The Lucas and Babbage congruences

Size: px
Start display at page:

Download "The Lucas and Babbage congruences"

Transcription

1 The Lucas ad Baage cogrueces Dar Grerg Feruary 26, 2018 Cotets 01 Itroducto 1 1 The cogrueces 2 11 Bomal coeffcets 2 12 Negatve 3 13 The two cogrueces 4 2 Proofs 5 21 Basc propertes of omal coeffcets modulo prmes 5 22 Restatg Vadermode covoluto 6 23 The cogruece lemma 9 24 Proof of the Lucas theorem Two lemmas for Baage s theorem Proof of Baage s theorem 17 3 The sums of the frst p powers The cogruece Powers ad power sums va Strlg umers of the secod d Fshg the proof Itroducto I ths expostory ote, we prove the Lucas ad Baage cogrueces for omal coeffcets The proof s elemetary y ducto ad fuctos for artrary teger parameters as opposed to merely for oegatve tegers Afterwards, we also prove the cogruece s ot a postve multple of p p 1 l0 l 0 mod p for ay prme p ad ay N that 1

2 The Lucas ad Baage cogrueces page 2 1 The cogrueces 11 Bomal coeffcets Let us frst recall the stadard defto of omal coeffcets: 1 Defto 11 Let N ad m Q The, the omal coeffcet ratoal umer defed y m m m 1 m 1! m s a Ths defto s equvalet to the defto gve [Gre17, Defto 21] deed, ths s show [Gre17, Proposto 23] The followg propertes of omal coeffcets are well-ow ad appear [Gre17]: Proposto 12 We have for every m Q m Proposto 12 s [Gre17, Proposto 24 ] wth Z replaced y Q Proposto 13 We have for every m N ad N satsfyg m < Proposto 13 s [Gre17, Proposto 27] m 0 2 Proposto 14 We have for every m N m 1 3 m Proposto 14 s [Gre17, Proposto 210] Proposto 15 We have m m 1 1 m 1 4 for ay m Z ad {1, 2, 3, 1 We use the otato N for the set {0, 1, 2,

3 The Lucas ad Baage cogrueces page 3 Proposto 15 s [Gre17, Proposto 212 ] Proposto 16 We have m Z for ay m Z ad N Proposto 16 s [Gre17, Proposto 220] Proposto 17 For every x Z ad y Z ad N, we have x y 0 x y Proposto 17 s the so-called Vadermode covoluto detty, ad appears [Gre17, Proposto 227 a] 12 Negatve m We have so far defed the omal coeffcet oly for N For the sae m of coveece, let us exted the defto of to artrary tegers To do m so, we eed to defe whe s a egatve teger We do so the smplest possle way: Defto 18 Let e a egatve teger Let m Z The, the omal m m coeffcet s a ratoal umer defed y 0 Ths coveto s the oe used y Graham, Kuth ad Patash [GrKPa] Other authors use other covetos m Hece, the omal coeffcet s defed for all m Z ad Z Namely, t s defed Defto 18 whe s egatve, ad t s defed Defto 11 whe s oegatve The followg fact s easy: m Proposto 19 We have Z for ay m Z ad Z m Proof of Proposto 19 Whe s egatve, Proposto 19 follows from 0 Thus, we WLOG assume that s oegatve Hece, N Thus, Proposto 19 follows from Proposto 16

4 The Lucas ad Baage cogrueces page 4 We ca also exted Proposto 15 to artrary teger values of : Proposto 110 We have m for ay m Z ad Z m 1 1 m 1 Proof of Proposto 110 Let m Z ad Z We are oe of the followg three cases: Case 1: We have < 0 Case 2: We have 0 Case 3: We have > 0 Let us frst cosder Case 1 I ths case, we have < 0 Thus, oth ad m m 1 1 are egatve tegers Hece, all three omal coeffcets, 1 m 1 ad equal 0 y Defto 18 Therefore, the clam of Proposto 110 rewrtes as 0 0 0, whch s clearly true Thus, Proposto 110 s prove Case 1 Let us ext cosder Case 2 I ths case, we have 0 Hece, 1 1 s a m 1 egatve teger Therefore, Defto 18 yelds 0 Also, from 0, 1 m m m 1 m 1 we ota 1 ad 1 Hece, 0 0 m 1 m {{{{ 0 m m m 1 m 1 Comparg ths wth 1, we ota Thus, 1 Proposto 110 s prove Case 2 Let us fally cosder Case 3 I ths case, we have > 0 Thus, {1, 2, 3, m m 1 m 1 Hece, Proposto 15 yelds Thus, Proposto s prove Case 3 We have ow prove Proposto 110 each of the three Cases 1, 2 ad 3 Ths completes the proof 13 The two cogrueces m Proposto 19 shows that s a teger wheever m Z ad Z We shall use ths fact tactly It allows us to state cogrueces volvg omal coeffcets 1

5 The Lucas ad Baage cogrueces page 5 Next, let us state two classcal results o the ehavor of omal coeffcets modulo prmes: Theorem 111 Let p e a prme Let a ad e two tegers Let c ad d e two elemets of {0, 1,, p 1 The, ap c a c mod p p d d Theorem 111 s ow uder the ame of Lucas s theorem, ad s prove may places eg, [Mestro14, 21] or [Hause83, Proof of 4] or [ABeRo05, proof of Lucas s theorem] or [GrKPa, Exercse 561] the case whe a ad are oegatve tegers The stadard proof of Theorem 111 ths case uses geeratg fuctos; t s ot hard to twea ths proof so that t apples mutats mutads the geeral case as well But we are gog to gve a dfferet, more elemetary proof of Theorem 111 Aother classcal result aout omal coeffcets ad prmes s the followg fact: Theorem 112 Let p e a prme Let a ad e two tegers The, ap p a mod p 2 I the case whe a ad are oegatve tegers, Theorem 112 s a ow result, due to Charles Baage see, eg, [Sta11, Exercse 114 c] or [GrKPa, Exercse 562] Notce that f p 5, the the modulus p 2 ca e replaced y p 3 or depedg o a, ad p y eve hgher powers of p; see [Mestro14, 22 ad 23] for the detals We shall prove Theorem 112 later 2 Proofs 21 Basc propertes of omal coeffcets modulo prmes Let us frst state a smple fact: Proposto 21 Let p e a prme Let {1, 2,, p 1 The, p p Proposto 21 s [Gre16, Corollary 56] ad [BeQu03, Theorem 13]

6 The Lucas ad Baage cogrueces page 6 22 Restatg Vadermode covoluto Let us also derve oe more smple corollary of Proposto 17: Corollary 22 Let x Z ad y N ad Z The, y x y x 0 y 5 Proof of Corollary 22 We are oe of the followg two cases: Case 1: We have < 0 Case 2: We have 0 I Case 1, Corollary 22 s easy to chec, ecause oth sdes of 5 are 0 ths case 2 Let us ow cosder Case 2 I ths case, we have 0 Hece, N sce Z Defe a g N y g max {y, Thus, g max {y, y ad g max {y, We have g y 0 sce y N, so that 0 y g Hece, we ca splt the sum g 0 x y at y We thus ota g y g x y x y x 0 0 y1 y x y 0 y x 0 y x 0 {{ 0 g y1 y {{ 0 y Proposto 13 sce y< sce y1>y 6 O the other had, g 0, so that 0 g Hece, we ca splt the sum 2 Ideed, the left-had sde of 5 s 0 sce < 0, ad the rght-had sde of 5 s 0 sce each x {0, 1,, y satsfes < 0 ad thus 0

7 The Lucas ad Baage cogrueces page 7 g x y at We thus ota 0 g x y x y 0 0 x y 0 Comparg ths wth 6, we fd Proposto 17 yelds x y 0 0 x 0 y g 1 y x y x 0 0 x y y 7 Ths proves Corollary 22 x {{ 0 sce <0 sce 1> g y 0 1 {{ 0 x 0 y y 7 y {{ y here, we have susttuted for the sum x y x y y 0 Let us state a few cosequeces of Corollary 22: Corollary 23 Let x Z ad Z Let y e a postve teger The, x y x y 1 x 1 y x y Proof of Corollary 23 We ow that y s a postve teger Thus, 0 ad y are two

8 The Lucas ad Baage cogrueces page 8 dstct elemets of {0, 1,, y Corollary 22 yelds y x y x y 0 y 1 x y x y x 0 0 y {{ {{ 1 x 1 x Ths proves Corollary 23 here, we have splt off the addeds for 0 ad for y from the sum sce 0 ad y are two dstct elemets of {0, 1,, y y y 1 1 x x y Corollary 24 Let x Z ad Z Let p e a prme The, x p x x mod p p y y {{ 1 y Proposto 14 appled to my Proof of Corollary 24 We have p 0 mod p for each {1, 2,, p The umer p s a prme, ad thus a postve teger Hece, Corollary 23 appled to y p yelds p 1 x p x x p x p 1 x Ths proves Corollary 24 p 1 1 x 0 {{ 0 {{ 0 mod p y 8 x p x x mod p p 3 Proof of 8: Let {1, 2,, p 1 Proposto 21 appled to yelds p p words, 0 mod p Ths proves 8 p I other

9 The Lucas ad Baage cogrueces page 9 23 The cogruece lemma We ow show a geeral lemma that helps us attac cogrueces volvg omal coeffcets: 4 Lemma 25 Let A : Z Z Z e ay map Let N e a teger Let u Z Assume that the followg four codtos hold: Every a Z ad Z satsfy A a, A a 1, A a 1, 1 mod N 9 We have A 0, 0 u mod N 10 Every a Z ad every egatve Z satsfy A a, 0 mod N 11 Every postve teger satsfes A 0, 0 mod N 12 The, every a Z ad Z satsfy a A a, u mod N Proof of Lemma 25 Let us frst show the followg fact: 0 Oservato 1: Let Z We have A 0, u mod N [Proof of Oservato 1: We are oe of the followg three cases: Case 1: We have < 0 Case 2: We have 0 Case 3: We have > 0 Let us frst cosder Case 1 I ths case, we have < 0 Thus, s a egatve teger sce Z Hece, Defto 18 yelds Thus, u {{ 0 0, 4 We shall oly use Lemma 25 the case whe N s a postve teger For the sae of geeralty, we are evertheless statg t for artrary tegers N Mae sure to correctly terpret the otato u v mod N whe N s 0: If u ad v are two tegers, the u v mod 0 holds f ad oly f u v

10 The Lucas ad Baage cogrueces page so that 0 u But 11 appled to a 0 yelds A 0, 0 u mod N Thus, Oservato 1 s prove Case Let us ow cosder Case 2 I ths case, we have 0 Thus, u u 0 {{ u, so that u u But 10 yelds A 0, 0 u u mod N From 0, we ota A 0, {{ 0 A 0, 0 u mod N Thus, Oservato 1 s prove 0 Case 2 Fally, let us cosder Case 3 I ths case, we have > 0 Thus, N ad 0 0 < Hece, Proposto 13 appled to m 0 ad yelds 0 Hece, u 0, so that 0 u But 12 yelds A 0, 0 u mod N Thus, {{ 0 Oservato 1 s prove Case 3 We have ow prove Oservato 1 each of the three Cases 1, 2 ad 3 Sce these three Cases cover all possltes, we thus coclude that Oservato 1 always holds] Next, we clam the followg fact: a Oservato 2: We have A a, u mod N for each a N ad Z [Proof of Oservato 2: We shall prove Oservato 2 y ducto over a 0 Iducto ase: We have A 0, u mod N for each Z accordg to Oservato 1 I other words, Oservato 2 holds for a 0 Ths completes the ducto ase Iducto step: Let c e a postve teger Assume that Oservato 2 holds for a c 1 We must prove that Oservato 2 holds for a c We have assumed that Oservato 2 holds for a c 1 I other words, we have c 1 A c 1, u mod N for each Z 13

11 The Lucas ad Baage cogrueces page 11 For each Z, we have c c 1 c 1 1 y Proposto 110 appled to m c ad c 1 c Now, for each Z, we have A c, A c 1, {{ c 1 u y 13 mod N A c 1, 1 {{ c 1 u 1 mod N y 13 appled to 1 stead of y 9 appled to a c c 1 c 1 c 1 c 1 u u u 1 1 {{ c c u mod N y 14 I other words, Oservato 2 holds for a c Ths completes the ducto step Thus, Oservato 2 s prove] Our ext step shall e to prove the followg fact: a Oservato 3: Let h N We have A a, u mod N for each a Z ad Z satsfyg a < h [Proof of Oservato 3: We shall prove Oservato 3 y ducto over h: a Iducto ase: We have A a, u mod N for each a Z ad Z satsfyg a < 0 5 I other words, Oservato 3 holds for h 0 Ths completes the ducto ase a 5 Proof Let a Z ad Z e such that a < 0 We must prove that A a, u mod N If a N, the ths follows mmedately from Oservato 2 Thus, for the rest of ths proof, we WLOG assume that we do t have a N Hece, a / N Comg a Z wth a / N, we ota a Z \ N { 1, 2, 3, Hece, a < 0 But from a < 0, we ota < a < 0 a Thus, s a egatve teger sce Z Therefore, Defto 18 yelds 0 Hece,

12 The Lucas ad Baage cogrueces page 12 Iducto step: Let g N Assume that Oservato 3 holds for h g We must prove that Oservato 3 holds for h g 1 We have assumed that Oservato 3 holds for h g I other words, we have a A a, u mod N for each a Z ad Z satsfyg a < g 15 Now, let a Z ad Z e such that a < g 1 The, 9 appled to a 1 stead of a shows that Hece, A a 1, A a 1 1, A a 1 1, 1 {{{{ a a A a, A a, 1 mod N A a, A a 1, A a, 1 mod N 16 Also, Proposto 110 appled to m a 1 ad yelds a 1 a 1 1 a 1 1 a 1 1 sce a 1 1 a a a 1 Hece, a a 1 a a 17 1 But a 1 {{ a 1 < g 1 1 g Hece, we ca apply 15 to a 1 <g1 stead of a We thus ota a 1 A a 1, u mod N Also, 1 a {{ a 1 < g 1 1 g Hece, we ca apply 15 to 1 <g1 stead of We thus ota a A a, 1 u mod N 1 a a a u 0, so that 0 u But 11 yelds A a, 0 u mod N Hece, we have {{ 0 a prove that A a, u mod N Qed

13 The Lucas ad Baage cogrueces page 13 Thus, 16 ecomes A a, A a 1, {{ a 1 u a 1 u mod N A a, 1 {{ a u mod N 1 a 1 a a u u mod N 1 {{ a a u 1 y 17 Now, forget that we fxed a ad We thus have show that we have A a, a u mod N for each a Z ad Z satsfyg a < g 1 I other words, Oservato 3 holds for h g 1 Ths completes the ducto step Thus, Oservato 3 s prove] a Now, let a Z ad Z e artrary We must prove that A a, u mod N Defe h Z y h max {0, a 1 Thus, h max {0, a 1 0, so that h N sce h Z Also, h max {0, a 1 a 1 > a, so that a a < h Hece, Oservato 3 shows that we have A a, u mod N Ths completes the proof of Lemma Proof of the Lucas theorem We are ow ready to prove Theorem 111: Proof of Theorem 111 Let us forget that we fxed a ad c Defe a teger u Z y u Defe a map A : Z Z Z y d ap c A a, for each a, Z Z p d Let us ow prove some propertes of the map A: Oservato 1: Every a Z ad Z satsfy A a, A a 1, A a 1, 1 mod p [Proof of Oservato 1: Let a Z ad Z The, the defto of A yelds a 1 p c A a 1, 18 p d

14 The Lucas ad Baage cogrueces page 14 Also, the defto of A yelds A a 1, 1 a 1 p c 1 p d a 1 p c p d p sce 1 p d p d p Corollary 24 appled to x a 1 p c ad p d yelds a 1 p c p a 1 p c a 1 p c p d p d p d p {{{{ Aa 1, Aa 1, 1 y 18 y 19 Now, the defto of A yelds ap c a 1 p c p A a, p d p d A a 1, A a 1, 1 mod p y 20 Ths proves Oservato 1] Oservato 2: We have A 0, 0 u mod p 19 A a 1, A a 1, 1 mod p 20 sce ap c a 1 p c p [Proof of Oservato 2: The defto of A yelds 0p c c A 0, 0 sce 0p c c ad 0p d d 0p d d c u sce u d u mod p Ths proves Oservato 2] Oservato 3: Every a Z ad every egatve Z satsfy A a, 0 mod p [Proof of Oservato 3: Let a Z Let Z e egatve The, p d s a ap c egatve teger 6 Hece, Defto 18 yelds 0 Now, the defto p d of A yelds ap c A a, 0 0 mod p p d Ths proves Oservato 3] 6 Proof We have d {0, 1,, p 1, so that d p 1 < p But s a egatve teger sce Z s egatve; hece, { 1, 2, 3,, so that 1 Hece, p 1 p sce p s postve Thus, p {{{{ d < 1 p p 0 Therefore, p d s a egatve teger sce <p 1p p d Z Qed

15 The Lucas ad Baage cogrueces page 15 Oservato 4: Every postve teger satsfes A 0, 0 mod p [Proof of Oservato 4: Let e a postve teger Thus, > 0 Also, d {0, 1,, p 1, so that d 0 Hece, {{ p {{{{ d > 0 Thus, p d s a >0 >0 0 postve teger sce p d Z, so that p d N Also, c {0, 1,, p 1 N Moreover, > 0, so that 1 sce s a teger Usg p > 0, we thus fd {{ p p But c {0, 1,, p 1, so that c p 1 < p Hece, p > c 1 Now, p {{ d p p > c, so that c < p d Hece, Proposto 13 appled 0 c to m c ad p d yelds 0 p d Now, the defto of A yelds 0p c c A 0, sce 0p c c p d p d 0 0 mod p Ths proves Oservato 4] We have ow prove the four Oservatos 1, 2, 3 ad 4 I other words, the four codtos Lemma 25 hold f we set N p Thus, Lemma 25 appled to N p yelds that every a Z ad Z satsfy a A a, u mod p 21 Now, let a ad e two tegers Thus, a Z ad Z Hece, 21 yelds a c a a c A a, {{ u mod p d d c I vew of ths rewrtes as A a, Ths proves Theorem 111 d ap c p d ap c p d a y the defto of A, c mod p d

16 The Lucas ad Baage cogrueces page Two lemmas for Baage s theorem Before we start provg Theorem 112, let us show two more auxlary results The frst oe s a cosequece of Theorem 111: Lemma 26 Let p e a prme Let r Z ad s Z Let {1, 2,, p 1 rp The, p sp Proof of Lemma 26 From {1, 2,, p 1, we coclude that s a postve teger Thus, > 0 Hece, 0 < Also, {1, 2,, p 1 N Thus, Proposto 0 13 appled to m 0 ad yelds 0 We have {1, 2,, p 1 {0, 1,, p 1 Also, 0 {0, 1,, p 1 sce p 1 N sce p s a postve teger Thus, Theorem 111 appled to a r, s, c 0 ad d yelds rp 0 r 0 0 mod p sp s {{ 0 rp 0 rp I other words, p I vew of rp 0 rp, ths rewrtes as p sp sp Hece, Lemma 26 s prove The ext auxlary result s smlar to Corollary 24, ad also follows from Corollary 23: Corollary 27 Let r Z ad Z Let p e a prme The, r 1 p rp rp mod p 2 p p 1 p Proof of Corollary 27 We have rp p 0 mod p 2 p for each {1, 2,, p p 7 Proof of 22: Let {1, 2,, p 1 Proposto 21 appled to yelds p I other p words, there exsts a x Z such that px Cosder ths x O the other had, from {1, 2,, p 1, we ota p {1, 2,, p 1 Hece,

17 The Lucas ad Baage cogrueces page 17 The umer p s a prme, ad thus a postve teger Hece, Corollary 23 appled to x rp, y p ad p yelds rp p p rp p p 1 rp p p 1 rp 1 1 p p {{ 0 mod p 2 y 22 0 {{ 0 rp 1 p rp p p {{ rp 1 p sce p p 1p rp p rp 1 p I vew of rp p r 1 p, ths rewrtes as r 1 p rp rp mod p 2 p p 1 p Ths proves Corollary 27 mod p 2 26 Proof of Baage s theorem We are ow ready to prove Theorem 112: Proof of Theorem 112 Let us forget that we fxed a ad Defe a teger u Z y u 1 Defe a map A : Z Z Z y A a, ap p Let us ow prove some propertes of the map A: Oservato 1: Every a Z ad Z satsfy for each a, Z Z A a, A a 1, A a 1, 1 mod p 2 rp rp Lemma 26 appled to s 1 ad p yelds p 1 p p p rp sce 1 p p p I other words, there exsts a y Z such that py p Cosder ths y We have rp p pypx p 2 xy 0 mod p 2 p {{{{ py px Ths proves 22

18 The Lucas ad Baage cogrueces page 18 [Proof of Oservato 1: Let a Z ad Z The, the defto of A yelds a 1 p A a 1, 23 p Also, the defto of A yelds A a 1, 1 Corollary 27 appled to r a 1 yelds a 1 1 p a 1 p a 1 p p p 1 p {{{{ Aa 1, Aa 1, 1 y 23 y 24 a 1 p 24 1 p A a 1, A a 1, 1 mod p 2 25 Now, the defto of A yelds ap a 1 1 p A a, sce a a 1 1 p p A a 1, A a 1, 1 mod p 2 y 25 Ths proves Oservato 1] Oservato 2: We have A 0, 0 u mod p 2 [Proof of Oservato 2: The defto of A yelds 0p 0 A 0, 0 1 u u mod p 2 0p 0 Ths proves Oservato 2] Oservato 3: Every a Z ad every egatve Z satsfy A a, 0 mod p 2 [Proof of Oservato 3: Let a Z Let Z e egatve The, p s a egatve ap teger sce s egatve ut p s postve Hece, Defto 18 yelds 0 p Now, the defto of A yelds ap A a, 0 0 mod p 2 p Ths proves Oservato 3]

19 The Lucas ad Baage cogrueces page 19 Oservato 4: Every postve teger satsfes A 0, 0 mod p 2 [Proof of Oservato 4: Let e a postve teger Thus, > 0 Hece, p > 0 sce p s postve Thus, p s a postve teger sce p Z, so that p N Moreover, 0 < p sce p > 0 Hece, Proposto 13 appled to m 0 ad 0 p yelds 0 p Now, the defto of A yelds A 0, 0p p 0 p 0 0 mod p 2 sce 0p 0 Ths proves Oservato 4] We have ow prove the four Oservatos 1, 2, 3 ad 4 I other words, the four codtos Lemma 25 hold f we set N p 2 Thus, Lemma 25 appled to N p 2 yelds that every a Z ad Z satsfy a A a, u mod p 2 26 Now, let a ad e two tegers Thus, a Z ad Z Hece, 26 yelds a a A a, {{ u mod p 2 1 I vew of ths rewrtes as A a, Ths proves Theorem 112 ap p ap p y the defto of A, a mod p 2 3 The sums of the frst p powers 31 The cogruece Next, we shall prove a well-ow cogruece cocerg the sum 1 p 1 for a prme p: p 1 l 0 l0

20 The Lucas ad Baage cogrueces page 20 Theorem 31 Let p e a prme Let N Assume that s ot a postve multple of p 1 The, p 1 l 0 mod p l0 Theorem 31 has othg to do wth omal coeffcets Nevertheless, we shall prove t usg omal coeffcets 32 Powers ad power sums va Strlg umers of the secod d We shall frst troduce aother famly of tegers: the so-called Strlg umers of the secod d They have varous equvalet deftos; we defe them y recurso: { m Defto 32 For each m N ad Z, we defe a teger as follows: We proceed y recurso o m: We set { { 0 1, f 0; 0, f 0 { m Ths defes for m 0 for all Z 27 For each postve teger m ad each Z, we set { { { m m 1 m { { m m Thus, a famly of tegers s defed These tegers m, N Z are called the Strlg umers of the secod d { m These Strlg umers have a well-ow comatoral terpretato: { m Namely, f m N ad N, the s the umer of set parttos of the set {1, 2,, m to oempty susets Ths s actually ot hard to prove y ducto o m for example, the proof s setched [Sta11, 19] ad [GrKPa, 61] 8 ; ut we do t eed ths Istead, let us prove the followg algerac facts: { m 8 To e more precse, oth [Sta11, 19] ad [GrKPa, 61] defe as the umer of set

21 The Lucas ad Baage cogrueces page 21 Proposto { 33 For each m N ad Z satsfyg / {0, 1,, m, we have m 0 Proof of Proposto 33 We shall prove Proposto 33 y ducto o m: Iducto ase: Proposto 33 holds whe m 0 as follows easly from 27 Ths completes the ducto ase Iducto step: Let e a postve teger Assume that Proposto 33 holds whe m 1 We must ow prove that Proposto 33 holds whe m We have assumed that Proposto 33 holds whe m 1 I other words, for each Z satsfyg / {0, 1,, 1, we have { Now, let Z e such that / {0, 1,, { Thus, 1 / {0, 1,, 1 1 Hece, 29 appled to 1 stead of yelds 0 Also, / {0, 1,, 1 1 { 1 ths aga follows from / {0, 1,, Hece, 29 yelds 0 Now, 28 appled to m yelds { { { {{{{ 0 0 Now, forget that we fxed { We thus have show that for each Z satsfyg / {0, 1,,, we have 0 I other words, Proposto 33 holds whe m Ths completes the ducto step Thus, the proof of Proposto 33 s complete Lemma 34 Let N ad x Q The, x x! x 1! 1 Proof of Lemma 34 We have N Thus, the defto of x x x 1 x 1! x yelds parttos of the set {1, 2,, m to oempty susets, ad the prove that 27 ad 28 hold wth ths defto Ths s exactly the opposte of what we are dog; ut of course, t s equvalet

22 The Lucas ad Baage cogrueces page 22 Hece,! x x! x {{ x x 1 x 1! x x 1 x 1! x x x 1 x 1 x x 1 x 1 x x x 1 x 30 O the other had, 1 N sce N Hece, the defto of yelds x 1 x x 1 x 1 1 1! Hece, x 1! x x 1 x x x 1 x sce x 1 1 x x! x y 30 Ths proves Lemma 34 Proposto 35 Let m N ad x Q The, x m m! 0 { m x x 1 Proof of Proposto 35 We shall prove Proposto 35 y ducto o m: Iducto ase: It s straghtforward to see that Proposto 35 holds whe m 0 Ths completes the ducto ase Iducto step: Let e a postve teger Assume that Proposto 35 holds whe m 1 We must ow prove that Proposto 35 holds whe m We have assumed that Proposto 35 holds whe m 1 I other words, we have x 1 1! 0 { 1 x

23 The Lucas ad Baage cogrueces page 23 Multplyg oth sdes of ths equalty y x, we ota x 1 x 1! { 1 x x 1! 0 { 1 { 1 x! x { {{ { 1 x 1 x! { { 1 x 1 x! { 1 x 1 { 1 x! 0! 1! 0 1! 0 x x x x {{ x x 31 { 1 But Proposto 33 appled to m 1 ad yelds 0, whereas { 1 Proposto 33 appled to m 1 ad 1 yelds 0 1 But 28 appled to m ad yelds { { { We have N sce s a postve teger, so that {0, 1,, Now, { 1! 0 1! 0 1! 0 x { { 1 x 1! {{ 0 x here, we have splt off the added for from the sum { 1 x sce {0, 1,, x 1 { 1!0! {{ 0 0 x, so that 1! 0 { 1 x! 0 { 1 x 33

24 The Lucas ad Baage cogrueces page 24 Also, 0 {0, 1,, sce N Now, 1 0 { 1 x! x {{ { x x x! x {{ x 1! 1 y Lemma ! 0 x! 1 { 1 { {{ sce 1 1 x 1 { { 1 1 here, we have susttuted for 1 the sum Comparg ths wth x! 0! 1 { 1 1 { x 1 1 { x 1 0! { {{ here, we have splt off the added for 0 from the sum! 1 x { 1 1 sce 0 {0, 1,, x { x 1 0! 0 0! 1 {{ 1 0, we fd 1! 0 { 1 x x! 0 x {

25 The Lucas ad Baage cogrueces page 25 Comparg the equalty 31 wth x 1 x x, we fd x 1 { 1 x! 0 { {{ 1 x! y 33 { 1 x! x 0 { {{ x 1 1! 0 y 34 1 { 1 x { x 1!! 1 0 { { 1 x x 1!! 1 {{ { { 1 1 x! 1 { { 1 1 x! 1 { {{ y 32! 0 { x I other words, Proposto 35 holds whe m Ths completes the ducto step Thus, Proposto 35 s prove Next, we shall prove aother asc detty aout omal coeffcets, sometmes ow as the hocey-stc detty ths or aother equvalet form: Proposto 36 Let N ad h N The, h x0 x h 1 1 Proof of Proposto 36 For each x N, we have x x 1 x Proof of 35: Let x N The, Proposto 110 appled to m x 1 ad 1 yelds x 1 1 x x x x 1

26 The Lucas ad Baage cogrueces page 26 h1 x0 Proposto 13 appled to m 0 ad 1 yelds 0 < 1 But x 1 h1 x 0 1 x sce 1 {{ 0 here, we have splt off the added for x 0 from the sum h1 x 1 x1 h x0 sce 0 {0, 1,, h 1 x 1 1 here, we have susttuted x 1 for x the sum Hece, x 1 x h x h h x0 h1 x0 x0 36 here, we have splt off the added for x h 1 from the sum sce h 1 {0, 1,, h 1 sce h 1 N Now, h x0 h x0 x {{ x 1 x 1 1 y 35 x 1 1 h x x0 1 Ths proves Proposto 36 x 1 h 1 1 h x0 h x x0 1 h x 1 x0 1 {{ x h y 36 h 1 1 h x0 x 1 We ca ow ota a reasoaly smple formula for sums of the form sce x 1 1 x ad 1 1 Solvg ths equato for x 1 x Ths proves h x m : x0 x, we ota x

27 The Lucas ad Baage cogrueces page 27 Theorem 37 Let m N ad h N The, h x m m! x0 0 { m h 1 1 Proof of Theorem 37 We have h x m h m { m {{! x0 { x0 m m x 0 {{! 0 y Proposto 35 Ths proves Theorem 37 h 0 x0 m m h 0 x0 m! 0 { m { m! x x h 1 1 m { m! 0 h x x0 {{ h 1 1 y Proposto 36 We are ow ready to prove the followg partcular case of Theorem 31: Lemma 38 Let p e a prme Let N Assume that < p 1 The, p 1 l 0 mod p l0 Proof of Lemma 38 We have < p 1, so that 1 < p Sce 1 ad p are tegers, ths yelds 1 p 1 For each {0, 1,,, we have p 0 mod p Proof of 37: Let {0, 1,, Thus, 0 From 0, we ota 1 1 Comg {{ 0 ths wth 1 1 p 1, we ota 1 1 p 1 Hece, 1 {1, 2,, p 1 {{ p p Thus, Proposto 21 appled to 1 stead of yelds p I other words, mod p Ths proves 37

28 The Lucas ad Baage cogrueces page 28 Now, p 1 N sce p 1 sce p s a prme Thus, Theorem 37 appled to h p 1 ad m yelds p 1 x { p 1 1 { p! x0 1! sce p 1 1 p {{ 0 mod p y 37 Now,! 0 { 0 0 mod p p 1 p 1 l x here, we have reamed the summato dex l as x l0 x0 0 mod p Ths proves Lemma Fshg the proof The last gredet we eed for the proof of Theorem 31 s Fermat s lttle theorem: Proposto 39 Let p e a prme Let a Z The, a p a mod p Proposto 39 s, of course, oe of the fudametal facts of umer theory, ad shall ot e prove here We shall use the followg corollary of Proposto 39: Corollary 310 Let p e a prme Let a Z Let e a postve teger Let r e the remader of upo dvso y p 1 Assume that s ot a multple of p 1 The, a a r mod p Proof of Corollary 310 The defto of r shows that r {0, 1,, p 1 1 ad r mod p 1 ad r sce 0 But 0 mod p 1 sce s ot a multple of p 1 Hece, r 0 mod p 1, so that r 0 From r mod p 1, we ota p 1 r Thus, there exsts a q Z such that r p 1 q Cosder ths q We have p 1 q r 0 sce r ad thus q 0 sce p 1 > 0 I other words, q N Proposto 39 yelds a p a mod p Hece, a p 1m a mod p for each m N Applyg ths to m q, we ota a p 1q1 a mod p sce q N Multplyg oth sdes of ths cogruece wth a r 1, we fd a p 1q1 a r 1 aa r 1 a r mod p Thus, a r a p 1q1 a r 1 a p 1q1r 1 a mod p 11 Proof of 38: We shall prove 38 y ducto o m:

29 The Lucas ad Baage cogrueces page 29 sce p 1 q 1 r 1 r 1 r 1 Ths proves Corollary {{ r 310 Proof of Theorem 31 If < p 1, the the clam of Theorem 31 follows from Lemma 38 Hece, for the rest of ths proof, we WLOG assume that we do t have < p 1 Thus, p 1 > 0 Hece, s postve Thus, s ot a multple of p 1 ecause s ot a postve multple of p 1, ut s postve Let r e the remader of upo dvso y p 1 Thus, r {0, 1,, p 1 1, so that r N ad r p 1 1 < p 1 Each l {0, 1,, p 1 satsfes l l r mod p y Corollary 310, appled to a l Hece, p 1 l0 l {{ l r mod p p 1 l r 0 mod p l0 y Lemma 38, appled to r stead of Ths proves Theorem 31 Refereces [Ager07] Mart Ager, A Course Eumerato, Graduate Texts Mathematcs #238, Sprger 2007 [ABeRo05] Peter G Aderso, Arthur T Beam ad Jeremy A Rouse, Comatoral Proofs of Fermat s, Lucas s, ad Wlso s Theorems, The Amerca Mathematcal Mothly, Vol 112, No 3 Mar, 2005, pp [BeQu03] Arthur T Beam ad Jefer J Qu, Proofs that Really Cout: The Art of Comatoral Proof, The Mathematcal Assocato of Amerca, 2003 [Comtet74] Lous Comtet, Advaced Comatorcs: The Art of Fte ad Ifte Expasos, D Redel Pulshg Compay, 1974 Iducto ase: We have a p 101 a 1 a a mod p I other words, 38 holds for m 0 Ths completes the ducto ase Iducto step: Let N Assume that 38 holds for m We must prove that 38 holds for m 1 We have assumed that 38 holds for m I other words, a p 11 a mod p Now, p p 1 1 p 1 Hece, a p 111 a p 11p 1 a p 11 {{ a p 1 aa p 1 a p a mod p a mod p I other words, 38 holds for m 1 Ths completes the ducto step Hece, 38 s prove

30 The Lucas ad Baage cogrueces page 30 [GrKPa] Roald L Graham, Doald E Kuth, Ore Patash, Cocrete Mathematcs, Secod Edto, Addso-Wesley 1994 [Gre16] Dar Grerg, Flec s omal cogruece usg crculat matrces, 4 Decemer [Gre17] Dar Grerg, Notes o the comatoral fudametals of algera, 25 Decemer [Hause83] Melv Hauser, Applcatos of a Smple Coutg Techque, The Amerca Mathematcal Mothly, Vol 90, No 2 Fe, 1983, pp [Mestro14] Romeo Meštrovć, Lucas theorem: ts geeralzatos, extesos ad applcatos , arxv: v1 [Sta11] Rchard Staley, Eumeratve Comatorcs, volume 1, Secod edto, verso of 15 July 2011 Avalale at [Stato16] Des Stato, Addedum to Usg the Freshma s Dream to Prove Comatoral Cogrueces, freshmadesstatopdf

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES #A27 INTEGERS 3 (203) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES Emrah Kılıç Mathematcs Departmet, TOBB Uversty of Ecoomcs ad Techology, Akara, Turkey eklc@etu.edu.tr Neşe Ömür Mathematcs Departmet,

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Some identities involving the partial sum of q-binomial coefficients

Some identities involving the partial sum of q-binomial coefficients Some dettes volvg the partal sum of -bomal coeffcets Bg He Departmet of Mathematcs, Shagha Key Laboratory of PMMP East Cha Normal Uversty 500 Dogchua Road, Shagha 20024, People s Republc of Cha yuhe00@foxmal.com

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

The Number of Canalyzing Functions over Any Finite Set *

The Number of Canalyzing Functions over Any Finite Set * Ope Joural of Dscrete Mathematcs, 03, 3, 30-36 http://dxdoorg/0436/odm033304 Pulshed Ole July 03 (http://wwwscrporg/oural/odm) The umer of Caalyzg Fuctos over Ay Fte Set * Yua L #, Davd Murrugarra, Joh

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

On binomial coefficients modulo squares of primes

On binomial coefficients modulo squares of primes O boa coeffcets oduo squares of pres Darj Grberg arxv:171202095v1 [athco] 6 Dec 2017 Deceber 7, 2017 Abstract We gve eeetary proofs for the Apagodu-Zeberger- Stato-Adeberha-Tauraso cogrueces r 0 s 0 2

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 01 Sgals & Systems Prof. Mark Fowler Note Set #9 Computg D-T Covoluto Readg Assgmet: Secto. of Kame ad Heck 1/ Course Flow Dagram The arrows here show coceptual flow betwee deas. Note the parallel

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Evaluating Polynomials

Evaluating Polynomials Uverst of Nebraska - Lcol DgtalCommos@Uverst of Nebraska - Lcol MAT Exam Expostor Papers Math the Mddle Isttute Partershp 7-7 Evaluatg Polomals Thomas J. Harrgto Uverst of Nebraska-Lcol Follow ths ad addtoal

More information

Complex Numbers Primer

Complex Numbers Primer Complex Numbers Prmer Before I get started o ths let me frst make t clear that ths documet s ot teded to teach you everythg there s to kow about complex umbers. That s a subject that ca (ad does) take

More information

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES Joural of lgebra, umber Theory: dvaces ad pplcatos Volume, umber, 9, Pages 99- O THE ELEMETRY YMMETRIC FUCTIO OF UM OF MTRICE R.. COT-TO Departmet of Mathematcs Uversty of Calfora ata Barbara, C 96 U...

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 29, Artcle ID 3958, 2 pages do:.55/29/3958 Research Artcle Multdmesoal Hlbert-Type Iequaltes wth a Homogeeous Kerel Predrag Vuovć Faculty

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

arxiv: v2 [math.ag] 9 Jun 2015

arxiv: v2 [math.ag] 9 Jun 2015 THE EULER CHARATERISTIC OF THE GENERALIZED KUMMER SCHEME OF AN ABELIAN THREEFOLD Mart G. Gulbradse Adrea T. Rcolf arxv:1506.01229v2 [math.ag] 9 Ju 2015 Abstract Let X be a Abela threefold. We prove a formula,

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia JKAU: Sc., O vol. the Prmtve, pp. 55-62 Classes (49 of A.H. K (BU) / 999 A.D.) * 55 O the Prmtve Classes of K * (BU) KHALED S. FELALI Departmet of Mathematcal Sceces, Umm Al-Qura Uversty, Makkah Al-Mukarramah,

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

arxiv:math/ v2 [math.gr] 26 Feb 2001

arxiv:math/ v2 [math.gr] 26 Feb 2001 arxv:math/0101070v2 [math.gr] 26 Feb 2001 O drft ad etropy growth for radom walks o groups Aa Erschler (Dyuba) e-mal: aad@math.tau.ac.l, erschler@pdm.ras.ru 1 Itroducto prelmary verso We cosder symmetrc

More information

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012 Sc. Math. Japocae Vol. 00, No. 0 0000, 000 000 1 The Arthmetc-Geometrc mea equalty a exteral formula Yuk Seo October 23, 2012 Abstract. The classcal Jese equalty ad ts reverse are dscussed by meas of terally

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Almost Sure Convergence of Pair-wise NQD Random Sequence

Almost Sure Convergence of Pair-wise NQD Random Sequence www.ccseet.org/mas Moder Appled Scece Vol. 4 o. ; December 00 Almost Sure Covergece of Par-wse QD Radom Sequece Yachu Wu College of Scece Gul Uversty of Techology Gul 54004 Cha Tel: 86-37-377-6466 E-mal:

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje. Iteratoal Joural of Fuzzy Mathematcs ad Systems. ISSN 2248-9940 Volume 3, Number 5 (2013), pp. 375-379 Research Ida Publcatos http://www.rpublcato.com O L- Fuzzy Sets T. Rama Rao, Ch. Prabhakara Rao, Dawt

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two

Overview of the weighting constants and the points where we evaluate the function for The Gaussian quadrature Project two Overvew of the weghtg costats ad the pots where we evaluate the fucto for The Gaussa quadrature Project two By Ashraf Marzouk ChE 505 Fall 005 Departmet of Mechacal Egeerg Uversty of Teessee Koxvlle, TN

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

arxiv: v4 [math.nt] 14 Aug 2015

arxiv: v4 [math.nt] 14 Aug 2015 arxv:52.799v4 [math.nt] 4 Aug 25 O the propertes of terated bomal trasforms for the Padova ad Perr matrx sequeces Nazmye Ylmaz ad Necat Tasara Departmet of Mathematcs, Faculty of Scece, Selcu Uversty,

More information

Research Article Gauss-Lobatto Formulae and Extremal Problems

Research Article Gauss-Lobatto Formulae and Extremal Problems Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2008 Artcle ID 624989 0 pages do:055/2008/624989 Research Artcle Gauss-Lobatto Formulae ad Extremal Problems wth Polyomals Aa Mara Acu ad

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

A study of the sum of three or more consecutive natural numbers

A study of the sum of three or more consecutive natural numbers A study of the sum of three or more cosecutve atural umbers Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes Greece Abstract It holds that every product of atural

More information