Chapter 5 Random vectors, Joint distributions. Lectures 18-23

Size: px
Start display at page:

Download "Chapter 5 Random vectors, Joint distributions. Lectures 18-23"

Transcription

1 Chapter 5 Random vectors, Joint distributions Lectures In many real life problems, one often encounter multiple random objects. For example, if one is interested in the future price of two different stocks in a stock market. Since the price of one stock can affect the price of the second, it is not advisable to analysis them separately. To model such phenomenon, we need to introduce many random variables in a single platform (i.e., a probability space). First we will recall, some elementary facts about -dimensional Euclidean space. Let with the usual metric A subset of is said to be open if for each, there exists an such that where Any open set can be written as a countable union of open sets of the form, called open rectangles. Definition 5.1. The -field generated by all open sets in is called the Borel -field of subsets of and is denoted by. Theorem Let Then Proof. We prove for, for, it is similar. Note that Hence from the definition of, we have Note that for,

2 For each such that we have Hence all open rectangles are in. Since any open set in can be rewritten as a countable union of open rectangles, all open sets are in. Therefore from the definition of, we get This completes the proof. (It is advised that student try to write down the proof for ) Definition 5.2. Let be a probability space. A map, is called a random vector if Now onwards we set (for simplicity) Theorem is a random vector iff are random variables where denote the component of. Proof: Let For be a random vector. since Therefore is a random variable. Similarly, we can show that is a random variable. Suppose are random variables. For (5.0.1) Set By (5.0.1) (5.0.2)

3 For, we have Hence Thus. Similarly Hence Thus from (5.0.2), we have Therefore from Theorem , we have. Hence is a random vector. This completes the proof. Theorem Let be a random vector. On define as follows Then is a probability measure on. Proof. Since, we have Let be pair wise disjoint elements from. Then are pair wise disjoint and are in. Hence This completes the proof. Definition 5.3. The probability measure is called the Law of the random vector and is denoted by. Definition 5.4. (joint distribution function)

4 Let be a random vector. Then the function given by is called the joint distribution function of. Theorem Let be the joint distribution function of a random vector. Then satisfies the following. (i) (a) (b) (ii) is right continuous in each argument. (iii) is nondecreasing in each arguments. The proof of the above theorem is an easy exercise to the student. Given a random vector, the distribution function of denoted by is called the marginal distribution of. Similarly the marginal distribution function of is defined. Given the joint distribution function of, one can recover the corresponding marginal distributions as follows. Similarly Given the marginal distribution functions of and, in general it is impossible to construct the joint distribution function. Note that marginal distribution functions doesn't contain information about the dependence of over and vice versa. One can characterize the independence of and in terms of its joint and marginal distributions as in the following theorem. The proof is beyond the scope of this course. Theorem Let be a random vector with distribution function. Then and are independent iff Definition 5.5. (joint pmf of discrete random vector) Let be a discrete random vector, i.e, are discrete random variables. Define by Then is called joint pmf of.

5 Definition 5.6. (joint pdf of continuous random vector) Let be a continuous random variable (i.e., are continuous random variables) with joint distribution function. If there exists a function such that then is called the joint pdf of. Theorem Let be a continuous random vector with joint pdf. Then Proof. Note that L.H.S of the equality corresponds to the law of. Let denote the set of all finite union of rectangles in. Then is a field (exercise for the student). Set Then are probability measures on and on Hence, using extension theorem, we have i.e., Example Let be two random variables with joint pdf given by If denote the marginal pdfs of and respectively, then

6 Therefore Here means is normally distributed with mean and variance. Similarly, Therefore Also note that and are dependent since, see exercise. Theorem Let be independent random variables with joint pdf. Then the pdf of is given by where denote the convolution of and and is defined as Proof. Let denote the distribution function of. Set

7 Therefore This completes the proof. Example Let be independent exponential random variables with parameters and respectively. Then is given similarly. Now for, clearly. For, Conditional Densities. The notion of conditional densities are intended to give a quantification of dependence of one random variable over the other if the random variables are not independent. Definition 5.7. Let be two discrete random variables with joint pmf. Then the conditional density of given denoted by is defined as Intuitively, means the pmf of given the information about. Here information about means knowledge about the occurrence (or non occurrence) of for each. One can rewrite in terms of the pmfs as follows.

8 Definition 5.8. Let are continuous random variables with joint pdf. The conditional distribution of given is defined as Definition 5.9. If are continuous random variable and if denote the conditional density of given. Then for, Example Let be uniform random variable over and be uniform random variable over. i.e., Note that the pdf of given is, i.e. Also Hence

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

Section 2: Classes of Sets

Section 2: Classes of Sets Section 2: Classes of Sets Notation: If A, B are subsets of X, then A \ B denotes the set difference, A \ B = {x A : x B}. A B denotes the symmetric difference. A B = (A \ B) (B \ A) = (A B) \ (A B). Remarks

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE Most of the material in this lecture is covered in [Bertsekas & Tsitsiklis] Sections 1.3-1.5

More information

MTH 202 : Probability and Statistics

MTH 202 : Probability and Statistics MTH 202 : Probability and Statistics Lecture 5-8 : 15, 20, 21, 23 January, 2013 Random Variables and their Probability Distributions 3.1 : Random Variables Often while we need to deal with probability

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) of X, Y, Z iff for all sets A, B, C,

Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) of X, Y, Z iff for all sets A, B, C, Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: PMF case: p(x, y, z) is the joint Probability Mass Function of X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) PDF case: f(x, y, z) is

More information

EXAM # 3 PLEASE SHOW ALL WORK!

EXAM # 3 PLEASE SHOW ALL WORK! Stat 311, Summer 2018 Name EXAM # 3 PLEASE SHOW ALL WORK! Problem Points Grade 1 30 2 20 3 20 4 30 Total 100 1. A socioeconomic study analyzes two discrete random variables in a certain population of households

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES Contents 1. Continuous random variables 2. Examples 3. Expected values 4. Joint distributions

More information

Math-Stat-491-Fall2014-Notes-I

Math-Stat-491-Fall2014-Notes-I Math-Stat-491-Fall2014-Notes-I Hariharan Narayanan October 2, 2014 1 Introduction This writeup is intended to supplement material in the prescribed texts: Introduction to Probability Models, 10th Edition,

More information

Chapter 1: Probability Theory Lecture 1: Measure space and measurable function

Chapter 1: Probability Theory Lecture 1: Measure space and measurable function Chapter 1: Probability Theory Lecture 1: Measure space and measurable function Random experiment: uncertainty in outcomes Ω: sample space: a set containing all possible outcomes Definition 1.1 A collection

More information

(2) E M = E C = X\E M

(2) E M = E C = X\E M 10 RICHARD B. MELROSE 2. Measures and σ-algebras An outer measure such as µ is a rather crude object since, even if the A i are disjoint, there is generally strict inequality in (1.14). It turns out to

More information

Module 3. Function of a Random Variable and its distribution

Module 3. Function of a Random Variable and its distribution Module 3 Function of a Random Variable and its distribution 1. Function of a Random Variable Let Ω, F, be a probability space and let be random variable defined on Ω, F,. Further let h: R R be a given

More information

Lebesgue Measurable Sets

Lebesgue Measurable Sets s Dr. Aditya Kaushik Directorate of Distance Education Kurukshetra University, Kurukshetra Haryana 136119 India s Definition A set E R is said to be Lebesgue measurable if for any A R we have m A) = m

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions

Economics 204 Fall 2011 Problem Set 1 Suggested Solutions Economics 204 Fall 2011 Problem Set 1 Suggested Solutions 1. Suppose k is a positive integer. Use induction to prove the following two statements. (a) For all n N 0, the inequality (k 2 + n)! k 2n holds.

More information

Introduction to Stochastic Processes

Introduction to Stochastic Processes Stat251/551 (Spring 2017) Stochastic Processes Lecture: 1 Introduction to Stochastic Processes Lecturer: Sahand Negahban Scribe: Sahand Negahban 1 Organization Issues We will use canvas as the course webpage.

More information

Brief Review of Probability

Brief Review of Probability Brief Review of Probability Nuno Vasconcelos (Ken Kreutz-Delgado) ECE Department, UCSD Probability Probability theory is a mathematical language to deal with processes or experiments that are non-deterministic

More information

Lecture 6 Feb 5, The Lebesgue integral continued

Lecture 6 Feb 5, The Lebesgue integral continued CPSC 550: Machine Learning II 2008/9 Term 2 Lecture 6 Feb 5, 2009 Lecturer: Nando de Freitas Scribe: Kevin Swersky This lecture continues the discussion of the Lebesque integral and introduces the concepts

More information

1.1. MEASURES AND INTEGRALS

1.1. MEASURES AND INTEGRALS CHAPTER 1: MEASURE THEORY In this chapter we define the notion of measure µ on a space, construct integrals on this space, and establish their basic properties under limits. The measure µ(e) will be defined

More information

LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs)

LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) OCTOBER 6, 2014 LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) 1 Random Variables Random experiments typically require verbal descriptions, and arguments involving events are often

More information

Chapter 1: Probability Theory Lecture 1: Measure space, measurable function, and integration

Chapter 1: Probability Theory Lecture 1: Measure space, measurable function, and integration Chapter 1: Probability Theory Lecture 1: Measure space, measurable function, and integration Random experiment: uncertainty in outcomes Ω: sample space: a set containing all possible outcomes Definition

More information

HW Solution 12 Due: Dec 2, 9:19 AM

HW Solution 12 Due: Dec 2, 9:19 AM ECS 315: Probability and Random Processes 2015/1 HW Solution 12 Due: Dec 2, 9:19 AM Lecturer: Prapun Suksompong, Ph.D. Problem 1. Let X E(3). (a) For each of the following function g(x). Indicate whether

More information

1 Variance of a Random Variable

1 Variance of a Random Variable Indian Institute of Technology Bombay Department of Electrical Engineering Handout 14 EE 325 Probability and Random Processes Lecture Notes 9 August 28, 2014 1 Variance of a Random Variable The expectation

More information

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( ) Lebesgue Measure The idea of the Lebesgue integral is to first define a measure on subsets of R. That is, we wish to assign a number m(s to each subset S of R, representing the total length that S takes

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

The discrete and indiscrete topologies on any set are zero-dimensional. The Sorgenfrey line

The discrete and indiscrete topologies on any set are zero-dimensional. The Sorgenfrey line p. 1 Math 525 Notes on section 17 Isolated points In general, a point x in a topological space (X,τ) is called an isolated point iff the set {x} is τ-open. A topological space is called discrete iff every

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline LECTURE 2 Convexity and related notions Last time: Goals and mechanics of the class notation entropy: definitions and properties mutual information: definitions and properties Lecture outline Convexity

More information

Math 3338: Probability (Fall 2006)

Math 3338: Probability (Fall 2006) Math 3338: Probability (Fall 2006) Jiwen He Section Number: 10853 http://math.uh.edu/ jiwenhe/math3338fall06.html Probability p.1/8 Chapter Two: Probability (I) Probability p.2/8 2.1 Sample Spaces and

More information

Probability (continued)

Probability (continued) DS-GA 1002 Lecture notes 2 September 21, 15 Probability (continued) 1 Random variables (continued) 1.1 Conditioning on an event Given a random variable X with a certain distribution, imagine that it is

More information

Chapter 1. Probability, Random Variables and Expectations. 1.1 Axiomatic Probability

Chapter 1. Probability, Random Variables and Expectations. 1.1 Axiomatic Probability Chapter 1 Probability, Random Variables and Expectations Note: The primary reference for these notes is Mittelhammer (1999. Other treatments of probability theory include Gallant (1997, Casella & Berger

More information

Discrete Probability Refresher

Discrete Probability Refresher ECE 1502 Information Theory Discrete Probability Refresher F. R. Kschischang Dept. of Electrical and Computer Engineering University of Toronto January 13, 1999 revised January 11, 2006 Probability theory

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Review for the previous lecture Definition: n-dimensional random vector, joint pmf (pdf), marginal pmf (pdf) Theorem: How to calculate marginal pmf (pdf) given joint pmf (pdf) Example: How to calculate

More information

Basic Measure and Integration Theory. Michael L. Carroll

Basic Measure and Integration Theory. Michael L. Carroll Basic Measure and Integration Theory Michael L. Carroll Sep 22, 2002 Measure Theory: Introduction What is measure theory? Why bother to learn measure theory? 1 What is measure theory? Measure theory is

More information

MTH 202 : Probability and Statistics

MTH 202 : Probability and Statistics MTH 202 : Probability and Statistics Lecture 9 - : 27, 28, 29 January, 203 4. Functions of a Random Variables 4. : Borel measurable functions Similar to continuous functions which lies to the heart of

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

Laplace Transform Introduction

Laplace Transform Introduction Laplace Transform Introduction In many problems, a function is transformed to another function through a relation of the type: where is a known function. Here, is called integral transform of. Thus, an

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

1 Joint and marginal distributions

1 Joint and marginal distributions DECEMBER 7, 204 LECTURE 2 JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS, INDEPENDENCE So far we have considered one random variable at a time. However, in economics we are typically interested

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Module 1. Probability

Module 1. Probability Module 1 Probability 1. Introduction In our daily life we come across many processes whose nature cannot be predicted in advance. Such processes are referred to as random processes. The only way to derive

More information

Test One Mathematics Fall 2009

Test One Mathematics Fall 2009 Test One Mathematics 35.2 Fall 29 TO GET FULL CREDIT YOU MUST SHOW ALL WORK! I have neither given nor received aid in the completion of this test. Signature: pts. 2 pts. 3 5 pts. 2 pts. 5 pts. 6(i) pts.

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

Lecture 13: Conditional Distributions and Joint Continuity Conditional Probability for Discrete Random Variables

Lecture 13: Conditional Distributions and Joint Continuity Conditional Probability for Discrete Random Variables EE5110: Probability Foundations for Electrical Engineers July-November 015 Lecture 13: Conditional Distributions and Joint Continuity Lecturer: Dr. Krishna Jagannathan Scribe: Subrahmanya Swamy P 13.1

More information

Lecture 12: Multiple Random Variables and Independence

Lecture 12: Multiple Random Variables and Independence EE5110: Probability Foundations for Electrical Engineers July-November 2015 Lecture 12: Multiple Random Variables and Independence Instructor: Dr. Krishna Jagannathan Scribes: Debayani Ghosh, Gopal Krishna

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

Office hours: Wednesdays 11 AM- 12 PM (this class preference), Mondays 2 PM - 3 PM (free-for-all), Wednesdays 3 PM - 4 PM (DE class preference)

Office hours: Wednesdays 11 AM- 12 PM (this class preference), Mondays 2 PM - 3 PM (free-for-all), Wednesdays 3 PM - 4 PM (DE class preference) Review of Probability Theory Tuesday, September 06, 2011 2:05 PM Office hours: Wednesdays 11 AM- 12 PM (this class preference), Mondays 2 PM - 3 PM (free-for-all), Wednesdays 3 PM - 4 PM (DE class preference)

More information

STA2112F99 ε δ Review

STA2112F99 ε δ Review STA2112F99 ε δ Review 1. Sequences of real numbers Definition: Let a 1, a 2,... be a sequence of real numbers. We will write a n a, or lim a n = a, if for n all ε > 0, there exists a real number N such

More information

3. The Multivariate Hypergeometric Distribution

3. The Multivariate Hypergeometric Distribution 1 of 6 7/16/2009 6:47 AM Virtual Laboratories > 12. Finite Sampling Models > 1 2 3 4 5 6 7 8 9 3. The Multivariate Hypergeometric Distribution Basic Theory As in the basic sampling model, we start with

More information

Appendix A : Introduction to Probability and stochastic processes

Appendix A : Introduction to Probability and stochastic processes A-1 Mathematical methods in communication July 5th, 2009 Appendix A : Introduction to Probability and stochastic processes Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat The probability of

More information

Some Basic Notations Of Set Theory

Some Basic Notations Of Set Theory Some Basic Notations Of Set Theory References There are some good books about set theory; we write them down. We wish the reader can get more. 1. Set Theory and Related Topics by Seymour Lipschutz. 2.

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Multivariate random variables

Multivariate random variables DS-GA 002 Lecture notes 3 Fall 206 Introduction Multivariate random variables Probabilistic models usually include multiple uncertain numerical quantities. In this section we develop tools to characterize

More information

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1

Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension. n=1 Chapter 2 Probability measures 1. Existence Theorem 2.1 (Caratheodory). A (countably additive) probability measure on a field has an extension to the generated σ-field Proof of Theorem 2.1. Let F 0 be

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 18

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 18 EECS 7 Discrete Mathematics and Probability Theory Spring 214 Anant Sahai Note 18 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces Ω,

More information

Course on Inverse Problems

Course on Inverse Problems Stanford University School of Earth Sciences Course on Inverse Problems Albert Tarantola Third Lesson: Probability (Elementary Notions) Let u and v be two Cartesian parameters (then, volumetric probabilities

More information

MORE ON CONTINUOUS FUNCTIONS AND SETS

MORE ON CONTINUOUS FUNCTIONS AND SETS Chapter 6 MORE ON CONTINUOUS FUNCTIONS AND SETS This chapter can be considered enrichment material containing also several more advanced topics and may be skipped in its entirety. You can proceed directly

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

Problem Set 1 Sept, 14

Problem Set 1 Sept, 14 EE6: Random Processes in Systems Lecturer: Jean C. Walrand Problem Set Sept, 4 Fall 06 GSI: Assane Gueye This problem set essentially reviews notions of conditional expectation, conditional distribution,

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Abstract Measure Theory

Abstract Measure Theory 2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the

More information

Lecture 9: Conditional Probability and Independence

Lecture 9: Conditional Probability and Independence EE5110: Probability Foundations July-November 2015 Lecture 9: Conditional Probability and Independence Lecturer: Dr. Krishna Jagannathan Scribe: Vishakh Hegde 9.1 Conditional Probability Definition 9.1

More information

Construction of a general measure structure

Construction of a general measure structure Chapter 4 Construction of a general measure structure We turn to the development of general measure theory. The ingredients are a set describing the universe of points, a class of measurable subsets along

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review 6.262: Discrete Stochastic Processes 2/2/11 Lecture 1: Introduction and Probability review Outline: Probability in the real world Probability as a branch of mathematics Discrete stochastic processes Processes

More information

4.1 Notation and probability review

4.1 Notation and probability review Directed and undirected graphical models Fall 2015 Lecture 4 October 21st Lecturer: Simon Lacoste-Julien Scribe: Jaime Roquero, JieYing Wu 4.1 Notation and probability review 4.1.1 Notations Let us recall

More information

Notes on Random Variables, Expectations, Probability Densities, and Martingales

Notes on Random Variables, Expectations, Probability Densities, and Martingales Eco 315.2 Spring 2006 C.Sims Notes on Random Variables, Expectations, Probability Densities, and Martingales Includes Exercise Due Tuesday, April 4. For many or most of you, parts of these notes will be

More information

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion IEOR 471: Stochastic Models in Financial Engineering Summer 27, Professor Whitt SOLUTIONS to Homework Assignment 9: Brownian motion In Ross, read Sections 1.1-1.3 and 1.6. (The total required reading there

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Solutions Homework 6

Solutions Homework 6 1 Solutions Homework 6 October 26, 2015 Solution to Exercise 1.5.9: Part (a) is easy: we know E[X Y ] = k if X = k, a.s. The function φ(y) k is Borel measurable from the range space of Y to, and E[X Y

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 13: Normal Distribution Exponential Distribution Recall that the Normal Distribution is given by an explicit

More information

Random experiments may consist of stages that are performed. Example: Roll a die two times. Consider the events E 1 = 1 or 2 on first roll

Random experiments may consist of stages that are performed. Example: Roll a die two times. Consider the events E 1 = 1 or 2 on first roll Econ 514: Probability and Statistics Lecture 4: Independence Stochastic independence Random experiments may consist of stages that are performed independently. Example: Roll a die two times. Consider the

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Measures. 1 Introduction. These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland.

Measures. 1 Introduction. These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. Measures These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. 1 Introduction Our motivation for studying measure theory is to lay a foundation

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 16. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 16. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 213 Vazirani Note 16 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces Ω, where the

More information

Basic Probability space, sample space concepts and order of a Stochastic Process

Basic Probability space, sample space concepts and order of a Stochastic Process The Lecture Contains: Basic Introduction Basic Probability space, sample space concepts and order of a Stochastic Process Examples Definition of Stochastic Process Marginal Distributions Moments Gaussian

More information

STAT 7032 Probability Spring Wlodek Bryc

STAT 7032 Probability Spring Wlodek Bryc STAT 7032 Probability Spring 2018 Wlodek Bryc Created: Friday, Jan 2, 2014 Revised for Spring 2018 Printed: January 9, 2018 File: Grad-Prob-2018.TEX Department of Mathematical Sciences, University of Cincinnati,

More information

Measures. Chapter Some prerequisites. 1.2 Introduction

Measures. Chapter Some prerequisites. 1.2 Introduction Lecture notes Course Analysis for PhD students Uppsala University, Spring 2018 Rostyslav Kozhan Chapter 1 Measures 1.1 Some prerequisites I will follow closely the textbook Real analysis: Modern Techniques

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

Introduction to Ergodic Theory

Introduction to Ergodic Theory Lecture I Crash course in measure theory Oliver Butterley, Irene Pasquinelli, Stefano Luzzatto, Lucia Simonelli, Davide Ravotti Summer School in Dynamics ICTP 2018 Why do we care about measure theory?

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Chapter 2 Random Variables

Chapter 2 Random Variables Stochastic Processes Chapter 2 Random Variables Prof. Jernan Juang Dept. of Engineering Science National Cheng Kung University Prof. Chun-Hung Liu Dept. of Electrical and Computer Eng. National Chiao Tung

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

1 Lesson 1: Brunn Minkowski Inequality

1 Lesson 1: Brunn Minkowski Inequality 1 Lesson 1: Brunn Minkowski Inequality A set A R n is called convex if (1 λ)x + λy A for any x, y A and any λ [0, 1]. The Minkowski sum of two sets A, B R n is defined by A + B := {a + b : a A, b B}. One

More information

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation EE 178 Probabilistic Systems Analysis Spring 2018 Lecture 6 Random Variables: Probability Mass Function and Expectation Probability Mass Function When we introduce the basic probability model in Note 1,

More information