On the Effect of the Boundary Conditions and the Collision Model on Rarefied Gas Flows

Size: px
Start display at page:

Download "On the Effect of the Boundary Conditions and the Collision Model on Rarefied Gas Flows"

Transcription

1 On the Effect of the Boundar Conditions and the Collision Model on Rarefied Gas Flows M. Vargas a, S. Stefanov a and D. Valougeorgis b a Institute of Mechanics, Bulgarian Academ of Sciences, Acad. G. Bonchev Str., Block 4, Sofia 3, Bulgaria b Department of Mechanical Engineering, Universit of hessal, Pedion Areos, 38334, Volos, Greece Abstract. In this work, the effect of the gas-surface interaction law and of the intermolecular collision model is examined b solving, using the DSMC method, the heat transfer problem between parallel plates and the non-isothermal Poiseuille flow problem. In the former one the Cercignani-Lampis model is applied to analze the influence of the gas-surface interaction parameters, while in the latter one a comparison between the results obtained b implementing the Hard Sphere, Variable Hard Sphere, Variable Soft Sphere and Maxwellian models is performed. Calculations have been carried out for several values of the Knudsen number, temperature ratio and Froude number. A comparison between the DSMC and the corresponding discrete velocit results ields ver good agreement between the two approaches. Finall, the convergence behavior of a Bernoulli trials based scheme, which allows the use of a smaller number of particles per cell, and the No ime Counter are compared for different sampling sequences. Kewords: boundar conditions, interaction models, heat transfer, DSMC, Bernoulli trials. PACS: 5..Ln INRODUCION he DSMC method proposed b Bird [] is used to stud i) the one-dimensional heat transfer (Fourier flow) problem and ii) adding a force parallel to the walls, the Poiseuille flow with non-isothermal walls. he influence of the boundar conditions on the heat flux is analzed for the Fourier flow problem b using the Cercignani-Lampis (CLL) model []. his model, compared to the well-known specular-diffuse reflection model, provides an improved phsical meaning [3]. he implementation of the CLL model in the DSMC has been described b Lord [4]. A comparison between the DSMC and the corresponding discrete velocit results [5] in the whole range of Knudsen number is included. he influence of different intermolecular potentials (Hard Sphere, Variable Hard Sphere, Variable Soft Sphere and Maxwellian) on the calculation of the heat flux is analzed for the acceleration driven flow between plates with non-isothermal walls. In addition, the effect of all the parameters involved in this problem (Knudsen number, temperature ratio and Froude number) is investigated. Finall, the convergence behavior of a Bernoulli trials based scheme, which has been previousl used [6] for 3D calculations, is implemented. he behavior of this more advanced scheme is compared with the tpical No ime Counter scheme and several sampling performances are included in a similar wa as presented in [7]. PROBLEM FORMULAION Plane Fourier Flow he one-dimensional plane Fourier flow problem deals with the heat transfer through a gas confined between two infinite stationar parallel plates maintained at different temperatures. he plates are at = and = L with temperatures C = ( - ) and H = ( + ) respectivel as shown in Figure (left). he initial state of the gas is in equilibrium at reference pressure and temperature P and, with a reference number densit n = P /(R )

2 and a reference Knudsen number = /L, where is the mean free path, which is defined for hard sphere particles as ( dn), with d being the diameter of the particles and R the gas constant. o render the problem dimensionless, we normalize the position b L, the temperatures b, the velocities b the most probable molecular speed v R m, the number densit b n and the heat flux b (n mv 3 ). Here R m is the specific gas constant and m is the molecular mass. FIGURE. Schematic diagram of the plane Fourier flow (left) and non-isothermal Poiseuille flow (right) Plane Acceleration-Driven Flow with emperature Difference he one-dimensional plane non-isothermal Poiseuille flow consists of the movement of a gas between two parallel plates maintained at different temperatures H and C due to the effect of a pressure difference along the channel. It can be described schematicall also b Figure (right), but adding a pressure difference parallel to the plates. he implementation of this flow was done considering a ver short region of the parallel plates, so that we could assume that the pressure gradient in this region is constant, and with periodic conditions at the boundaries perpendicular to the walls in order to simulate a full developed flow. he implementation consisted of an acceleration-driven flow, where a constant bod force parallel to the plates (F = mg) acts on ever particle of the domain. his acceleration can easil be related to the pressure gradient dp/dx b using the expression: dp g () dx For this case we can obtain an additional non-dimensional parameter, the Froude number Fr = v g L Cercignani Lampis Boundar Conditions he Cercignani-Lampis model (CLL) is used in this work to compute the gas-surface interactions. he CLL model contains two adjustable parameters, namel the normal energ accommodation coefficient, n, and the tangential momentum accommodation coefficient, t. he first one, n, can range from to and is related to the part of kinetic energ corresponding to the normal velocit, while the latter, t, can range from to and is related to the tangential momentum. Besides, the tangential energ accommodation coefficient can be defined as t = t (- t ). he scattering kernel consists of three parts, one for each of the velocit components, and represents the probabilit of a particle with incident velocit to be reflected with. he implementation of the model in DSMC simulations is well described b Lord [4]. First, the components of the pre-collision velocit ( x,, z) are expressed in a local coordinate sstem parallel to the incident velocit vector of the molecule obtaining (u,v ',), where u x and v = z. he value in the local coordinate sstem of the tangential post-collision velocit components u and w can be sampled as follows: R ' f; r t t ln R f ; u t u rcos ; wrsin () he value of the normal velocit component v can be sampled: ' ' Rf 3; r nln Rf 4 ; v r n v r n v cos It is important to mention that all velocities are referred to the most probable velocit at the wall temperature w k. Finall, the velocit vector is transformed into the global coordinate sstem. (3)

3 Molecular Interaction Models here are several collision models which describe different kinds of interactions between the particles. he inverse power law model is based on the assumption that the repulsive force between the particles is inversel proportional to /r. he dependence of the viscosit and thermal conductivit with temperature is proportional to ω, where 3 (4) According to this, the dependence is proportional to / and to for hard sphere ( ) and Maxwellian interaction ( = 5) respectivel. One of the drawbacks of the HS model is that the cross-section is independent of the relative translational energ (E t ) in the collision, which is not realistic. herefore, a variable cross-section is required to match the powers of the order of.75 which are characteristic of real gases. his led to the definition of the Variable Hard Sphere (VHS) model which represents a hard sphere molecule whose diameter d is function of the relative molecular velocit c r. d c r (5), ref d ref c r, ref where,ref, d ref and c r,ref are reference values. In the VHS model, the ratio of the momentum to the viscosit crosssection follows the HS value. However, this is a deficienc because the ratio varies with the power law in the case of the inverse power law model, and the real gas values are different from HS values. his led to the definition [8] of the VSS model, where the deflection angle χ is given b: cos b (6) d he VSS model matches the HS model when is equal to and is equal to ( = ½). he reference molecular diameter is related b equation (7) to the reference viscosit for all the cases and it is defined b: mk ref 5 dref (7) 457ref Here, the following expressions for the components of the postcollision relative velocit have been used: u cos u sin sin v w (8) * r r r r v cos v sin c w cos u v sin v w (9) * r r r r r r r r w cos w sin c v cos u w sin v w () * r r r r r r r r RESULS AND DISCUSSIONS Gas-Surface Interaction in the Fourier Flow he influence of the gas-surface interaction parameters involved in the CLL model on the heat transfer for pure planar Fourier flow is shown in Figure for =. and the HS model. In particular, the heat flux is plotted versus each accommodation coefficient, keeping the other constant and equal to unit. It can be seen that the influence of the accommodation coefficients is high for large Knudsen numbers, but lower when the Knudsen number decreases. his can be explained taking into account that as Knudsen is increased the collisions with the walls are dominant as the whole domain is contained within the Knudsen laers. he opposite happens when the Knudsen number is decreased and the collision between the molecules becomes more important than the collision with the boundaries. Besides, a smmetric dependence of the heat flux on t around t = can be observed. his smmetr is understandable since in pure Fourier flow there is no macroscopic movement of the gas, where specular reflection has the same global effect as backscattering. On the contrar, the heat flux increases monotonicall with n. In addition, calculations of the heat flux for the plane Fourier flow for diffuse boundar conditions were carried out in order to compare the DSMC results with those obtained using the discrete velocit method [5]. he simulations were done for different rarefaction conditions, from the free molecular regime until the continuum flow

4 regime, and for the case of = ( H / C = 3). he results are shown in able for different Knudsen numbers. he results between both approaches are in ver good agreement = = = t -.5 = = = n FIGURE. Heat flux dependence on the tangential momentum accommodation coefficient t keeping n = (left) and on the normal energ accommodation coefficient n keeping t = (right). ABLE. Heat flux in the whole range of rarefaction and = ( H / C = 3) obtained b DSMC and DVM Kn DSMC DVM Molecular Interaction Models in the Poiseuille Flow with Heat ransfer In Figure 3 temperature distributions between the plates are shown for various flow parameters. In each case results for all four implemented potentials are provided. It is seen that in each of Figures 3a, 3c and 3d, with Kn =., the corresponding temperature distributions are ver close. Significant differences appear onl for Kn =. (Figure 3b), as the intermolecular collisions become predominant over the collisions with the walls and the flow velocit increases when the Kn is decreased and the Fr remains constant =.5; Fr = 3.; Kn=. 4 Kn a) b) 3 =.5; Fr = 3.; Kn=...9 = 3; Fr = 3.; Kn= c) d) Fr.5 = 3; Fr =.7; Kn=..8.5 HS VHS VSS Maxwell FIGURE 3. emperature dependence on the chosen molecular interaction model for the shown values of Kn, Fr and H / C.

5 Also b observing Figures 3a, 3c and 3d, where the Knudsen number is the same, the effect of changing the temperature ratio and the Froude number can be examined. More specificall, at higher temperature ratio and Froude number (Figure 3d), the temperature distribution is monotonic while, as the temperature ratio and the Froude number are reduced, it becomes non-monotonic with a peak close to the hot wall (Figures 3a and 3d). he corresponding results for the heat flux are shown in Figure 4. As expected, the heat transfer increases when the temperature ratio increases. It can be seen that in Figure 4c the heat flux is alwas negative, while in Figure 4a is positive in part of the domain. his is explained b monitoring the corresponding temperature profiles. he influence of the Froude number can be analzed b comparing Figure 4c and 4d. When the Fr is decreased, the heat flux in the central region of the domain is slightl increased as well as the difference between the heat flux in the hot and in the cold wall. Regarding the role of the applied intermolecular model, its influence is negligible at high Knudsen. In general, the differences in the results for the various models increase as the Knudsen number decreases and the temperature ratio increases. he differences between the models appear to be larger in the central region of the channel in the temperature profiles, while for the heat transfer a bigger difference is seen near the walls. he largest discrepancies appear between the HS and Maxwellian models, with the Maxwellian model being the one which produces the highest value for the heat flux. he differences between the VHS and VSS models are quite small for the cases analzed in this work...5 =.5; Fr = 3.; Kn=. =.5; Fr = 3.; Kn=..5 a) b) Kn = 3; Fr = 3.; Kn= c) Fr d) = 3; Fr =.7; Kn= HS VHS VSS Maxwell FIGURE 4. Heat flux dependence on the chosen molecular interaction model for the shown values of Kn, Fr and H / C. No ime Counter and Bernoulli rial Schemes he convergence behavior of a Bernoulli trials based scheme [6] is investigated for different sampling performances and compared with the widel used No ime Counter scheme (NC) proposed b Bird []. In the NC scheme the maximum number of collision pairs is calculated at the beginning and then pairs are selected randoml and the collisions are computed with a certain probabilit. Instead, in the Bernoulli rials based scheme (B) all possible collision pairs within the cell are chosen to be collided with a certain probabilit which is proportional, as in the case of NC, to the total cross section and the relative velocit. B computing all possible pairs, the repeated collisions, which can lead in certain conditions to wrong results, are avoided. he computational cost of the B scheme is proportional to N, being N is the average number of particles per cell, in contrast to the NC scheme with proportionalit to N. However, the B scheme allows the use of a small number of particles per cell, keeping the same accurac as the NC scheme. Furthermore, in order to allow collisions between particles of neighboring cells, a dual grid was introduced. he binar collisions in each cell are calculated in the original grid for a time interval t/ and then in the shifted grid shifted x/ in x- and -direction for the other t/ without moving the particles. hen all the particles in the domain are moved at a distance proportional to their new velocities without colliding during t.

6 In this section, three different sampling performances were analzed for each scheme: - For the NC scheme collision-sample-move (CSM), collision-move-sample (CMS) and collision-samplemove-sample (CSMS). - For the B scheme collision-collision-move-sample (CCMS), collision-collision-sample-move (CCSM) and the smmetric collision-sample-collision-move (CSCM). he stud case chosen for this aim was the Fourier flow defined above with purel diffuse walls and with reference pressure and temperature of the hard-sphere-like gas P and C and with =.. he reference Knudsen is =.9 and the reference heat flux for these cases is q ref = n mv C, where vc Rm. C he results presented here represent the time discretization errors of the different schemes for two different values of the mean number of particles per cell NC CSM B CCSM B CSCM NC CSMS -.9 NC CMS B CCMS -. NC B t [ns] CSCM CMS CSMS CCMS -.3 NC B t [ns] FIGURE 5. Heat flux versus time step for the different schemes (NC and B) and sampling procedures. he simulations were performed dividing the domain in cells and using (left) 5 and (right) particles per cell as average. he results presented show the dependence of the heat flux on the selected scheme. When the average number of particles per cell is big enough (Figure 5 left), the behavior of both schemes (NC and B) are ver similar. With two of the methods, NC with double sampling (CSMS) and B with smmetric sampling (CSCM), the heat flux deviates slightl from the converging value when the time step is increased. he value of the heat flux is overpredicted for the B with smmetric sampling, while for NC with double sampling is underpredicted. For the other four DSMC models the heat flux converge to the same value as the previous methods for small time steps, but it deviates significantl when the time step increases. However, if the average number of particles per cell is drasticall reduced (Figure 5 right), it turns out that onl the B scheme with smmetric sampling can cope with a ver low number of particles per cell and the increase of the time step. he NC with double sampling gives the same value of the heat flux for small time steps, but the deviate when this time step starts increasing. he other single-sampling methods describe a similar but more pronounced tendenc as with using a large number of particles per cell. ACKNOWLEDGMENS he research leading to these results has received funding from the European Communit's Seventh Framework Programme (IN - FP7/7-3) under grant agreement n 554. REFERENCES. G. A. Bird, Molecular Gas Dnamics and the Direct Simulation of Gas Flows, Oxford, Clarendon, C. Cercignani, M. Lampis. ransp. heor and Stat. Phsics,, -4 (97). 3. F. Sharipov. European Journal of Mechanics B/Fluids, 3-3 (). 4. R. G. Lord. Phs. Fluids A, 3, 76-7 (99). 5. S. Pantazis, D. Valougeorgis. Heat transfer between parallel plates via kinetic theor in the whole range of the Knudsen number. 5 th European hermal-sciences Conference, Eindhoven, S. Stefanov, V. Roussinov, C. Cercignani. Phs. Fluids 9, 4 (7). 7. M. A. Gallis, J. R. orcznski, D. J. Rader, M. ij, A. Santos. Phs. Fluids 8, 74 (6). 8. K. Koura, H. Matsumoto. Phs. Fluids A, 3, (99).

Oscillatory heating in a microchannel at arbitrary oscillation frequency in the whole range of the Knudsen number

Oscillatory heating in a microchannel at arbitrary oscillation frequency in the whole range of the Knudsen number Journal of Phsics: Conference Series Oscillator heating in a microchannel at arbitrar oscillation freuenc in the whole range of the Knudsen number To cite this article: O Buchina and D Valougeorgis J.

More information

Scattering Properties of Gas Molecules on a Water Adsorbed Surface

Scattering Properties of Gas Molecules on a Water Adsorbed Surface Scattering Properties of Gas Molecules on a Water Adsorbed Surface Hideki Takeuchi a, Koji Yamamoto b, and Toru Hakutake c a Department of Mechanical Engineering, Kochi National College of Technolog, Nankoku

More information

THERMALLY DRIVEN GAS FLOWS IN CAVITIES FAR FROM LOCAL EQUILIBRIUM

THERMALLY DRIVEN GAS FLOWS IN CAVITIES FAR FROM LOCAL EQUILIBRIUM 8 th GRACM International Congress on Computational Mechanics Volos, 1 Jul 15 Jul 15 TERMALLY DRIVEN GAS FLOWS IN CAVITIES FAR FROM LOCAL EQUILIBRIUM Giorgos Tatsios 1, Dimitris Valougeorgis 1 and Stefan

More information

The Attractors of the Rayleigh-Bénard Flowof ararefied Gas

The Attractors of the Rayleigh-Bénard Flowof ararefied Gas The Attractors of the Raleigh-Bénard Flowof ararefied Gas S.Stefanov, V. Roussinov and C. Cercignani Inst. of Mech., Bulg. Acad. of Sciences, Sofia, Bulgaria Dipart. di Matematica, Polit. di Milano, Ital

More information

Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum

Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum Oleg Sazhin Ural State University, Lenin av.5, 6283 Ekaterinburg, Russia E-mail: oleg.sazhin@uralmail.com Abstract. The

More information

DSMC Simulation of Binary Rarefied Gas Flows between Parallel Plates and Comparison to Other Methods

DSMC Simulation of Binary Rarefied Gas Flows between Parallel Plates and Comparison to Other Methods Simulation of Binary Rarefied Gas Flows between Parallel Plates and Comparison to Other Methods L. Szalmas Department of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos 38334, Greece

More information

Design and optimization of a Holweck pump via linear kinetic theory

Design and optimization of a Holweck pump via linear kinetic theory Journal of Phsics: Conference Series Design and optimization of a Holweck pump via linear kinetic theor To cite this article: Sterios Naris et al 2012 J. Phs.: Conf. Ser. 362 012024 View the article online

More information

DSMC-Based Shear-Stress/Velocity-Slip Boundary Condition for Navier-Stokes Couette-Flow Simulations

DSMC-Based Shear-Stress/Velocity-Slip Boundary Condition for Navier-Stokes Couette-Flow Simulations DSMC-Based Shear-Stress/Velocity-Slip Boundary Condition for Navier-Stokes Couette-Flow Simulations J. R. Torczynski and M. A. Gallis Engineering Sciences Center, Sandia National Laboratories, P. O. Box

More information

Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow

Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow Journal of Statistical Phsics, Vol. 109, Nos. 3/4, November 2002 ( 2002) Comparison of Kinetic Theor and Hdrodnamics for Poiseuille Flow Yihao Zheng, 1 Alejandro L. Garcia, 2, 3 and Berni J. Alder 1, 3

More information

Visualizing Non-Equilibrium Flow Simulations using 3-D Velocity Distribution Functions

Visualizing Non-Equilibrium Flow Simulations using 3-D Velocity Distribution Functions Visualizing Non-Equilibrium Flow Simulations using 3-D Velocit Distribution Functions A. Venkattraman and A.A. Alexeenko School of Aeronautics & Astronautics, Purdue Universit, West Lafaette IN 797 Abstract.

More information

ABSTRACT. Nomenclature

ABSTRACT. Nomenclature ABSTRACT The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic

More information

Data on the Velocity Slip and Temperature Jump Coefficients

Data on the Velocity Slip and Temperature Jump Coefficients Data on the Velocity Slip and Temperature Jump Coefficients Felix Sharipov Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Brazil email: sharipov@fisica.ufpr.br;

More information

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction 1 Module 1 : The equation of continuit Lecture 4: Fourier s Law of Heat Conduction NPTEL, IIT Kharagpur, Prof. Saikat Chakrabort, Department of Chemical Engineering Fourier s Law of Heat Conduction According

More information

Chapter 4 Transport of Pollutants

Chapter 4 Transport of Pollutants 4- Introduction Phs. 645: Environmental Phsics Phsics Department Yarmouk Universit hapter 4 Transport of Pollutants - e cannot avoid the production of pollutants. hat can we do? - Transform pollutants

More information

Binary gas mixtures expansion into vacuum. Dimitris Valougeorgis, Manuel Vargas, Steryios Naris

Binary gas mixtures expansion into vacuum. Dimitris Valougeorgis, Manuel Vargas, Steryios Naris Binary gas mixtures expansion into vacuum Dimitris Valougeorgis, Manuel Vargas, Steryios Naris University of Thessaly Department of Mechanical Engineering Laboratory of Transport Phenomena Pedion reos,

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

A Practical Variance Reduced DSMC Method

A Practical Variance Reduced DSMC Method A Practical Variance Reduced DSMC Method H.A. Al-Mohssen and N.G. Hadjiconstantinou Mechanical Engineering Dept., MIT, 77 Massachusetts Ave, Cambridge, MA 02139, USA Abstract. The goal of this work is

More information

Mathematical Modeling on MHD Free Convective Couette Flow between Two Vertical Porous Plates with Chemical Reaction and Soret Effect

Mathematical Modeling on MHD Free Convective Couette Flow between Two Vertical Porous Plates with Chemical Reaction and Soret Effect International Journal of Advanced search in Phsical Science (IJARPS) Volume, Issue 5, September 4, PP 43-63 ISSN 349-7874 (Print) & ISSN 349-788 (Online) www.arcjournals.org Mathematical Modeling on MHD

More information

Joule Heating Effects on MHD Natural Convection Flows in Presence of Pressure Stress Work and Viscous Dissipation from a Horizontal Circular Cylinder

Joule Heating Effects on MHD Natural Convection Flows in Presence of Pressure Stress Work and Viscous Dissipation from a Horizontal Circular Cylinder Journal of Applied Fluid Mechanics, Vol. 7, No., pp. 7-3, 04. Available online at www.jafmonline.net, ISSN 735-357, EISSN 735-3645. Joule Heating Effects on MHD Natural Convection Flows in Presence of

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

A first contact with STAR-CCM+ Comparing analytical and finite volume solutions with STAR-CCM+ simulations

A first contact with STAR-CCM+ Comparing analytical and finite volume solutions with STAR-CCM+ simulations A first contact with STAR-CCM+ Comparing analtical and finite volume solutions with STAR-CCM+ simulations Michael Heer Analtical Finite volumes STAR-CCM+ What is ParisTech? ParisTech is a consortium of

More information

Research Article. Slip flow and heat transfer through a rarefied nitrogen gas between two coaxial cylinders

Research Article. Slip flow and heat transfer through a rarefied nitrogen gas between two coaxial cylinders Available online wwwjocprcom Journal of Chemical and Pharmaceutical Research, 216, 8(8):495-51 Research Article ISSN : 975-7384 CODEN(USA) : JCPRC5 Slip flow and heat transfer through a rarefied nitrogen

More information

Behaviour of microscale gas flows based on a power-law free path distribution function

Behaviour of microscale gas flows based on a power-law free path distribution function Behaviour of microscale gas flows based on a power-law free path distribution function Nishanth Dongari, Yonghao Zhang and Jason M Reese Department of Mechanical Engineering, University of Strathclyde,

More information

Stefan Stefanov Bulgarian Academy of Science, Bulgaria Ali Amiri-Jaghargh Ehsan Roohi Hamid Niazmand Ferdowsi University of Mashhad, Iran

Stefan Stefanov Bulgarian Academy of Science, Bulgaria Ali Amiri-Jaghargh Ehsan Roohi Hamid Niazmand Ferdowsi University of Mashhad, Iran Stefan Stefanov Bulgarian Academy of Science, Bulgaria Ali Amiri-Jaghargh Ehsan Roohi Hamid Niazmand Ferdowsi University of Mashhad, Iran Outlines: Introduction DSMC Collision Schemes Results Conclusion

More information

Chapter 2 Basic Conservation Equations for Laminar Convection

Chapter 2 Basic Conservation Equations for Laminar Convection Chapter Basic Conservation Equations for Laminar Convection Abstract In this chapter, the basic conservation equations related to laminar fluid flow conservation equations are introduced. On this basis,

More information

Subsonic choked flow in the microchannel

Subsonic choked flow in the microchannel PHYSICS OF FLUIDS 18, 127104 2006 Subsonic choked flow in the microchannel Xie Chong a Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics of the Chinese Academy of Sciences, 15 West

More information

Consideration of Shock Waves in Airbag Deployment Simulations

Consideration of Shock Waves in Airbag Deployment Simulations Consideration of Shock Waves in Airbag Deploment Simulations Doris Rieger BMW Group ABSTRACT When the inflation process of a simple flat airbag was simulated with the MADYMO gas flow module, the resulting

More information

A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC

A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC Purdue University Purdue e-pubs School of Aeronautics and Astronautics Faculty Publications School of Aeronautics and Astronautics 2012 A comparative study of no-time-counter and majorant collision frequency

More information

CONSERVATION OF ENERGY FOR ACONTINUUM

CONSERVATION OF ENERGY FOR ACONTINUUM Chapter 6 CONSERVATION OF ENERGY FOR ACONTINUUM Figure 6.1: 6.1 Conservation of Energ In order to define conservation of energ, we will follow a derivation similar to those in previous chapters, using

More information

Gas-Surface Interaction Effect on Round Leading Edge Aerothermodynamics

Gas-Surface Interaction Effect on Round Leading Edge Aerothermodynamics Brazilian Journal of Physics, vol. 37, no. 2A, June, 2007 337 Gas-Surface Interaction Effect on Round Leading Edge Aerothermodynamics Wilson F. N. Santos National Institute for Space Research, Cachoeira

More information

Kinetic calculation of rarefied gaseous flows in long tapered rectangular microchannels

Kinetic calculation of rarefied gaseous flows in long tapered rectangular microchannels Kinetic calculation of rarefied gaseous flows in long tapered rectangular microchannels Lajos SZALMAS 1,* * Corresponding author: Tel.: ++49 (0)421 218 63495; Email: lszalmas@gmail.com 1 Center for Environmental

More information

RESULTS ON THE VISCOUS SLIP COEFFICIENT FOR BINARY GAS MIXTURES. French Title

RESULTS ON THE VISCOUS SLIP COEFFICIENT FOR BINARY GAS MIXTURES. French Title SHF Microfluidics 26 - Toulouse, 12-14 December 26 - Authors - Title RESULTS ON THE VISCOUS SLIP COEFFICIENT FOR BINARY GAS MIXTURES French Title Dimitris Valougeorgis Department of Mechanical and Industrial

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

Assessment and development of the gas kinetic boundary condition for the Boltzmann equation

Assessment and development of the gas kinetic boundary condition for the Boltzmann equation Under consideration for publication in J. Fluid Mech. 1 Assessment and development of the gas kinetic boundary condition for the Boltzmann equation Lei Wu 1, and Henning Struchtrup 2 1 James Weir Fluids

More information

Pan Pearl River Delta Physics Olympiad 2005

Pan Pearl River Delta Physics Olympiad 2005 1 Jan. 29, 25 Morning Session (9 am 12 pm) Q1 (5 Two identical worms of length L are ling on a smooth and horizontal surface. The mass of the worms is evenl distributed along their bod length. The starting

More information

Magnetic Field and Chemical Reaction Effects on Convective Flow of

Magnetic Field and Chemical Reaction Effects on Convective Flow of Communications in Applied Sciences ISSN 221-7372 Volume 1, Number 1, 213, 161-187 Magnetic Field and Chemical Reaction Effects on Convective Flow of Dust Viscous Fluid P. Mohan Krishna 1, Dr.V.Sugunamma

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

International Journal of Scientific Research and Reviews

International Journal of Scientific Research and Reviews Research article Available online www.ijsrr.org ISSN: 2279 543 International Journal of Scientific Research and Reviews Soret effect on Magneto Hdro Dnamic convective immiscible Fluid flow in a Horizontal

More information

Simulation of Plane Poiseuille Flow of a Rarefied Gas with an Extended Lattice Boltzmann Method

Simulation of Plane Poiseuille Flow of a Rarefied Gas with an Extended Lattice Boltzmann Method Simulation of Plane Poiseuille Flow of a Rarefied Gas with an Extended Lattice Boltzmann Method Christopher M. Teixeira Information Systems Laboratories, Inc. 830 Boone Blvd. Ste 500, Vienna VA 8 USA Abstract.

More information

Gas-Surface Interaction Effect on Aerodynamics of Reentry Vehicles

Gas-Surface Interaction Effect on Aerodynamics of Reentry Vehicles International Journal of Educational Research and Information Science 2018; 5(1): 1-9 http://www.openscienceonline.com/journal/eris Gas-Surface Interaction Effect on Aerodynamics of Reentry Vehicles Zay

More information

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner Massachusetts Institute of Technology,

More information

Micro- and nanoscale non-ideal gas Poiseuille flows in a consistent Boltzmann algorithm model

Micro- and nanoscale non-ideal gas Poiseuille flows in a consistent Boltzmann algorithm model INSTITUTE OFPHYSICS PUBLISHING JOURNAL OFMICROMECHANICS ANDMICROENGINEERING J. Micromech. Microeng. () 7 PII: S9-7()7-9 Micro- and nanoscale non-ideal gas Poiseuille flows in a consistent Boltzmann algorithm

More information

COIN TOSS MODELING RĂZVAN C. STEFAN, TIBERIUS O. CHECHE

COIN TOSS MODELING RĂZVAN C. STEFAN, TIBERIUS O. CHECHE Romanian Reports in Phsics 69, 94 (7) COIN TOSS MODELING RĂZVAN C. STEFAN, TIBERIUS O. CHECHE Universit of Bucharest, Facult of Phsics, P.O.Box MG-, RO-775, Bucharest Măgurele, Romania E-mails: stefan.constantin6@gmail.com;

More information

Comparison of Molecular Dynamics and Kinetic Modeling of Gas-Surface Interaction

Comparison of Molecular Dynamics and Kinetic Modeling of Gas-Surface Interaction Comparison of Molecular Dynamics and Kinetic Modeling of Gas-Surface Interaction A.Frezzotti, S.V. Nedea, A.J. Markvoort, P. Spijker and L. Gibelli Dipartimento di Matematica del Politecnico di Milano,

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF MECHANICS. Modeling and simulation of heat transfer and thermal phenomena in micro gas flows

BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF MECHANICS. Modeling and simulation of heat transfer and thermal phenomena in micro gas flows BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF MECHANICS Modeling and simulation of heat transfer and thermal phenomena in micro gas flows Manuel Vargas Hernando Ph.D. thesis for obtaining the scientific degree

More information

CONSERVATION LAWS AND CONSERVED QUANTITIES FOR LAMINAR RADIAL JETS WITH SWIRL

CONSERVATION LAWS AND CONSERVED QUANTITIES FOR LAMINAR RADIAL JETS WITH SWIRL Mathematical and Computational Applications,Vol. 15, No. 4, pp. 742-761, 21. c Association for Scientific Research CONSERVATION LAWS AND CONSERVED QUANTITIES FOR LAMINAR RADIAL JETS WITH SWIRL R. Naz 1,

More information

Velocity Limit in DPD Simulations of Wall-Bounded Flows

Velocity Limit in DPD Simulations of Wall-Bounded Flows Velocit Limit in DPD Simulations of Wall-Bounded Flows Dmitr A. Fedosov, Igor V. Pivkin and George Em Karniadakis Division of Applied Mathematics, Brown Universit, Providence, RI 2912 USA Abstract Dissipative

More information

Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels

Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels Science in China Ser. E Engineering & Materials Science 2005 Vol.48 No.3 317 325 317 Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels WANG Moran & LI Zhixin Department

More information

RAREFIED GAS FLOW IN PRESSURE AND VACUUM MEASUREMENTS

RAREFIED GAS FLOW IN PRESSURE AND VACUUM MEASUREMENTS XX IMEKO World Congress Metrology for Green Growth September 9 4, 202, Busan, Republic of Korea RAREFIED GAS FLOW IN PRESSURE AND VACUUM MEASUREMENTS A. Jeerasak Pitakarnnop National Institute of Metrology,

More information

Variational Approach to Gas Flows in Microchannels on the basis of the Boltzmann Equation for Hard-Sphere Molecules

Variational Approach to Gas Flows in Microchannels on the basis of the Boltzmann Equation for Hard-Sphere Molecules Variational Approach to Gas Flows in Microchannels on the basis of the Boltzmann Equation for Hard-Sphere Molecules Carlo Cercignani 1 and Silvia Lorenzani 1, *Corresponding author: Tel.:++39 02 23994566;

More information

RAREFACTION EFFECT ON FLUID FLOW THROUGH MICROCHANNEL

RAREFACTION EFFECT ON FLUID FLOW THROUGH MICROCHANNEL ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 INVESTIGATION OF AMPLITUDE DEPENDENCE ON NONLINEAR ACOUSTICS USING THE DIRECT SIMULATION MONTE CARLO METHOD PACS: 43.5.Ed Hanford, Amanda

More information

Heat Transfer Engineering Publication details, including instructions for authors and subscription information:

Heat Transfer Engineering Publication details, including instructions for authors and subscription information: This article was downloaded by: [University of Thessaly], [Dimitris Valougeorgis] On: 28 June 211, At: 8:6 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 172954

More information

Assessment of Gas Surface Interaction Models for Computation of Rarefied Hypersonic Flow

Assessment of Gas Surface Interaction Models for Computation of Rarefied Hypersonic Flow JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 23, No. 1, January March 2009 Assessment of Gas Surface Interaction Models for Computation of Rarefied Hypersonic Flow Jose F. Padilla and Iain D. Boyd University

More information

Interspecific Segregation and Phase Transition in a Lattice Ecosystem with Intraspecific Competition

Interspecific Segregation and Phase Transition in a Lattice Ecosystem with Intraspecific Competition Interspecific Segregation and Phase Transition in a Lattice Ecosstem with Intraspecific Competition K. Tainaka a, M. Kushida a, Y. Ito a and J. Yoshimura a,b,c a Department of Sstems Engineering, Shizuoka

More information

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering

More information

Bulk equations and Knudsen layers for the regularized 13 moment equations

Bulk equations and Knudsen layers for the regularized 13 moment equations Continuum Mech. Thermon. 7 9: 77 89 DOI.7/s6-7-5- ORIGINAL ARTICLE Henning Struchtrup Toby Thatcher Bulk equations and Knudsen layers for the regularized 3 moment equations Received: 9 December 6 / Accepted:

More information

L O N G I T U D I N A L V O R T I C E S I N G R A N U L A R F L O W S

L O N G I T U D I N A L V O R T I C E S I N G R A N U L A R F L O W S L O N G I T U D I N A L V O R T I C E S I N G R A N U L A R F L O W S Yoël FORTERRE, Olivier POULIQUEN Institut Universitaire des Sstèmes Thermiques et Industriels (UMR 6595 CNRS) 5, rue Enrico Fermi 13453

More information

DSMC Collision Model for the Lennard-Jones Potential: Efficient Algorithm and Verification

DSMC Collision Model for the Lennard-Jones Potential: Efficient Algorithm and Verification Purdue University Purdue e-pubs School of Aeronautics and Astronautics Faculty Publications School of Aeronautics and Astronautics 2011 DSMC Collision Model for the Lennard-Jones Potential: Efficient Algorithm

More information

A NAVIER-STOKES MODEL INCORPORATING THE EFFECTS OF NEAR- WALL MOLECULAR COLLISIONS WITH APPLICATIONS TO MICRO GAS FLOWS

A NAVIER-STOKES MODEL INCORPORATING THE EFFECTS OF NEAR- WALL MOLECULAR COLLISIONS WITH APPLICATIONS TO MICRO GAS FLOWS Arlemark, E.J. and Dadzie, S.K. and Reese, J.M. (2008) A Navier-Stokes model incorporating the effects of near-wall molecular collisions with applications to micro gas flows. In: 1st European Conference

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

Simulation of Electric Fields in Small Size Divertor Tokamak Plasma Edge

Simulation of Electric Fields in Small Size Divertor Tokamak Plasma Edge Energ and Power Engineering, 21, 39-45 doi:1.4236/epe.21.217 Published Online Februar 21 (http://www.scirp.org/journal/epe) Simulation of Electric Fields in Small Size Divertor Tokamak Plasma Edge Plasma

More information

A wall-function approach to incorporating Knudsen-layer effects in gas micro flow simulations

A wall-function approach to incorporating Knudsen-layer effects in gas micro flow simulations A wall-function approach to incorporating Knudsen-layer effects in gas micro flow simulations D. A. Lockerby 1, J. M. Reese 2 and M. A. Gallis 3 1 Department of Mechanical Engineering, King s College London,

More information

Chemical Reaction and Viscous Dissipation Effects on an Unsteady MHD Flow of Heat and Mass Transfer along a Porous Flat Plate

Chemical Reaction and Viscous Dissipation Effects on an Unsteady MHD Flow of Heat and Mass Transfer along a Porous Flat Plate International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2 Issue 2 December 24 PP 977-988 ISSN 2347-37X (Print) & ISSN 2347-342 (Online) www.arcjournals.org Chemical Reaction

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

Three-dimensional simulation of slip-flow and heat transfer in a microchannel using the lattice Boltzmann method

Three-dimensional simulation of slip-flow and heat transfer in a microchannel using the lattice Boltzmann method 75 Three-dimensional simulation of slip-flow and heat transfer in a microchannel using the lattice Boltzmann method A. C. M. Sousa,2, M. Hadavand & A. Nabovati 3 Department of Mechanical Engineering, University

More information

Unsteady free MHD convection flow past a vertical porous plate in slip-flow regime under fluctuating thermal and mass diffusion *

Unsteady free MHD convection flow past a vertical porous plate in slip-flow regime under fluctuating thermal and mass diffusion * CHAPTER 4 Unstead free MHD convection flow past a vertical porous plate in slip-flow regime under fluctuating thermal and mass diffusion * 4. Nomenclature A : Suction parameter C : Dimensionless species

More information

Comparison of some approximation schemes for convective terms for solving gas flow past a square in a micorchannel

Comparison of some approximation schemes for convective terms for solving gas flow past a square in a micorchannel Comparison of some approximation schemes for convective terms for solving gas flow past a square in a micorchannel Kiril S. Shterev and Sofiya Ivanovska Institute of Mechanics, Bulgarian Academy of Sciences,

More information

The Gas-assisted Expelled Fluid Flow in the Front of a Long Bubble in a Channel

The Gas-assisted Expelled Fluid Flow in the Front of a Long Bubble in a Channel C. H. Hsu, P. C. Chen,. Y. ung, G. C. uo The Gas-assisted Epelled Fluid Flow in the Front of a Long Bubble in a Channel C.H. Hsu 1, P.C. Chen 3,.Y. ung, and G.C. uo 1 1 Department of Mechanical Engineering

More information

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method 10 th International LS-DYNA Users Conference Simulation Technolog (2) Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundar Element Method Yun Huang Livermore Software Technolog Corporation

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

Monte Carlo Simulation of Hypersonic Rarefied Gas Flow using Rotationally and Vibrationally Inelastic Cross Section Models

Monte Carlo Simulation of Hypersonic Rarefied Gas Flow using Rotationally and Vibrationally Inelastic Cross Section Models Monte Carlo Simulation of Hypersonic Rarefied Gas Flow using Rotationally and Vibrationally Inastic Cross Section Mods Hiroaki Matsumoto a a Division of systems research, Yokohama National University 79-5

More information

Entropy ISSN

Entropy ISSN Entrop 5, 7[4], 3 37 3 Entrop ISSN 99-43 www.mdpi.org/entrop/ Full Paper Second law analsis of laminar flow in a channel filled with saturated porous media: a numerical solution Kamel Hooman, Arash Ejlali

More information

Free-molecular gas flow through the highfrequency

Free-molecular gas flow through the highfrequency Journal of Physics: Conference Series PAPER OPEN ACCESS Free-molecular gas flow through the highfrequency oscillating membrane To cite this article: V L Kovalev et al 2016 J. Phys.: Conf. Ser. 681 012034

More information

Rarefaction Effects in Hypersonic Aerodynamics

Rarefaction Effects in Hypersonic Aerodynamics Rarefaction Effects in Hypersonic Aerodynamics Vladimir V. Riabov Department of Mathematics and Computer Science, Rivier College, 4 S. Main St., Nashua, NH 6, USA Abstract. The Direct Simulation Monte-Carlo

More information

Fluid dynamics for a vapor-gas mixture derived from kinetic theory

Fluid dynamics for a vapor-gas mixture derived from kinetic theory IPAM Workshop II The Boltzmann Equation: DiPerna-Lions Plus 20 Years (IPAM-UCLA, April 15-17, 2009) Fluid dynamics for a vapor-gas mixture derived from kinetic theory Kazuo Aoki Department of Mechanical

More information

The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics

The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics PHYSICS OF FLUIDS 18, 111301 2006 The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics Nicolas G. Hadjiconstantinou a Department of Mechanical Engineering,

More information

Chemical Reaction, Radiation and Dufour Effects on Casson Magneto Hydro Dynamics Fluid Flow over A Vertical Plate with Heat Source/Sink

Chemical Reaction, Radiation and Dufour Effects on Casson Magneto Hydro Dynamics Fluid Flow over A Vertical Plate with Heat Source/Sink Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume, Number (6), pp. 9- Research India Publications http://www.ripublication.com Chemical Reaction, Radiation and Dufour Effects on Casson

More information

PHYSICS PART II SECTION- I. Straight objective Type

PHYSICS PART II SECTION- I. Straight objective Type PHYSICS PAT II SECTION- I Straight objective Tpe This section contains 9 multiple choice questions numbered to 1. Each question has choices,, (C) and, out of which ONLY ONE is correct.. A parallel plate

More information

THE CURVATURE EFFECT ON THERMOACOUSTIC WAVES IN A COUETTE RAREFIED GAS FLOW * Peter Gospodinov, Vladimir Roussinov, Dobri Dankov

THE CURVATURE EFFECT ON THERMOACOUSTIC WAVES IN A COUETTE RAREFIED GAS FLOW * Peter Gospodinov, Vladimir Roussinov, Dobri Dankov МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2015 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2015 Proceedings of the Forty Fourth Spring Conference of the Union of Bulgarian Mathematicians SOK Kamchia, April

More information

Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani. Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran

Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani. Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran Overview Micro/Nano Couette Flow DSMC Algorithm Code Validation Entropy and

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at.sciencedirect.com ScienceDirect Procedia Engineering 9 (14 383 388 1th International Conference on Mechanical Engineering, ICME 13 Effects of volumetric heat source and temperature

More information

STABILIZED FEM SOLUTIONS OF MHD EQUATIONS AROUND A SOLID AND INSIDE A CONDUCTING MEDIUM

STABILIZED FEM SOLUTIONS OF MHD EQUATIONS AROUND A SOLID AND INSIDE A CONDUCTING MEDIUM Available online: March 09, 2018 Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 197 208 (2019) DOI: 10.1501/Commua1_0000000901 ISSN 1303 5991 http://communications.science.ankara.edu.tr/index.php?series=a1

More information

Thermal creep flow by Thomas Hällqvist Veronica Eliasson

Thermal creep flow by Thomas Hällqvist Veronica Eliasson Thermal creep flow by Thomas Hällqvist Veronica Eliasson Introduction Thermal creep It is possible to start rarefied gas flows with tangential temperature gradients along the channel walls, where the fluid

More information

PHYSICAL REVIEW E 78, Lattice Boltzmann method for simulation of compressible flows on standard lattices

PHYSICAL REVIEW E 78, Lattice Boltzmann method for simulation of compressible flows on standard lattices PHYSICAL REVIEW E 7, 016704 00 Lattice Boltzmann method for simulation of compressible flows on standard lattices Nikolaos I. Prasianakis 1, * and Ilia V. Karlin 1,, 1 Aerothermochemistr and Combustion

More information

Fluctuating Hydrodynamics and Direct Simulation Monte Carlo

Fluctuating Hydrodynamics and Direct Simulation Monte Carlo Fluctuating Hydrodynamics and Direct Simulation Monte Carlo Kaushi Balarishnan Lawrence Bereley Lab John B. Bell Lawrence Bereley Lab Alesandar Donev New Yor University Alejandro L. Garcia San Jose State

More information

Simulation of Plume-Spacecraft Interaction

Simulation of Plume-Spacecraft Interaction Simulation of Plume-Spacecraft Interaction MATÍAS WARTELSKI Master of Science Thesis in Space Physics Examiner: Prof. Lars Blomberg Space and Plasma Physics School of Electrical Engineering Royal Institute

More information

Numerical Simulation of Rarefied-Gas Flows about a Rotating Cylinder

Numerical Simulation of Rarefied-Gas Flows about a Rotating Cylinder Numerical Simulation of Rarefied-Gas Flows about a Rotating Cylinder Vladimir V. Riabov Department of Computer Science, Rivier College, 42 South Main Street, Nashua, NH 36-86, USA Abstract. Subsonic and

More information

Film thickness Hydrodynamic pressure Liquid saturation pressure or dissolved gases saturation pressure. dy. Mass flow rates per unit length

Film thickness Hydrodynamic pressure Liquid saturation pressure or dissolved gases saturation pressure. dy. Mass flow rates per unit length NOTES DERITION OF THE CLSSICL REYNOLDS EQTION FOR THIN FIL FLOWS Te lecture presents te derivation of te Renolds equation of classical lubrication teor. Consider a liquid flowing troug a tin film region

More information

Analysis of A Thermal Transpiration Flow:

Analysis of A Thermal Transpiration Flow: 1 / 28 Analysis of A Thermal Transpiration Flow: A Circular Cross Section Micro-tube Submitted to a Temperature Gradient Along its Axis Marcos Rojas, Pierre Perrier, Irina Graur and J. Gilbert Meolans

More information

Shear Force in Radiometric Flows

Shear Force in Radiometric Flows Shear Force in Radiometric Flows Natalia E. Gimelshein, Sergey F. Gimelshein, Andrew D. Ketsdever and Nathaniel P. Selden ERC, Inc, Edwards AFB, CA 93524 University of Colorado at Colorado Springs, Colorado

More information

DSMC Modeling of Rarefied Flow through Micro/Nano Backward-Facing Steps

DSMC Modeling of Rarefied Flow through Micro/Nano Backward-Facing Steps DSMC Modeling of Rarefied Flow through Micro/Nano Backward-Facing Steps Amir-Mehran Mahdavi 1, Ehsan Roohi 2 1,2- Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi university of Mashhad,

More information

The Boltzmann Equation and Its Applications

The Boltzmann Equation and Its Applications Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC

More information

ME615 Project Report Aeroacoustic Simulations using Lattice Boltzmann Method

ME615 Project Report Aeroacoustic Simulations using Lattice Boltzmann Method ME615 Project Report Aeroacoustic Simulations using Lattice Boltzmann Method Kameswararao Anupindi School of Mechanical Engineering, Purdue Universit, West Lafaette, IN, 4796, USA Lattice Boltzmann method

More information

Andrés Santos Universidad de Extremadura, Badajoz (Spain)

Andrés Santos Universidad de Extremadura, Badajoz (Spain) Andrés Santos Universidad de Extremadura, Badajoz (Spain) Outline Moment equations molecules for Maxwell Some solvable states: Planar Fourier flow Planar Fourier flow with gravity Planar Couette flow Force-driven

More information

Available online at ScienceDirect. Procedia Engineering 103 (2015 ) 52 59

Available online at   ScienceDirect. Procedia Engineering 103 (2015 ) 52 59 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 103 (2015 ) 52 59 The 13 th Hpervelocit Impact Smposium Guided Impact Mitigation in 2D and 3D Granular Crstals Haden A. Burgone

More information

Effective Boundary Conditions for Continuum Method of Investigation of Rarefied Gas Flow over Blunt Body

Effective Boundary Conditions for Continuum Method of Investigation of Rarefied Gas Flow over Blunt Body Effective Boundary Conditions for Continuum Method of Investigation of Rarefied Gas Flow over Blunt Body I.G. Brykina a, B.V. Rogov b, I.L. Semenov c, and G.A. Tirskiy a a Institute of Mechanics, Moscow

More information

A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES

A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES G. Krismanic, N. Baumgartinger and H. Pfützner Institute of Fundamentals and Theor of Electrical Engineering Bioelectricit

More information

Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures

Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures Vladimir V. Riabov Rivier College, Nashua, New Hampshire, USA Abstract. Diffusion effects in the spherical expanding flows of argon-helium

More information