Week 2. Energy, Energy Transfer, And General Energy Analysis

Size: px
Start display at page:

Download "Week 2. Energy, Energy Transfer, And General Energy Analysis"

Transcription

1 Week 2. Energy, Energy Transfer, And General Energy Analysis

2 Objectives 1. Introduce the concept of energy and define its various forms 2. Discuss the nature of internal energy 3. Define the concept of heat and the terminology associated with energy transfer by heat 4. Discuss the three mechanisms of heat transfer: conduction, convection, and radiation 5. Define the concept of work, including electrical work and several forms of mechanical work 6. Introduce the first law of thermodynamics, energy balances, and mechanisms of energy transfer to or from a system 7. Determine that a fluid flowing across a control surface of a control volume carries energy across the control surface in addition to any energy transfer across the control surface that may be in the form of heat and/or work 8. Define energy conversion efficiencies 9. Discuss the implications of energy conversion on the environment

3 Forms of Energy Macroscopic Forms: those that related to motion and the influence of some external effects (e.g. Kinetic and Potential energy) Microscopic Forms: those that related to the molecular structure of system and the degree of the molecular activity (e.g. Internal energy) Energy - Kinetic Energy : result of its motion V V KE = m (kj); ke = (kj/kg) - Potential Energy : result of its elevation in a gravitational field PE = mgz (kj); pe = gz (kj/kg) Total Energy V E = U + KE + PE = U + m 2 2 V e = u + ke + pe = u + + gz mgz (kj/kg) (kj)

4 Total Energy

5 Summary PE KE TE = + + PE KE IE KE PE PE KE

6 Forms of Energy II Stationary system: a closed systems whose velocity and elevation of the center of gravity remain constant during a process D E = DU Flow rate: the amount of properties flowing through a cross section per unit time ex) mass flow rate, volume flow rate, energy flow rate m& = r Av (kg/s) V& = Av 3 (m /s) E& = me & (kj/s or kw)

7 Summary PE KE

8 Some Physical Insight to Internal Energy Sensible Energy : Energy associated with the kinetic energies of the molecules proportional to the temperature Latent Energy : Energy associated with the phase of a system Chemical Energy : Energy associated with the atomic bonds Nuclear Energy : Energy associated with the strong bonds within the nucleus Two forms of energy interactions: Heat transfer and Work

9 Energy Transfer by Heat Heat: the form of energy that is transferred between two systems (or a system and its surroundings) by virtue of a temperature difference Heat simply means heat transfer in thermodynamics Adiabatic Process : A process during which there is no heat transfer - Well insulated boundary - Isothermal process (Caution! Adiabatic Process ß Isothermal process)

10 Heat Transfer Convection Radiation Conduction Radiation Convection

11 Energy Transfer by Work Work: energy transfer associated with a force acting through a distance Heat and Work are directional quantities requires magnitude & direction Heat transfer to a system & work done by a system : + Heat transfer from a system & Wonk done on a system : Heat and Work are boundary phenomena Systems possess energy, but not heat or work Both are associated with a process (path functions) Gain + Lose - Spend - Produce +

12 Mechanical Forms of Work Work: done by a constant force F on a body displaced a distance s in the direction of the force d W = Fdx = PAdx = PdV W V 2 = ò PdV (kj) V 1 P Final state Process Path 2 Initial state Expansion and compression work 1 V 2 V 1 V The P-V diagram of a compression process Shaft work, Spring work, work done on elastic solid bars, work associated with the stretching of a liquid film

13 Summary? Energy: How can I transfer into the system? System: What is Energy thinking about? Energy: Yes, Heat transfer and Work transfer

14 Summary

15 Summary - Work + Work

16 Denotation Common denotation about heat and work - Q, W : the amount of heat transferred and work done during the process between two states (kj) - q, w : heat and work transfer and work done per unit mass of a system Q&, W& Q W q =, w = ( kj kg) m m - : the heat transfer per unit time (the rate of heat transfer) and the work done per unit time (power) ò t & t ; & (kj) Q 2 2 = Qdt W = Wdt t1 t1 ò ( kj s or kw)

17 The First Law of Thermodynamics The conservation of energy principle The energy can be neither created nor destroyed during a process; it can only change forms Energy balance ætotal energy ö ætotal energy ö æchange in the total ö ç entering the system - ç leaving the system = ç energy of the system è ø è ø è ø E - E = DE (kj) in out system E& - E& = de dt (kw) rate form in out system D E = D U + D KE + DPE system D E = D W + D Q + DE system mass Energy change of a system Energy transfer Energy Balance Equation D W + D Q + D Emass = D U + D KE + DPE Adiabatic process: No heat transfer -The change in the total energy during an adiabatic process must be equal to the net work done for a control mass

18 Flow Work And The Energy of A Flowing Fluid Flow work (or flow energy): some work required to push the mass into or out of the control volume W = FL = PAL = PV (kj) flow wflow = Pv (kj/kg)

19 Summary

20 The First Law of Thermodynamics II Assumptions 1. Adiabatic process: ΔQ =0 2. Closed system: ΔE mass =0 3. For a closed system undergoing a cycle: ΔU =0 4. Stationary system: ΔKE+ ΔPE=0

21 Summary

22 Summary For a closed system undergoing a cycle, the initial and final states are identical

23 Examples of the First Law (No work) D E = D U + D KE + DPE system D E = D W + DQ + DE system mass D U + D KE + DPE = D W + D Q + DE mass

24 Examples of the First Law (No heat Transfer)

25 Examples of the First Law (work& heat)

- Apply closed system energy balances, observe sign convention for work and heat transfer.

- Apply closed system energy balances, observe sign convention for work and heat transfer. CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives: - In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes: - Demonstrate

More information

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014) PTT 77/3 APPLIED THERMODYNAMICS SEM 1 (013/014) 1 Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical Nuclear The total energy of a system on a unit mass:

More information

Thermodynamics ENGR360-MEP112 LECTURE 3

Thermodynamics ENGR360-MEP112 LECTURE 3 Thermodynamics ENGR360-MEP11 LECTURE 3 ENERGY, ENERGY TRANSFER, AND ENERGY ANALYSIS Objectives: 1. Introduce the concept of energy and define its various forms.. Discuss the nature of internal energy.

More information

Energy Transport by. By: Yidnekachew Messele. Their sum constitutes the total energy E of a system.

Energy Transport by. By: Yidnekachew Messele. Their sum constitutes the total energy E of a system. Energy Transport y Heat, ork and Mass By: Yidnekachew Messele Energy of a System Energy can e viewed as the aility to cause change. Energy can exist in numerous forms such as thermal, mechanical, kinetic,

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface. x 2 Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x Frictionless surface M dv v dt M dv dt v F F F ; v mass velocity in x direction

More information

Engineering Thermodynamics. Chapter 3. Energy Transport by Heat, Work and Mass

Engineering Thermodynamics. Chapter 3. Energy Transport by Heat, Work and Mass Chapter 3 Energy Transport y Heat, ork and Mass 3. Energy of a System Energy can e viewed as the aility to cause change. Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential,

More information

Unit B-1: List of Subjects

Unit B-1: List of Subjects ES31 Energy Transfer Fundamentals Unit B: The First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26 Conservation of Energy for a Closed System Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-, Bangladesh zahurul@me.buet.ac.bd

More information

First Law of Thermodynamics Closed Systems

First Law of Thermodynamics Closed Systems First Law of Thermodynamics Closed Systems Content The First Law of Thermodynamics Energy Balance Energy Change of a System Mechanisms of Energy Transfer First Law of Thermodynamics in Closed Systems Moving

More information

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity. Problem 44 A closed system of mass of 10 kg undergoes a process during which there is energy transfer by work from the system of 0147 kj per kg, an elevation decrease of 50 m, and an increase in velocity

More information

Chapter 2. Energy and the First Law of Thermodynamics

Chapter 2. Energy and the First Law of Thermodynamics Chapter 2 Energy and the First Law of Thermodynamics Closed System Energy Balance Energy is an extensive property that includes the kinetic and gravitational potential energy of engineering mechanics.

More information

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE Chapter 2 Energy and the 1st Law of Thermodynamics 1 2 Homework Assignment # 2 Problems: 1, 7, 14, 20, 30, 36, 42, 49, 56 Design and open end problem: 2.1D Due Monday 22/12/2014 3 Work and Kinetic Energy

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface

Relationships between WORK, HEAT, and ENERGY. Consider a force, F, acting on a block sliding on a frictionless surface Introduction to Thermodynamics, Lecture 3-5 Prof. G. Ciccarelli (0) Relationships between WORK, HEAT, and ENERGY Consider a force, F, acting on a block sliding on a frictionless surface x x M F x FRICTIONLESS

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.

More information

3. First Law of Thermodynamics and Energy Equation

3. First Law of Thermodynamics and Energy Equation 3. First Law of Thermodynamics and Energy Equation 3. The First Law of Thermodynamics for a ontrol Mass Undergoing a ycle The first law for a control mass undergoing a cycle can be written as Q W Q net(cycle)

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

ENERGY AND FIRST LAW OF THERMODYNAMICS. By Ertanto Vetra

ENERGY AND FIRST LAW OF THERMODYNAMICS. By Ertanto Vetra ENERGY AND FIRST LAW OF THERMODYNAMICS 1 By Ertanto Vetra Objective Introduce the concept of energy and define its various forms. Discuss the nature of internal energy. Define the concept of heat and the

More information

Chapter 4. Energy Analysis of Closed Systems

Chapter 4. Energy Analysis of Closed Systems Chapter 4 Energy Analysis of Closed Systems The first law of thermodynamics is an expression of the conservation of energy principle. Energy can cross the boundaries of a closed system in the form of heat

More information

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory Week 5. Energy Analysis of Closed Systems Objectives 1. Examine the moving boundary work or PdV work commonly encountered in reciprocating devices such as automotive engines and compressors 2. Identify

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

CHAPTER. The First Law of Thermodynamics: Closed Systems

CHAPTER. The First Law of Thermodynamics: Closed Systems CHAPTER 3 The First Law of Thermodynamics: Closed Systems Closed system Energy can cross the boundary of a closed system in two forms: Heat and work FIGURE 3-1 Specifying the directions of heat and work.

More information

Chapter 3 First Law of Thermodynamics and Energy Equation

Chapter 3 First Law of Thermodynamics and Energy Equation Fundamentals of Thermodynamics Chapter 3 First Law of Thermodynamics and Energy Equation Prof. Siyoung Jeong Thermodynamics I MEE0-0 Spring 04 Thermal Engineering Lab. 3. The energy equation Thermal Engineering

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Review of First and Second Law of Thermodynamics

Review of First and Second Law of Thermodynamics Review of First and Second Law of Thermodynamics Reading Problems 4-1 4-4 4-32, 4-36, 4-87, 4-246 5-2 5-4, 5.7 6-1 6-13 6-122, 6-127, 6-130 Definitions SYSTEM: any specified collection of matter under

More information

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course BASICS OF THERMODYNAMICS Vikasana - Bridge Course 2012 1 Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course 2012 2 HEAT Heat is

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

Isentropic Efficiency in Engineering Thermodynamics

Isentropic Efficiency in Engineering Thermodynamics June 21, 2010 Isentropic Efficiency in Engineering Thermodynamics Introduction This article is a summary of selected parts of chapters 4, 5 and 6 in the textbook by Moran and Shapiro (2008. The intent

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

Chapter 8. Conservation of Energy

Chapter 8. Conservation of Energy Chapter 8 Conservation of Energy Energy Review Kinetic Energy Associated with movement of members of a system Potential Energy Determined by the configuration of the system Gravitational and Elastic Potential

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Today lecture. 1. Entropy change in an isolated system 2. Exergy Today lecture 1. Entropy change in an isolated system. Exergy - What is exergy? - Reversible Work & Irreversibility - Second-Law Efficiency - Exergy change of a system For a fixed mass For a flow stream

More information

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J).

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J). Work Work The process of moving an object by applying a force. Work = Force x displacement. Work is measured in Joules (J) or Newton-meters (Nm). W = Fd Example: To prove his strength, a weightlifter pushes

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

Chapter 10: Energy and Work. Slide 10-2

Chapter 10: Energy and Work. Slide 10-2 Chapter 10: Energy and Work Slide 10-2 Forms of Energy Mechanical Energy K U g U s Thermal Energy Other forms include E th E chem E nuclear The Basic Energy Model An exchange of energy between the system

More information

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics.

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics. Eng3901 - Thermodynamics I 1 1 Introduction 1.1 Thermodynamics Thermodynamics is the study of the relationships between heat transfer, work interactions, kinetic and potential energies, and the properties

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy Introduction CHAPTER 1 1.1 Prime Movers Prime mover is a device which converts natural source of energy into mechanical work to drive machines for various applications. In olden days, man had to depend

More information

MAE 110A. Homework 6: Solutions 11/9/2017

MAE 110A. Homework 6: Solutions 11/9/2017 MAE 110A Hoework 6: Solutions 11/9/2017 H6.1: Two kg of H2O contained in a piston-cylinder assebly, initially at 1.0 bar and 140 C undergoes an internally ersible, isotheral copression to 25 bar. Given

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics Lecture by Dr. Hebin Li Assignment Due at 11:59pm on Sunday, December 7 HW set on Masteringphysics.com Final exam: Time: 2:15pm~4:15pm, Monday, December 8. Location:

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams.

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams. PROBLEM 63 Using the appropriate table, determine the indicated property In each case, locate the state on sketches of the -v and -s diagrams (a) water at p = 040 bar, h = 147714 kj/kg K Find s, in kj/kg

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 1 February 13, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1 In order to force the fluid to flow across the boundary of the system against a pressure p1, work is done on the boundary of the system. The amount of work done is dw = - F1.dl1, Where F1 is the force

More information

Chapter One Reviews of Thermodynamics Update on 2013/9/13

Chapter One Reviews of Thermodynamics Update on 2013/9/13 Chapter One Reviews of Thermodynamics Update on 2013/9/13 (1.1). Thermodynamic system An isolated system is a system that exchanges neither mass nor energy with its environment. An insulated rigid tank

More information

Energy, Work, and Power

Energy, Work, and Power Matthew W. Milligan, Work, and Power Conservation Laws an Alternative to Newton s Laws Matthew W. Milligan, Work, and Power I. - kinetic and potential - conservation II. Work - dot product - work-energy

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Energy can neither by created nor destroyed, but only transferred from one system to another and transformed from one form to another. Conservation of Energy Consider at a gas in

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

Dr Ali Jawarneh. Hashemite University

Dr Ali Jawarneh. Hashemite University Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Examine the moving boundary work or P d work commonly encountered in reciprocating devices such as automotive engines and compressors.

More information

Chapter 2: Energy and the 1 st Law of Thermodynamics. The Study of Energy in Closed Systems

Chapter 2: Energy and the 1 st Law of Thermodynamics. The Study of Energy in Closed Systems Chapter 2: Energy and the 1 st Law of Thermodynamics The Study of Energy in Closed Systems Topics 2.1 Mechanical Concepts of Energy 2.2 Broadening Understanding of Work 2.3 Broadening Understanding of

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Timeline Last week, Reading Break Feb.21: Thermodynamics 1 Feb.24: Midterm Review (Fluid Statics

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Fall 004 Unified Quiz: Thermodynamics November 1, 004 Calculators allowed. No books allowed. A list of equations is provided. Put your name on each page of the exam. Read all questions carefully. Do all

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

SKMM 2413 Thermodynamics

SKMM 2413 Thermodynamics SKMM 2413 Thermodynamics Md. Mizanur Rahman, PhD Department of Thermo-Fluids Faculty of Mechanical Engineering Universiti Teknologi Malaysia UTM Office: C23-228 mizanur@fkm.utm.my Semester I, 2016-2017

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

Chapter 1: Basic Concepts of Thermodynamics. Thermodynamics and Energy. Dimensions and Units

Chapter 1: Basic Concepts of Thermodynamics. Thermodynamics and Energy. Dimensions and Units Chapter 1: Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State

Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State Conservation of Energy for a Closed System First Law of Thermodynamics Dr. Md. Zahurul Haq rofessor Department of Mechanical Engineering Bangladesh University of Engineering & Technology BUET Dhaka-000,

More information

MAE 110A. Homework 3: Solutions 10/20/2017

MAE 110A. Homework 3: Solutions 10/20/2017 MAE 110A Homework 3: Solutions 10/20/2017 3.10: For H 2O, determine the specified property at the indicated state. Locate the state on a sketch of the T-v diagram. Given a) T 140 C, v 0.5 m 3 kg b) p 30MPa,

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

Lecture 5. Basic Thermodynamics. The First Law. References. Typical energy estimates

Lecture 5. Basic Thermodynamics. The First Law. References. Typical energy estimates Lecture 5 Basic Thermodynamics. The First Law. References. Chemistry 3, Chapter 14, Energy and Thermochemistry, pp.658-700. Elements of Physical Chemistry, 5 th edition, Atkins & de Paula, Chapter 2, Thermodynamics:

More information

ME Thermodynamics I

ME Thermodynamics I HW-03 (25 points) i) Given: for writing Given, Find, Basic equations Rigid tank containing nitrogen gas in two sections initially separated by a membrane. Find: Initial density (kg/m3) of nitrogen gas

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

2013, 2011, 2009, 2008 AP

2013, 2011, 2009, 2008 AP Lecture 15 Thermodynamics I Heat vs. Temperature Enthalpy and Work Endothermic and Exothermic Reactions Average Bond Enthalpy Thermodynamics The relationship between chemical reactions and heat. What causes

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name: Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)

More information

UNIT I Basic concepts and Work & Heat Transfer

UNIT I Basic concepts and Work & Heat Transfer SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

More information

6.3 The First Law of Thermodynamics

6.3 The First Law of Thermodynamics 6.3 The First Law of Thermodynamics Physics Tool box Thermodynamic System - any collection of objects that is convenient to regard as a unit, and may have the potential to exchange energy with its surroundings.

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 7: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation.

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation. Soln_21 An ordinary household refrigerator operating in steady state receives electrical work while discharging net energy by heat transfer to its surroundings (e.g., the kitchen). a. Is this a violation

More information

Part II First Law of Thermodynamics

Part II First Law of Thermodynamics Part II First Law of Thermodynamics Introduction The first law deals with macroscopic properties, work, energy, enthalpy, etc. One of the most fundamental laws of nature is the conservation of energy principle.

More information

11/13/2003 PHY Lecture 19 1

11/13/2003 PHY Lecture 19 1 Announcements 1. Schedule Chapter 19 macroscopic view of heat (today) Chapter 20 microscopic view of heat (Tuesday 11/18) Review Chapters 15-20 (Thursday 11/20) Exam 3 (Tuesday 11/25) 2. Physics colloquium

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 27, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law

More information

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology Agenda Today: HW Quiz, Thermal physics (i.e., heat) Thursday: Finish thermal physics, atomic structure (lots of review from chemistry!) Chapter 10, Problem 26 A boy reaches out of a window and tosses a

More information

Specific Heat of Diatomic Gases and. The Adiabatic Process

Specific Heat of Diatomic Gases and. The Adiabatic Process Specific Heat of Diatomic Gases and Solids The Adiabatic Process Ron Reifenberger Birck Nanotechnology Center Purdue University February 22, 2012 Lecture 7 1 Specific Heat for Solids and Diatomic i Gasses

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system:

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system: There are two ways to change the internal energy of a system: Thermodynamics Work 1. By flow of heat, q Heat is the transfer of thermal energy between and the surroundings 2. By doing work, w Work can

More information

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05 Chapter 19 First Law of Thermodynamics Dr. Armen Kocharian, 04/04/05 Heat and Work Work during volume change Work in Thermodynamics Work can be done on a deformable system, such as a gas Consider a cylinder

More information

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas.

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Content Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Entropy can be viewed as a measure of molecular disorder, or molecular randomness. As a system becomes

More information

AE1104 Physics 1. List of equations. Made by: E. Bruins Slot

AE1104 Physics 1. List of equations. Made by: E. Bruins Slot i AE04 Physics List of equations Made by: E. Bruins Slot Chapter Introduction and basic concepts Newton s second law Weight F = M a (N) W = m g J = N m (N) Density Specific volume ρ = m V m 3 v = V m =

More information

Chapter 1: Basic Definitions, Terminologies and Concepts

Chapter 1: Basic Definitions, Terminologies and Concepts Chapter : Basic Definitions, Terminologies and Concepts ---------------------------------------. UThermodynamics:U It is a basic science that deals with: -. Energy transformation from one form to another..

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

Ch. 7: Thermochemistry

Ch. 7: Thermochemistry Thermodynamics and Thermochemistry Thermodynamics concerns itself with energy and its relationship to the large scale bulk properties of a system that are measurable: Volume, Temperature, Pressure, Heat

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information