan 2015

arxiv: v2 [hep-ph] 26 Jan 2015 Right Handed Quark Mixing in Left-Right Symmetric Theory Goran Senjanović 1 2 and Vladimir Tello 1 1 Gran Sasso Science Institute Viale Crispi L Aquila Italy 2 International Centre for Theoretical Physics

More information

arxiv:hep-ph/ v2 16 May 2002

arxiv:hep-ph/ v2 16 May 2002 UMD-PP-0-50 May 00 Testing Neutrino Mass Matrices with Approximate L e L µ L τ Symmetry arxiv:hep-ph/005131v 16 May 00 H. S. Goh, R.N. Mohapatra, and S.- P. Ng Department of Physics, University of Maryland

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

arxiv:hep-ph/ v2 16 Jun 2003

arxiv:hep-ph/ v2 16 Jun 2003 IFT-03/14 hep-ph/0306059 February 1, 2008 Limits on T reh for thermal leptogenesis with hierarchical neutrino masses arxiv:hep-ph/0306059v2 16 Jun 2003 Piotr H. Chankowski and Krzysztof Turzyński Institute

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

arxiv:hep-ph/ v1 24 Feb 2003

arxiv:hep-ph/ v1 24 Feb 2003 Minimal Supersymmetric Pati-Salam Theory: Determination of Physical Scales. Alejandra Melfo (1,2) and Goran Senjanović (1) (1) International Centre for Theoretical Physics, 34100 Trieste, Italy and (2)

More information

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry arxiv:1106.3451v1 [hep-ph] 17 Jun 2011 S. Dev, Shivani Gupta and Radha Raman Gautam Department of Physics, Himachal Pradesh University,

More information

Cosmological constraints on the Sessaw Scale

Cosmological constraints on the Sessaw Scale Cosmological constraints on the Sessaw Scale Jacobo López-Pavón 50th Rencontres de Moriond EW La Thuile, Valle d'aosta (Italy) 14-21 March, 2015 Motivation Which is the simplest extension of the SM that

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Probing seesaw at LHC

Probing seesaw at LHC Probing seesaw at LHC arxiv:hep-ph/0703080v1 7 Mar 2007 Borut Bajc 1, Miha Nemevšek 1 and Goran Senjanović 2 1 J. Stefan Institute, 1001 Ljubljana, Slovenia 2 International Centre for Theoretical Physics,

More information

Neutrino mass spectrum from the seesaw extension

Neutrino mass spectrum from the seesaw extension Neutrino mass spectrum from the seesaw extension Darius Jurciukonis, homas Gajdosik, Andrius Juodagalvis and omas Sabonis arxiv:11.691v1 [hep-ph] 31 Dec 01 Vilnius University, Universiteto 3, -01513, Vilnius,

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles

More information

Lepton Flavor and CPV

Lepton Flavor and CPV Lepton Flavor and CPV Alexander J. Stuart 25 May 2017 Based on: L.L. Everett, T. Garon, and AS, JHEP 1504, 069 (2015) [arxiv:1501.04336]; L.L. Everett and AS, arxiv:1611.03020 [hep-ph]. The Standard Model

More information

Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models

Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models Symmetry Origin of Observable Nonunitary Neutrino Mixng Matrix in TeV Scale Seesaw Models Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA Symmetry Origin of

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Baryon Number Violation in Leptoquark and Diquark Models

Baryon Number Violation in Leptoquark and Diquark Models Baryon Number Violation in Leptoquark and Diquark Models Bartosz Fornal University of California, San Diego Workshop on Neutron-Antineutron Oscillations University of Washington October 23, 2017 In collaboration

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

arxiv:hep-ph/ v2 9 Aug 1999

arxiv:hep-ph/ v2 9 Aug 1999 July, 1999 SNUTP 99-036 KIAS-P99060 hep-ph/9907452 Neutrino Mass and Lepton Number Violation with Charged Scalars arxiv:hep-ph/9907452v2 9 Aug 1999 Jihn E. Kim (a,b) and Jae Sik Lee (b) (a) Department

More information

Neutrinos as Pathfinders

Neutrinos as Pathfinders Neutrinos as Pathfinders José W F Valle IFIC AHEP on facebook November 2015 HISTORIC DISCOVERY 1 HISTORIC DISCOVERY 1 Last stone HISTORIC DISCOVERY 2 THE PRECISION ERA... Schechter & JV PRD22 (1980) 2227

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Implications of Quark-Lepton Symmetry for Neutrino Masses and Oscillations

Implications of Quark-Lepton Symmetry for Neutrino Masses and Oscillations LA-UR-00-908 UM-P-000/007 nucl-th/000053 arxiv:nucl-th/000053v 14 Mar 000 Implications of Quark-Lepton Symmetry for Neutrino Masses and Oscillations T. Goldman MS B83, Theoretical Division, Los Alamos

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Department of Applied Physics, Chubu University. Kasugai, Aichi 487, Japan. April 1997

Department of Applied Physics, Chubu University. Kasugai, Aichi 487, Japan. April 1997 CU/TP-97-3 April 1997 Neutrino Mass and Mixing in the Universal Yukawa Coupling Framework arxiv:hep-ph/97466v1 9 Apr 1997 Tadayuki Teshima, Toyokazu Sakai and Osamu Inagaki Department of Applied Physics,

More information

Flavon VEV Scales in U(3) U(3) Model

Flavon VEV Scales in U(3) U(3) Model Flavon VEV Scales in U(3) U(3) Model Yoshio Koide a and Hiroyuki Nishiura b a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan E-mail address: koide@kuno-g.phys.sci.osaka-u.ac.jp

More information

arxiv:hep-ph/ v6 3 Apr 2001

arxiv:hep-ph/ v6 3 Apr 2001 CP Violation in Seesaw Model T. Endoh, T. Morozumi, T. Onogi and A. Purwanto arxiv:hep-ph/00345v6 3 Apr 00 Department of Physics, Hiroshima University -3- Kagamiyama, Higashi Hiroshima - 739-856, Japan

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

arxiv:hep-ph/ v2 19 Sep 2005

arxiv:hep-ph/ v2 19 Sep 2005 BNL-HET-04/10 Seesaw induced electroweak scale, the hierarchy problem and sub-ev neutrino masses arxiv:hep-ph/0408191v2 19 Sep 2005 David Atwood Dept. of Physics and Astronomy, Iowa State University, Ames,IA

More information

TeV Scale Seesaw with Loop Induced

TeV Scale Seesaw with Loop Induced TeV Scale Seesaw with Loop Induced Dirac Mass Term and Dark kmtt Matter from U(1) B L Gauge Symmetry Breaking Takehiro Nabeshima University of Toyama S. Kanemura, T.N., H. Sugiyama, Phys. Lett. B703:66-70

More information

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018 Flaxion a minimal extension to solve puzzles in the standard model Koichi Hamaguchi (University of Tokyo) @Moriond EW 2018, Mar. 13, 2018 Based on Y. Ema, KH, T. Moroi, K. Nakayama, arxiv:1612.05492 [JHEP

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry University of Shizuoka US-00-08 August 000 hep-ph/000xxx Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry Yoshio Koide and Ambar Ghosal Department of Physics, University

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Grand Unified Theory based on the SU(6) symmetry

Grand Unified Theory based on the SU(6) symmetry Grand Unified Theory based on the SU(6) symmetry A. Hartanto a and L.T. Handoko a,b FISIKALIPI-04007 FIS-UI-TH-05-02 arxiv:hep-ph/0504280v1 29 Apr 2005 a) Department of Physics, University of Indonesia

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

arxiv: v1 [hep-ph] 6 Mar 2014

arxiv: v1 [hep-ph] 6 Mar 2014 A predictive model of Dirac Neutrinos OSU-HEP-14-03 Shreyashi Chakdar, Kirtiman Ghosh and S. Nandi Department of Physics and Oklahoma Center for High Energy Physics, Oklahoma State University, Stillwater

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Petr Vogel, Caltech INT workshop on neutrino mass measurements Seattle, Feb.8, 2010 The mixing angles and Δm 2 ij are quite

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Neutrino Mass Models and Their Experimental Signatures

Neutrino Mass Models and Their Experimental Signatures Neutrino Mass Models and Their Experimental Signatures K.S. Babu Oklahoma State University GIAN Course on Electrowak Symmetry Breaking, Flavor Physics and BSM IIT Guwahati, Guwahati, Assam, India December

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

arxiv: v1 [hep-ph] 21 Dec 2012

arxiv: v1 [hep-ph] 21 Dec 2012 Parametrizing the Neutrino sector of the seesaw extension in tau decays D. Jurčiukonis a,1,. Gajdosik b,, A. Juodagalis a,3 and. Sabonis a,4 a Institute of heoretical Physics and Astronomy, Vilnius Uniersity,

More information

Leptogenesis with Majorana neutrinos

Leptogenesis with Majorana neutrinos Leptogenesis with Majorana neutrinos E.A. Paschos a a Institut für Physik, Universität Dortmund D-4422 Dortmund, Germany I review the origin of the lepton asymmetry which is converted to a baryon excess

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO() Grand Unified Models Natsumi Nagata Univ. of Minnesota/Kavli IPMU PANCK 2015 May 25-29, 2015 Ioannina, Greece Based on Y. Mambrini, N. Nagata,

More information

Physics Letters B. Type II seesaw mechanism for Higgs doublets and the scale of new physics

Physics Letters B. Type II seesaw mechanism for Higgs doublets and the scale of new physics Physics Letters B 674 (009) 7 Contents lists available at ScienceDirect Physics Letters B wwwelseviercom/locate/physletb Type II seesaw mechanism for Higgs doublets and the scale of new physics W Grimus

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Physics beyond the Standard Model: Neutrinos & Dark matter

Physics beyond the Standard Model: Neutrinos & Dark matter Physics beyond the Standard Model: Neutrinos & Dark matter José W F Valle http://astroparticles.ific.uv.es/ PASCOS 2013, Taiwan 1 Where do neutrinos come from? 336 / cm3: bilions of Cosmic neutrinos Cross

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

arxiv: v2 [hep-ph] 3 Aug 2012

arxiv: v2 [hep-ph] 3 Aug 2012 A Simple Realization of the Inverse Seesaw Mechanism A. G. Dias 1, C. A. de S. Pires, P. S. Rodrigues da Silva, A. Sampieri 1 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André-SP,

More information

The Effective Lagrangian for the Seesaw Model of Neutrino Mass and Leptogenesis

The Effective Lagrangian for the Seesaw Model of Neutrino Mass and Leptogenesis hep-ph/01071 FTUAM-0-6 IFT-UAM/CSIC-0-46 UCSD/PTH 0-5 The Effective Lagrangian for the Seesaw Model of Neutrino Mass and Leptogenesis A. Broncano a,1, M.B. Gavela a, and E. Jenkins b,3 a Dept. de Física

More information

Investigating Beyond Standard Model

Investigating Beyond Standard Model Investigating Beyond Standard Model Joydeep Chakrabortty Physical Research Laboratory TPSC Seminar, IOP 5th February, 2013 1/35 Standard Model A Brief Tour Why BSM? BSM Classification How do we look into

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model. Abstract

Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model. Abstract Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model Sudhanwa Patra, 1, Anjishnu Sarkar, 2, Utpal Sarkar, 1,3, and Urjit A. Yajnik 4,5, 1 Physical Research Laboratory, Ahmedabad

More information

NAMBU-GOLDSTONE BOSONS : A LESSON FOR MAJORON. Faculty of Engineering, Seikei University, Musashino, Tokyo 180, Japan. Abstract

NAMBU-GOLDSTONE BOSONS : A LESSON FOR MAJORON. Faculty of Engineering, Seikei University, Musashino, Tokyo 180, Japan. Abstract ITP-SU-95/05 hep-th/9510120 October, 1995 QUANTUM MECHANICS VIOLATING EFFECTS TO MASSES OF NAMBU-GOLDSTONE BOSONS : A LESSON FOR MAJORON Yuichi Chikashige 1 and Tadashi Kon 2 Faculty of Engineering, Seikei

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universität München James-Franck-Str., D-85748 Garching/München, Germany E-mail: lindner@ph.tum.de Neutrino

More information