Konstrukcija i analiza algoritama

Size: px
Start display at page:

Download "Konstrukcija i analiza algoritama"

Transcription

1 Konstrukcija i analiza algoritama 27. februar 207 Matematička indukcija Princip matematičke indukcije: Da bi za svako n N važilo tvrdjenje T (n) dovoljno je pokazati: bazu indukcije: tvrdjenje T () induktivni korak: za svaki prirodan broj n važi da ako je tačno tvrdjenje T (n), onda je tačno i tvrdjenje T (n + ) Analogno, ako je potrebno dokazati da je tvrdjenje T (n) tačno za svaki ceo broj n b, onda je dovoljno pokazati da je tačno tvrdjenje T (b) i da je tačna implikacija T (i) T (i + ) za svaki ceo broj i b. Primetimo da b može biti negativan broj, nula ili pozitivan broj. Princip matematičke indukcije se često koristi u izmenjenom obliku: Princip potpune matematičke indukcije: Da bi za svako n N važilo tvrdjenje T (n) dovoljno je pokazati: bazu indukcije: tvrdjenje T () induktivni korak: za svaki prirodan broj n važi da ako je tačno tvrdjenje T (k) za svako k < n, onda je tačno i tvrdjenje T (n). Zadaci. Koristeći princip matematičke indukcije dokazati da za svako n N važi: n q i = qn+ q i=0 2. Koristeći princip matematičke indukcije dokazati da za svako n N važi: 5 n n + je deljivo sa 8. Uputstvo: Uvedimo oznaku S(i) = 5 i i + i izrazimo S(n + ) preko S(n). Materijal je osmišljen na osnovu knjiga: Algoritmi, Miodraga Živkovića i Discrete Mathematics and Its Applications, Kenneth H. Rosen

2 3. Koristeći princip matematičke indukcije dokazati da važi 2 n > n 2 za svaki ceo broj n veći od 4. Uputstvo: Jednostavno se može pokazati da za broj 5 važi baza indukcije. Za svaki prirodan broj n 5 ako se pretpostavi da važi 2 n > n 2, onda važi: 2 n+ = 2 2 n = 2 n + 2 n > n 2 + n 2 > n 2 + 4n = n 2 + 2n + 2n > n 2 + 2n + = (n + ) 2, te je tačan i induktivni korak. 4. Koristeći princip matematičke indukcije dokazati da za svaki celi broj n > važi sledeća nejednakost: 2n i=n+ i > Koristeći princip matematičke indukcije dokazati da za svaki celi broj n > važi sledeća nejednakost: n i < 2 2 n i= 6. Dato je n 3 pravih u ravni u opštem položaju (nikoje dve nisu paralelne, a nikoje tri se ne seku u istoj tački). Dokazati da je bar jedna od oblasti koje one formiraju - trougao. Uputstvo: Jednostavno se dokazuje da tvrdjenje važi za 3 tačke. Pretpostavimo da tvrdjenje važi za neku vrednost n 3 i pokažimo da važi i za n +. Pošto su prave u opštem položaju na proizvoljan način izdvojimo jednu i posmatramo preostalih n pravih. Po induktivnoj hipotezi jedna od oblasti koju te prave formiraju je trougao. Izdvojena prava može da nema zajedničkih tačaka sa tim trouglom (u tom slučaju je isti trougao rešenje i za n + tačku) ili može da seče trougao. Ako ga seče prava ne može imati nijednu zajedničku tačku sa njegovim temenima jer bi u suprotnom imali tri prave koje se seku u istoj tački. Sledi da ta prava seče ovaj trougao i jedna od oblasti na koju je seče jeste trougao. 7. Dat je niz, 2, 3, 4, 5, 0, 20, 40,... koji počinje kao aritmetička progresija, a posle prvih pet članova postaje geometrijska progresija. Dokazati da se svaki prirodan broj može predstaviti u obliku zbira različitih brojeva iz ovog niza. Uputstvo: Preformulišimo tvrdjenje na sledeći način: dokazati da se brojevi manji od 5 2 n, n 0 mogu predstaviti u obliku zbira različitih brojeva iz ovog niza. Bazu indukcije (za n = 0) lako dokazujemo, jer se svaki broj manji od 5 može predstaviti u traženom obliku. Pretpostavimo da tvrdjenje važi za k i pokažimo da važi za k. Neka je x < 5 2 k proizvoljan takav broj. Ako je x < 5 2 k onda prema induktivnoj hipotezi tvrdjenje važi. Inače x [5 2 k, 5 2 k ). U tom slučaju važi: 0 x 5 2 k < 5 2 k 5 2 k = 5 2 k. Broj x 5 2 k se prema induktivnoj hipotezi može predstaviti u obliku zbira različitih brojeva manjih od 5 2 k, pa x dobijamo kada tom zbiru dodamo još 5 2 k. Ne možemo imati ponavljanja medju sabircima jer ih po induktivnoj hipotezi nema u 2

3 prethodnom zbiru, a broj 5 2 k se ne može javiti u tom zbiru jer je broj x 5 2 k strogo manji od 5 2 k. 8. Dokazati da se svaka poštarina koja je pozitivni celi broj dinara veći od 7 može formirati korišćenjem samo markica od 3 i od 5 dinara. Uputstvo: Broj n = 8 se može predstaviti kao zbir jedne markice od 3 i jedne od 5 dinara. Pretpostavimo da je tvrdjenje tačno za prirodan broj n 8. Ako poštarina za n dinara uključuje neku markicu od 5 dinara, nju ćemo zameniti sa dve markice od po 3 dinara i ukupno povećati poštarinu za dinar. Ukoliko poštarina za n dinara ne uključuje nijednu markicu od 5 dinara, tada ona uključuje bar tri markice od 3 dinara, jer je n 8, pa je najmanji takav broj 9. U tom slučaju ćemo tri markice od po 3 dinara zameniti dvema od po 5 dinara. 9. Dokazati da se oblasti na koje ravan deli n kružnica sa po jednom povučenom tetivom mogu obojiti sa 3 boje tako da su susedne oblasti uvek obojene različitim bojama. Uputstvo: Obeležimo boje sa 0,,2. Pretpostavimo da se oblast sa n kružnica (sa povučenom tetivom) može obojiti na traženi način i dodajemo (n + )-vu kružnicu. Ona sa tetivom deli ravan na tri oblasti: oblastima van kružnice ne menjamo boju, oblastima u kružnici sa jedne strane tetive menjamo u boju (i + )mod 3, a sa druge strane u boju (i )mod Neka je T kompletno binarno stablo visine h. Visina čvora u T je h umanjeno za rastojanje čvora od korena tako je npr. koren visine h a listovi su visine 0. Dokazati da je suma visina svih čvorova u T jednaka 2 h+ h 2. Uputstvo: Za h = 0 stablo sadrži samo koren i tvrdjenje se trivijalno dokazuje. Kompletno binarno stablo visine h+ se sastoji od dva kompletna binarna stabla visine h i korena (koji je visine h + ).. Razmotrimo varijantu igre NIM. Igra počinje sa n šibica, dva igrača naizmenično uzimaju, 2 ili 3 šibice odjednom. Igrač koji uzme poslednju šibicu gubi. Pokazati da ako svaki igrač igra po najboljoj mogućoj strategiji prvi igrač pobedjuje za n = 4j, 4j + 2 ili 4j + 3, j 0, a drugi igrač za n = 4j +, j 0. Uputstvo: Za j = 0 dokaz je trivijalan (treba razmotriti 4 bazna slučaja). Pretpostavimo da tvrdjenje važi za j 0. Dokaz za j + se izvodi svodjenjem 4 mogućnosti za broj n (da broj n daje redom ostatak 0,, 2 ili 3 pri deljenju sa 4) na 4 mogućnosti date induktivnom hipotezom. Napomena: voditi računa o tekstu zadatka, ovde nije rečeno da je stablo binarno. Uputstvo: Za n = 2 dokaz je trivijalan - dva čvora povezana granom. Pretpostavimo da tvrdjenje važi za n brojeva. Neka je dato n prirodnih brojeva d, d 2,..., d n čija je suma 3 n i= d i = 2n 2. Bar jedan od brojeva

4 mora biti jednak (inače bi suma bila 2n) - neka je to broj d i i bar jedan broj mora biti > (inače bi suma bila n) - neka je to broj d j. Ako izbacimo broj d i iz skupa i broj d j umanjimo za, dobijamo skup za koji važi, na osnovu induktivne hipoteze, da postoji stablo sa tim stepenima. Ako u to stablo dodamo novi čvor stepena (list) povezan sa čvorom stepena d j dobijamo opet stablo sa n čvorova i stepenima d, d 2,..., d n. 2. Neka je n pozitivan ceo broj. Dokazati da se 2 n 2 n šahovska tabla sa jednim izbačenim poljem može pokriti korišćenjem delova L-oblika, gde ovi delovi prekrivaju 3 polja odjednom. Uputstvo: Za n = je tabla dimenzija 2 2 i tada se traženo pokrivanje dobija postavljanjem dela L-oblika na odgovarajući način. Pretpostavimo da tvrdjenje važi za tablu veličine 2 n 2 n i pokažimo da važi za tablu veličine 2 n+ 2 n+. Podelimo tablu na 4 table veličine 2 n 2 n. Iz tri podtable nije izbačeno nijedno polje, a iz četvrtog jeste - ona se po induktivnoj hipotezi može prekriti. Na kratko izbacimo iz svake od podtabli po jedno polje - centralno. One se onda po induktivnoj hipotezi mogu prekriti delovima L-oblika, a ta tri izbačena polja možemo pokriti jednim delom L-oblika. 3. Skakač se po šahovskoj tabli može pomeriti jedno polje horizontalno (u proizvoljnom smeru) i dva polja vertikalno (u proizvoljnom smeru), ili dva polja horizontalno (u proizvoljnom smeru) i jedno polje vertikalno (u proizvoljnom smeru). Koristeći princip matematičke indukcije pokazati da skakač koji kreće sa polja (0, 0) beskonačne šahovske table sastavljene od svih polja oblika (m, n), gde su m i n nenegativni celi brojevi, može posetiti svako polje koristeći konačan niz koraka. Uputstvo: Koristićemo oznaku (i, j) da označimo polje u i-toj vrsti i j- toj koloni. Tvrdjenje ćemo dokazati indukcijom po i + j. Baza indukcije: postoji 6 baznih slučajeva za i + j 2 (6 različitih polja). U svako od njih se može stići u najviše 6 koraka. Induktivni korak: pretpostavimo da skakač može stići u svako od polja (i, j), gde važi i + j = k, k 2. Neka važi i + j = k + i pokažimo da skakač može stići u polje (i, j). Obzirom da je k + 3 bar jedan od brojeva i i j mora biti 2. Ako je npr i 2, tada po IH postoji niz poteza koji se završavaju u polju (i 2, j + ) jer je i 2 + j + = i + j = k, a odatle smo u samo jednom koraku na polju (i, j). Slično bi se pokazalo za j Pokazati da ako su a, a 2,..., a n n različitih realnih brojeva, tačno n množenja je potrebno da bi se izračunao njihov proizvod, bez obzira na to kako su umetnute zagrade u njihov proizvod. 5. Pokazati da ako je n prirodan broj veći od, onda se on može predstaviti kao proizvod prostih brojeva. Uputstvo: Iskoristiti potpunu indukciju. 4

5 6. Šta nije u redu u sledećem dokazu? Teorema: Za svaki nenegativan ceo broj n važi 5n = 0. Baza indukcije: 5 0 = 0 Induktivni korak: Pretpostavimo da je 5 j = 0 za sve nenegativne cele brojeve j, tako da je 0 j k. Napišimo k + = i + j, gde su i i j prirodni brojevi manji od k +. Prema induktivnoj hipotezi važi: 5(k + ) = 5(i + j) = 5i + 5j = = 0. Uputstvo: Ne možemo napisati k + = i + j, jer za k = 0 ne postoje i i j manji od k + koji u zbiru daju k + 7. Naći grešku u sledećem dokazu (navesti rečenicu koja nije ispravna i objasniti zašto nije ispravna): Neka je dat neprazan skup obojenih klikera. Svi klikeri u tom skupu su iste boje. (a) Baza indukcije. Ako imamo skup koji sadrži samo jedan kliker, svi klikeri tog skupa su iste boje. (b) Pretpostavimo da je tvrdjenje tačno za svaki skup koji sadrži n klikera. Uzmimo skup A koji u sebi ima n + kliker. Fiksirajmo kliker koji možemo da označimo sa a. Skup A \ a u sebi sadrži tačno n klikera, tako da na osnovu induktivne hipoteze možemo da zaključimo da su svi klikeri u tom skupu iste boje npr. crvene. Fiksirajmo sada neki drugi kliker iz skupa A \ a, npr. b. On je dakle crvene boje. Na osnovu induktivne hipoteze skup A \ b u sebi sadrži sve klikere iste boje. Pošto se u njemu nalazi i kliker a, zajedno sa svim ostalim crvenim klikerima, i on mora biti crven. Dakle svi klikeri skupa A su crveni, tj. iste boje. 5

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će Permutacije Zadatak. U vreći se nalazi n loptica različitih boja. Iz vreće izvlačimo redom jednu po jednu lopticu i stavljamo jednu pored druge. Koliko različitih redosleda boja možemo da dobijemo? Primer

More information

Konstrukcija i analiza algoritama

Konstrukcija i analiza algoritama Konstrukcija i analiza algoritama 27. februar 2017 1 Pravila zaključivanja i tehnike dokazivanja u iskaznoj i predikatskoj logici 1 1.1 Iskazna logika Pravila zaključivanja za iskaznu logiku: 1. DODAVANJE

More information

Red veze za benzen. Slika 1.

Red veze za benzen. Slika 1. Red veze za benzen Benzen C 6 H 6 je aromatično ciklično jedinjenje. Njegove dve rezonantne forme (ili Kekuléove structure), prema teoriji valentne veze (VB) prikazuju se uobičajeno kao na slici 1 a),

More information

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH MAT-KOL (Banja Luka) XXIII ()(7), -7 http://wwwimviblorg/dmbl/dmblhtm DOI: 75/МК7A ISSN 5-6969 (o) ISSN 986-588 (o) ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA Šefket Arslanagić,

More information

BROJEVNE KONGRUENCIJE

BROJEVNE KONGRUENCIJE UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Vojko Nestorović BROJEVNE KONGRUENCIJE - MASTER RAD - Mentor, dr Siniša Crvenković Novi Sad, 2011. Sadržaj Predgovor...............................

More information

Projektovanje paralelnih algoritama II

Projektovanje paralelnih algoritama II Projektovanje paralelnih algoritama II Primeri paralelnih algoritama, I deo Paralelni algoritmi za množenje matrica 1 Algoritmi za množenje matrica Ovde su data tri paralelna algoritma: Direktan algoritam

More information

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013)

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013) MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) Vol. XIX (3)(2013), 35-44 ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013) Nenad O. Vesi 1 Du²an

More information

Osobine metode rezolucije: zaustavlja se, pouzdanost i kompletnost. Iskazna logika 4

Osobine metode rezolucije: zaustavlja se, pouzdanost i kompletnost. Iskazna logika 4 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Rezolucija 1 Metod rezolucije je postupak za dokazivanje da li je neka iskazna (ili

More information

Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012

Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu

More information

Metrički prostori i Riman-Stiltjesov integral

Metrički prostori i Riman-Stiltjesov integral Metrički prostori i Riman-Stiltjesov integral Sadržaj 1 Metrički prostori 3 1.1 Primeri metričkih prostora................. 3 1.2 Konvergencija nizova i osobine skupova...................... 12 1.3 Kantorov

More information

TEORIJA SKUPOVA Zadaci

TEORIJA SKUPOVA Zadaci TEORIJA SKUPOVA Zadai LOGIKA 1 I. godina 1. Zapišite simbolima: ( x nije element skupa S (b) d je član skupa S () F je podskup slupa S (d) Skup S sadrži skup R 2. Neka je S { x;2x 6} = = i neka je b =

More information

Mathcad sa algoritmima

Mathcad sa algoritmima P R I M J E R I P R I M J E R I Mathcad sa algoritmima NAREDBE - elementarne obrade - sekvence Primjer 1 Napraviti algoritam za sabiranje dva broja. NAREDBE - elementarne obrade - sekvence Primjer 1 POČETAK

More information

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle).

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle). Uvod u analizu (M-0) 0., 07. i. XI 0. dr Nenad Teofanov. Kardinalni broj skupa R U ovom predavanju se razmatra veličina skupa realnih brojeva. Jasno, taj skup ima beskonačno mnogo elemenata. Pokazaće se,

More information

Ksenija Doroslovački KOMBINATORIKA INTERPRETIRANA FUNKCIJAMA I NJIHOVIM OSOBINAMA MASTER RAD. NOVI SAD jun 2008

Ksenija Doroslovački KOMBINATORIKA INTERPRETIRANA FUNKCIJAMA I NJIHOVIM OSOBINAMA MASTER RAD. NOVI SAD jun 2008 1 Ksenija Doroslovački KOMBINATORIKA INTERPRETIRANA FUNKCIJAMA I NJIHOVIM OSOBINAMA MASTER RAD NOVI SAD jun 2008 2 Sadržaj 1 UVOD 5 2 FUNKCIJE 11 3 KLASIČNI KOMBINATORNI OBJEKTI 17 4 NEKI NEKLASIČNI KOMBINATORNI

More information

Fraktali - konačno u beskonačnom

Fraktali - konačno u beskonačnom Prirodno-Matematički fakultet, Niš. dexterofnis@gmail.com www.pmf.ni.ac.rs/dexter Nauk nije bauk, 2011 Sadržaj predavanja 1 Sadržaj predavanja 1 2 Sadržaj predavanja 1 2 3 Box-Counting dimenzija Hausdorfova

More information

DISTRIBUIRANI ALGORITMI I SISTEMI

DISTRIBUIRANI ALGORITMI I SISTEMI Postavka 7: međusobno isključivanje sa read/write promenljivama 1 DISTRIBUIRANI ALGORITMI I SISTEMI Iz kursa CSCE 668 Proleće 2014 Autor izvorne prezentacije: Prof. Jennifer Welch Read/Write deljene promenljive

More information

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU MAT KOL Banja Luka) ISSN 0354 6969 p) ISSN 1986 58 o) Vol. XXI )015) 105 115 http://www.imvibl.org/dmbl/dmbl.htm PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU Bernadin Ibrahimpašić 1 Senka Ibrahimpašić

More information

O homomorfizam-homogenim geometrijama ranga 2

O homomorfizam-homogenim geometrijama ranga 2 UNIVERZITET U NOVOM SADU PRIRODN0-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Eva Jungael O homomorfzam-homogenm geometrjama ranga 2 -završn rad- Nov Sad, oktoar 2009 Predgovor Za strukturu

More information

Funkcijske jednadºbe

Funkcijske jednadºbe MEMO pripreme 2015. Marin Petkovi, 9. 6. 2015. Funkcijske jednadºbe Uvod i osnovne ideje U ovom predavanju obradit emo neke poznate funkcijske jednadºbe i osnovne ideje rje²avanja takvih jednadºbi. Uobi

More information

Hamiltonovi grafovi i digrafovi

Hamiltonovi grafovi i digrafovi UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Slobodan Nogavica Hamiltonovi grafovi i digrafovi Master rad Novi Sad, 2016 Sadržaj Predgovor...2 Glava 1. Uvod...3

More information

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ URL:

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ   URL: KLASIFIKACIJA NAIVNI BAJES NIKOLA MILIKIĆ EMAIL: nikola.milikic@fon.bg.ac.rs URL: http://nikola.milikic.info ŠTA JE KLASIFIKACIJA? Zadatak određivanja klase kojoj neka instanca pripada instanca je opisana

More information

Neke klase maksimalnih hiperklonova

Neke klase maksimalnih hiperklonova UNIVERZITET U NOVOM SDU PRIRODNO-MTEMTIČKI FKULTET DERRTMN Z MTEMTIKU I INFORMTIKU Jelena Čolić Neke klase maksimalnih hiperklonova - završni rad - MENTOR: Prof. dr Rozalija Madaras-Siladi Novi Sad, 2012.

More information

Prsten cijelih brojeva

Prsten cijelih brojeva SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ODJEL ZA MATEMATIKU Marijana Pravdić Prsten cijelih brojeva Diplomski rad Osijek, 2017. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ODJEL ZA MATEMATIKU

More information

Algoritam za množenje ulančanih matrica. Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek

Algoritam za množenje ulančanih matrica. Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek Algoritam za množenje ulančanih matrica Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek O problemu (1) Neka je A 1, A 2,, A n niz ulančanih matrica duljine n N, gdje su dimenzije matrice

More information

Pitagorine trojke. Uvod

Pitagorine trojke. Uvod Pitagorine trojke Uvod Ivan Soldo 1, Ivana Vuksanović 2 Pitagora, grčki filozof i znanstvenik, često se prikazuje kao prvi pravi matematičar. Ro - den je na grčkom otoku Samosu, kao sin bogatog i zaslužnog

More information

HRVATSKA MATEMATIČKA OLIMPIJADA

HRVATSKA MATEMATIČKA OLIMPIJADA HRVATSKA MATEMATIČKA OLIMPIJADA prvi dan 5. svibnja 01. Zadatak 1. Dani su pozitivni realni brojevi x, y i z takvi da je x + y + z = 18xyz. nejednakost x x + yz + 1 + y y + xz + 1 + z z + xy + 1 1. Dokaži

More information

Nilpotentni operatori i matrice

Nilpotentni operatori i matrice Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Nikolina Romić Nilpotentni operatori i matrice Završni rad Osijek, 2016. Sveučilište J. J. Strossmayera

More information

Dekartov proizvod grafova

Dekartov proizvod grafova UNIVERZITET U NOVOM SADU PRIRODNO - MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Marijana Petričević Jović Dekartov proizvod grafova Master rad Mentor: Prof. dr Ivica Bošnjak Novi Sad, 2017

More information

NIZOVI I REDOVI FUNKCIJA

NIZOVI I REDOVI FUNKCIJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Danijela Piškor NIZOVI I REDOVI FUNKCIJA Diplomski rad Voditelj rada: izv. prof. dr. sc. Ljiljana Arambašić Zagreb, rujan 206.

More information

Maja Antolović Algoritmi u teoriji brojeva

Maja Antolović Algoritmi u teoriji brojeva Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Maja Antolović Algoritmi u teoriji brojeva Završni rad Osijek, 2017. Sveučilište J.J.Strossmayera u Osijeku Odjel

More information

Fibonaccijev brojevni sustav

Fibonaccijev brojevni sustav Fibonaccijev brojevni sustav Ljerka Jukić asistentica Odjela za matematiku Sveučilišta u Osijeku, ljukic@mathos.hr Helena Velić studentica Odjela za matematiku Sveučilišta u Osijeku, hvelic@mathos.hr Sažetak

More information

Karakteri konačnih Abelovih grupa

Karakteri konačnih Abelovih grupa Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matija Klarić Karakteri konačnih Abelovih grupa Završni rad Osijek, 2015. Sveučilište J. J. Strossmayera

More information

O aksiomu izbora, cipelama i čarapama

O aksiomu izbora, cipelama i čarapama O aksiomu izbora, cipelama i čarapama Aksiom izbora može se izreći u raznim ekvivalentnim formama. Dokazi ekvivalencije aksioma izbora npr. sa Zornovom lemom, ili pak sa Zermelovim teoremom o dobrom uredaju,

More information

Uvod u relacione baze podataka

Uvod u relacione baze podataka Uvod u relacione baze podataka Ana Spasić 2. čas 1 Mala studentska baza dosije (indeks, ime, prezime, datum rodjenja, mesto rodjenja, datum upisa) predmet (id predmeta, sifra, naziv, bodovi) ispitni rok

More information

Zadatci sa ciklusima. Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva.

Zadatci sa ciklusima. Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva. Zadatci sa ciklusima Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva. StrToIntDef(tekst,broj) - funkcija kojom se tekst pretvara u ceo broj s tim da je uvedena automatska kontrola

More information

O GLATKIM GRAFOVIMA KOMPATIBILNIM SA TEJLOROVIM OPERACIJAMA

O GLATKIM GRAFOVIMA KOMPATIBILNIM SA TEJLOROVIM OPERACIJAMA UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Vlado Uljarević O GLATKIM GRAFOVIMA KOMPATIBILNIM SA TEJLOROVIM OPERACIJAMA -master teza- Novi Sad, 2014 Sadržaj

More information

Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku. Sveučilišni preddiplomski studij matematike

Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku. Sveučilišni preddiplomski studij matematike Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Lorena Škalac Fermatova metoda beskonačnog spusta Završni rad Osijek, 014. Sveučilište J.J.Strossmayera

More information

UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET MASTER RAD SUFIKSNI NIZ Mentor: Student: Prof. dr Miodrag Živković Slaviša Božović 1014/2011. Beograd, 2015. UVOD... 1 1. OSNOVNI POJMOVI I DEFINICIJE... 2 1.1.

More information

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku DIOFANTSKE JEDNADŽBE

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku DIOFANTSKE JEDNADŽBE Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Violeta Ivšić DIOFANTSKE JEDNADŽBE Završni rad Osijek, 2016. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Violeta Ivšić DIOFANTSKE

More information

Formule za udaljenost točke do pravca u ravnini, u smislu lp - udaljenosti math.e Vol 28.

Formule za udaljenost točke do pravca u ravnini, u smislu lp - udaljenosti math.e Vol 28. 1 math.e Hrvatski matematički elektronički časopis Formule za udaljenost točke do pravca u ravnini, u smislu lp - udaljenosti Banachovi prostori Funkcija udaljenosti obrada podataka optimizacija Aleksandra

More information

ALGORITAM FAKTORIZACIJE GNFS

ALGORITAM FAKTORIZACIJE GNFS SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ALGORITAM FAKTORIZACIJE GNFS Ivan Fratrić Seminar iz predmeta Sigurnost računalnih sustava ZAGREB, Sažetak Faktorizacija brojeva jedan je od

More information

Mersenneovi i savršeni brojevi

Mersenneovi i savršeni brojevi Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Diplomski studij matematike Ana Maslać Mersenneovi i savršeni brojevi Diplomski rad Osijek, 2012. Sveučilište J.J. Strossmayera u Osijeku Odjel

More information

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Ivan Marinković Klasifikacija H-matrica metodom skaliranja i njena primena u odred ivanju oblasti konvergencije

More information

Uvod u dinamičko programiranje

Uvod u dinamičko programiranje Uvod u dinamičko programiranje Andreja Ilić Aleksandar Ilić e-mail: ilic andrejko@yahoo.com e-mail: aleksandari@gmail.com Prirodno Matematički Fakultet u Nišu 1 Uvod Jedan od čestih algoritamskih problema

More information

Geometrijski smisao rješenja sustava od tri linearne jednadžbe s tri nepoznanice

Geometrijski smisao rješenja sustava od tri linearne jednadžbe s tri nepoznanice Osječki matematički list 6(2006), 79 84 79 Geometrijski smisao rješenja sustava od tri linearne jednadžbe s tri nepoznanice Zlatko Udovičić Sažetak. Geometrijski smisao rješenja sustava od dvije linearne

More information

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Mjerenjem geometrijskih dimenzija i otpora

More information

Ariana Trstenjak Kvadratne forme

Ariana Trstenjak Kvadratne forme Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ariana Trstenjak Kvadratne forme Završni rad Osijek, 014. Sveučilište Josipa Jurja Strossmayera

More information

Karakterizacija problema zadovoljenja uslova širine 1

Karakterizacija problema zadovoljenja uslova širine 1 UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Aleksandar Prokić Karakterizacija problema zadovoljenja uslova širine 1 -master rad- Mentor: dr Petar Marković

More information

Univerzitet u Beogradu. Matematički fakultet. Master rad. Principi matematičke indukcije i rekurzije u nastavi. Matematike i računarstva

Univerzitet u Beogradu. Matematički fakultet. Master rad. Principi matematičke indukcije i rekurzije u nastavi. Matematike i računarstva Univerzitet u Beogradu Matematički fakultet Master rad Principi matematičke indukcije i rekurzije u nastavi Matematike i računarstva Mentor: dr. Nebojša Ikodinović Kandidat: Ivanka Jovanović Beograd, 2013.

More information

AKSIOM IZBORA I EKVIVALENCIJE

AKSIOM IZBORA I EKVIVALENCIJE Sveučilište J.J. Strossmayera Odjel za matematiku Preddiplomski sveučilišni studij matematike Igor Sušić AKSIOM IZBORA I EKVIVALENCIJE Završni rad Osijek, 2013. Sveučilište J.J. Strossmayera Odjel za matematiku

More information

Fajl koji je korišćen može se naći na

Fajl koji je korišćen može se naći na Machine learning Tumačenje matrice konfuzije i podataka Fajl koji je korišćen može se naći na http://www.technologyforge.net/datasets/. Fajl se odnosi na pečurke (Edible mushrooms). Svaka instanca je definisana

More information

Pellova jednadžba. Pell s equation

Pellova jednadžba. Pell s equation Osječki matematički list 8(2008), 29 36 29 STUDENTSKA RUBRIKA Pellova jednadžba Ivona Mandić Ivan Soldo Sažetak. Članak sadrži riješene primjere i probleme koji se svode na analizu skupa rješenja Pellove

More information

Nekoliko kombinatornih dokaza

Nekoliko kombinatornih dokaza MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) http://www.imvibl.org/dmbl/dmbl.htm Vol. XXII (2)(2016), 141-147 Nekoliko kombinatornih dokaza Duško Jojić Prirodno-matematički fakultet, Univerzitet

More information

Klase neograničenih operatora

Klase neograničenih operatora Univerzitet u Nišu Prirodno- matematički fakultet Departman za matematiku Klase neograničenih operatora Master rad Mentor: Prof. dr. Dragan Đorđević Student: Milena Nikolić Niš,. Sadržaj Predgovor...2

More information

Sveučilište J.J. Strossmayera u Osijeku. Odjel za matematiku. David Komesarović. Mooreovi grafovi. Diplomski rad. Osijek, 2017.

Sveučilište J.J. Strossmayera u Osijeku. Odjel za matematiku. David Komesarović. Mooreovi grafovi. Diplomski rad. Osijek, 2017. Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku David Komesarović Mooreovi grafovi Diplomski rad Osijek, 2017. Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni nastavnički

More information

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin Matematika (PITUP) FOI, Varaždin Dio II Bez obzira kako nam se neki teorem činio korektnim, ne možemo biti sigurni da ne krije neku nesavršenost sve dok se nam ne čini prekrasnim G. Boole The moving power

More information

Mirela Nogolica Norme Završni rad

Mirela Nogolica Norme Završni rad Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Mirela Nogolica Norme Završni rad Osijek, 2014. Sveučilište J.J. Strossmayera u Osijeku Odjel za

More information

Vedska matematika. Marija Miloloža

Vedska matematika. Marija Miloloža Osječki matematički list 8(2008), 19 28 19 Vedska matematika Marija Miloloža Sažetak. Ovimčlankom, koji je gradivom i pristupom prilagod en prvim razredima srednjih škola prikazuju se drugačiji načini

More information

UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET. mr Dragan Stevanović NEKE KOMPOZICIJE GRAFOVA I GRAFOVI SA CELOBROJNIM SPEKTROM

UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET. mr Dragan Stevanović NEKE KOMPOZICIJE GRAFOVA I GRAFOVI SA CELOBROJNIM SPEKTROM UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET mr Dragan Stevanović NEKE KOMPOZICIJE GRAFOVA I GRAFOVI SA CELOBROJNIM SPEKTROM doktorska disertacija Niš, 1999. Za Sanju Sadržaj Predgovor vii I NEPS

More information

Linearno uređena topologija

Linearno uređena topologija Univerzitet u Novom Sadu Prirodno-matematički fakultet Departman za matematiku i informatiku Aleksandar Janjoš Linearno uređena topologija Master rad Mentor: Dr Aleksandar Pavlović 2017, Novi Sad Sadržaj

More information

IV razred- matematika. U prvoj nedelji septembra planirano je obnavljanje gradiva druge godine (3 èasa), a 4-tog èasa radi se inicijalni test.

IV razred- matematika. U prvoj nedelji septembra planirano je obnavljanje gradiva druge godine (3 èasa), a 4-tog èasa radi se inicijalni test. Profesor: Ivana Obrenoviã Termini za konsultacije: IV razred- matematika U prvoj nedelji septembra planirano je obnavljanje gradiva druge godine (3 èasa), a 4-tog èasa radi se inicijalni test. TEMA 1.

More information

Programiranje u realnom vremenu Bojan Furlan

Programiranje u realnom vremenu Bojan Furlan Programiranje u realnom vremenu Bojan Furlan Tri procesa sa D = T imaju sledeće karakteristike: Proces T C a 3 1 b 6 2 c 18 5 (a) Pokazati kako se može konstruisati ciklično izvršavanje ovih procesa. (b)

More information

SITO POLJA BROJEVA. Dario Maltarski PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc. dr. sc.

SITO POLJA BROJEVA. Dario Maltarski PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc. dr. sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Dario Maltarski SITO POLJA BROJEVA Diplomski rad Voditelj rada: Doc. dr. sc. Filip Najman Zagreb, rujan 2014. Ovaj diplomski

More information

24. Balkanska matematiqka olimpijada

24. Balkanska matematiqka olimpijada 4. Balkanska matematika olimpijada Rodos, Gka 8. apil 007 1. U konveksnom etvoouglu ABCD vaжi AB = BC = CD, dijagonale AC i BD su azliite duжine i seku se u taki E. Dokazati da je AE = DE ako i samo ako

More information

UOPŠTENI INVERZI, FAKTORI USLOVLJENOSTI I PERTURBACIJE

UOPŠTENI INVERZI, FAKTORI USLOVLJENOSTI I PERTURBACIJE UNIVERZITET U NIŠU PRIRODNO MATEMATIČKI FAKULTET ODSEK ZA MATEMATIKU I INFORMATIKU Dijana Mosić UOPŠTENI INVERZI, FAKTORI USLOVLJENOSTI I PERTURBACIJE Doktorska disertacija Mentor Prof. dr Dragan Djordjević

More information

Velimir Abramovic: KOLIKO IMA BESKONACNOSTI U MATEMATICI? (Iz Osnovi Nauke o Vremenu )

Velimir Abramovic:   KOLIKO IMA BESKONACNOSTI U MATEMATICI? (Iz Osnovi Nauke o Vremenu ) Velimir Abramovic: www.n01a.org KOLIKO IMA BESKONACNOSTI U MATEMATICI? (Iz Osnovi Nauke o Vremenu ) Citajuci Kantorov Argument dijagonalizacijom shvatio sam da se u njemu nista ne sme podrazumevati, vec

More information

Neke osobine popločavanja ravni

Neke osobine popločavanja ravni 15 Prirodno-matematički fakultet, Univerzitet u Nišu, Srbija http://www.pmf.ni.ac.rs/mii Matematika i informatika 2 (4) (2015), 15-47 Neke osobine popločavanja ravni Jelena R. Radonjić STŠ Vožd Karađorđe

More information

Uvod u matematičku logiku

Uvod u matematičku logiku Uvod u matematičku logiku skripta Januar 2016. Reč autora Ova skripta su pripremljena za studente prve godine Matematičkog fakulteta u Beogradu. To je manje-više sve što sam uspeo da ispredajem u toku

More information

Kvaternioni i kvaternionsko rješenje kvadratne jednadžbe

Kvaternioni i kvaternionsko rješenje kvadratne jednadžbe Kvaternioni i kvaternionsko rješenje 1 Uvod Kvaternioni i kvaternionsko rješenje kvadratne jednadžbe Željko Zrno 1 i Neven Jurić Što je matematika? Na što prvo čovjeka asocira riječ matematika? Matematika

More information

Položaj nultočaka polinoma

Položaj nultočaka polinoma Osječki matematički list 4 (204), 05-6 Položaj nultočaka polinoma Mandalena Pranjić Rajna Rajić Sažetak Prema Rolleovom teoremu, bilo koji segment čiji su krajevi međusobno različite realne nultočke polinoma

More information

Zanimljive rekurzije

Zanimljive rekurzije Zanimljive rekurzije Dragana Jankov Maširević i Jelena Jankov Riječ dvije o rekurzijama Rekurzija je metoda definiranja funkcije na način da se najprije definira nekoliko jednostavnih, osnovnih slučajeva,

More information

PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Marina Zrno KOMUTATIVNI PRSTENI. Diplomski rad. Voditelj rada: prof.dr.sc.

PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Marina Zrno KOMUTATIVNI PRSTENI. Diplomski rad. Voditelj rada: prof.dr.sc. SVEUČ ILIŠ TE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Marina Zrno KOMUTATIVNI PRSTENI Diplomski rad Voditelj rada: prof.dr.sc. Ozren Perše Zagreb, 2014 Ovaj diplomski rad obranjen

More information

Problem četiri boje. Four colors problem

Problem četiri boje. Four colors problem Osječki matematički list 10(2010), 21 29 21 Problem četiri boje Iva Gregurić, Antoaneta Klobučar Sažetak. U ovom članku pokušat ćemo približiti učenicima srednjih škola jedan od zanimljivijih problema

More information

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU. Poljski prostori. Mentor: prof.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU. Poljski prostori. Mentor: prof. UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU -Dord e Vučković Poljski prostori -završni rad- Mentor: prof. dr Miloš Kurilić Novi Sad, 2011. Sadržaj Predgovor.................................

More information

FIZIKALNA KOZMOLOGIJA VII. VRLO RANI SVEMIR & INFLACIJA

FIZIKALNA KOZMOLOGIJA VII. VRLO RANI SVEMIR & INFLACIJA FIZIKALNA KOZMOLOGIJA VII. VRLO RANI SVEMIR & INFLACIJA KOZMIČKI SAT ranog svemira Ekstra zračenje u mjerenju CMB Usporedba s rezultatima LEP-a Usporedba CMB i neutrina Vj.: Pozadinsko zračenje neutrina

More information

Turingovi strojevi Opis Turingovog stroja Odluµcivost logike prvog reda. Lipanj Odluµcivost i izraµcunljivost

Turingovi strojevi Opis Turingovog stroja Odluµcivost logike prvog reda. Lipanj Odluµcivost i izraµcunljivost Odluµcivost logike prvog reda B. µ Zarnić Lipanj 2008. Uvod Turingovi strojevi Logika prvoga reda je pouzdana. Logika prvog reda je potpuna. Γ `LPR K ) Γ j= SPR K Γ j= SPR K ) Γ `LPR K Prema tome, ako

More information

Teorem o reziduumima i primjene. Završni rad

Teorem o reziduumima i primjene. Završni rad Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matej Petrinović Teorem o reziduumima i primjene Završni rad Osijek, 207. Sveučilište J. J. Strossmayera

More information

POOPĆENJE KLASIČNIH TEOREMA ZATVARANJA PONCELETOVOG TIPA

POOPĆENJE KLASIČNIH TEOREMA ZATVARANJA PONCELETOVOG TIPA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petra Zubak POOPĆENJE KLASIČNIH TEOREMA ZATVARANJA PONCELETOVOG TIPA Diplomski rad Voditelj rada: prof. dr. sc. Juraj Šiftar

More information

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike. Ivana Oreški REKURZIJE.

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike. Ivana Oreški REKURZIJE. Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ivana Oreški REKURZIJE Završni rad Osijek, 2011. Sveučilište J.J. Strossmayera u Osijeku Odjel za

More information

Mehurasto sortiranje Brzo sortiranje Sortiranje učešljavanjem Sortiranje umetanjem. Overviev Problemi pretraživanja Heš tabele.

Mehurasto sortiranje Brzo sortiranje Sortiranje učešljavanjem Sortiranje umetanjem. Overviev Problemi pretraživanja Heš tabele. Bubble sort Razmotrimo još jedan vrlo popularan algoritam sortiranja podataka, vrlo sličan prethodnom algoritmu. Algoritam je poznat pod nazivom Bubble sort algoritam (algoritam mehurastog sortiranja),

More information

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu 1. Izdvojiti ime i prezime studenata koji su rođeni u Beogradu. (DOSIJE WHERE MESTO_RODJENJA='Beograd')[IME, PREZIME] where mesto_rodjenja='beograd'

More information

University of East Sarajevo Mathematical Society of the Republic of Srpska. PROCEEDINGS Trebinje, June 2014

University of East Sarajevo Mathematical Society of the Republic of Srpska. PROCEEDINGS Trebinje, June 2014 Redakcija Prof. dr Milenko Pikula, Univerzitet u Istočnom Sarajevu, BiH Prof. dr Žarko Mijajlović, Matematički fakultet Beograd, Republika Srbija Akademik prof. dr Svjetlana Terzić, Univerzitet Crne Gore,

More information

Jednočlani potpuni skupovi veznika za iskaznu logiku

Jednočlani potpuni skupovi veznika za iskaznu logiku Univerzitet u Beogradu Matematički fakultet Petar Maksimović Jednočlani potpuni skupovi veznika za iskaznu logiku Master teza mentor: dr Predrag Janičić Beograd 2008 2 Sadržaj 1 Uvod 7 1.1 Kratak istorijat

More information

Numerical Inverse Laplace Transform

Numerical Inverse Laplace Transform UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Omalkhaer Salem Elmabruk Bleblou Numerical Inverse Laplace Transform - master thesis - Novi Sad, 2011. Ovaj

More information

Krive u prostoru Minkovskog

Krive u prostoru Minkovskog UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Maja Jolić Krive u prostoru Minkovskog - master rad - Mentor: dr Sanja Konjik Novi Sad, 2016 Predgovor Na vratima

More information

Geometrija (I smer) deo 3: Linije u ravni

Geometrija (I smer) deo 3: Linije u ravni Geometrija (I smer) deo 3: Linije u ravni Srdjan Vukmirović Matematički fakultet, Beograd 30. oktobar 2012. Prava u ravni Prava p je zadata tačkom P(x 0, y 0 ) p i normalnim vektorom n p = (a, b). Odatle

More information

DISKRETNI LOGARITAM. 1 Uvod. MAT-KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XVII (2)(2011), 43-52

DISKRETNI LOGARITAM. 1 Uvod. MAT-KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XVII (2)(2011), 43-52 MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) Vol. XVII (2)(2011), 43-52 DISKRETNI LOGARITAM Bernadin Ibrahimpašić 1, Dragana Kovačević 2 Abstract U ovom članku se opisuje pojam diskretnog

More information

Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku

Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Valentina Volmut Ortogonalni polinomi Diplomski rad Osijek, 2016. Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku

More information

U čemu je snaga suvremene algebre?

U čemu je snaga suvremene algebre? 1 / 33 U čemu je snaga suvremene algebre? Dr Ivan Tomašić Queen Mary, University of London SŠ Mate Blažina Labin 2014 2 / 33 Pitagorine trojke Teorem Postoje cijeli brojevi x, y i z koji zadovoljavaju:

More information

Rekurzivni algoritmi POGLAVLJE Algoritmi s rekurzijama

Rekurzivni algoritmi POGLAVLJE Algoritmi s rekurzijama POGLAVLJE 8 Rekurzivni algoritmi U prošlom dijelu upoznali smo kako rekurzije možemo implementirati preko stogova, u ovom dijelu promotriti ćemo probleme koje se mogu izraziti na rekurzivan način Vremenska

More information

Andrea Rožnjik. VaR KAO MERA RIZIKA U OPTIMIZACIJI PORTFOLIA. - magistarska teza - Novi Sad, 2008.

Andrea Rožnjik. VaR KAO MERA RIZIKA U OPTIMIZACIJI PORTFOLIA. - magistarska teza - Novi Sad, 2008. UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Andrea Rožnjik VaR KAO MERA RIZIKA U OPTIMIZACIJI PORTFOLIA - magistarska teza - Novi Sad, 2008. Predgovor

More information

Metode praćenja planova

Metode praćenja planova Metode praćenja planova Klasična metoda praćenja Suvremene metode praćenja gantogram mrežni dijagram Metoda vrednovanja funkcionalnosti sustava Gantogram VREMENSKO TRAJANJE AKTIVNOSTI A K T I V N O S T

More information

GEOUETRIJA LOBACEVSKOG

GEOUETRIJA LOBACEVSKOG Matematiaa gimnazija Beograd Virtual Library of Faculty of Mathematics - University of Belgrade MATURSKI RAD IZ MATEMATIKE GEOUETRIJA LOBACEVSKOG mentor : ue'enik : Mirjana Perovanovie Bojan 2ivkovid Beograd

More information

AKSIOME TEORIJE SKUPOVA

AKSIOME TEORIJE SKUPOVA MAT-KOL (Banja Luka) ISSN 0354/6969 XV(1)(2009), 17-25 AKSIOME TEORIJE SKUPOVA Duško Bogdanić 1, Bojan Nikolić 2 i Daniel A. Romano 2 Sažetak: Postoji više od jedne mogućnosti aksiomatizacije teorije skupova.

More information

Hornerov algoritam i primjene

Hornerov algoritam i primjene Osječki matematički list 7(2007), 99 106 99 STUDENTSKA RUBRIKA Hornerov algoritam i primjene Zoran Tomljanović Sažetak. U ovom članku obrad uje se Hornerov algoritam za efikasno računanje vrijednosti polinoma

More information

1 Konveksni skupovi i konveksne funkcije

1 Konveksni skupovi i konveksne funkcije Nediferencijabilna optimizacija 1 Odjel za matematiku Sveučilište J. J. Strossmayera u Osijeku Nediferencijabilna optimizacija Poslijediplomski doktorski studij matematike 1 Konveksni skupovi i konveksne funkcije

More information

ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING

ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING ANALYTICAL AND NUMERICAL PREDICTION OF SPRINGBACK IN SHEET METAL BENDING Slota Ján, Jurčišin Miroslav Department of Technologies and Materials, Faculty of Mechanical Engineering, Technical University of

More information

Hamiltonov ciklus i Eulerova tura

Hamiltonov ciklus i Eulerova tura Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Maja Ivić Hamiltonov ciklus i Eulerova tura Završni rad Osijek, 2009. Sveučilište J.J. Strossmayera u Osijeku

More information

Matrice traga nula math.e Vol. 26. math.e. Hrvatski matematički elektronički časopis. Matrice traga nula. komutator linearna algebra. Sažetak.

Matrice traga nula math.e Vol. 26. math.e. Hrvatski matematički elektronički časopis. Matrice traga nula. komutator linearna algebra. Sažetak. 1 math.e Hrvatski matematički elektronički časopis komutator linearna algebra Marijana Kožul i Rajna Rajić Matrice traga nula marijana55@gmail.com, rajna.rajic@rgn.hr Rudarsko-geološko-naftni fakultet,

More information