ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

Size: px
Start display at page:

Download "ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS"

Transcription

1 Elecronic Journl of Differenil Equions, Vol ), No. 9, pp. 3. ISSN: URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS ALEKSANDRA B. TRAJKOVIĆ, JELENA V. MANOJLOVIĆ Asrc. We sudy he fourh-order nonliner differenil equion `p) x ) x ) + q) x) β x) = 0, > β, wih regulrly vrying coefficien p, q sisfying Z / d <. p) in he frmework of regulr vriion. I is shown h complee informion cn e cquired ou he exisence of ll possile inermedie regulrly vrying soluions nd heir ccure sympoic ehvior infiniy.. Inroducion We sudy he equion p) x ) x ) ) + q) x) β x) = 0, > 0,.) where i) nd β re posiive consns such h > β, ii) p, q : [, ) 0, ) re coninuous funcions nd p sisfies +/) d <..) p) / Equion.) is clled su-hlf-liner if β < nd super-hlf-liner if β >. By soluion of.) we men funcion x : [T, ) R, T, which is wice coninuously differenile ogeher wih p x x on [T, ) nd sisfies he equion.) every poin in [T, ). A soluion x of.) is sid o e nonoscillory if here exiss T such h x) 0 for ll T nd oscillory oherwise. I is cler if x is soluion of.), hen so does x, nd so in sudying nonoscillory soluions of.) i suffices o resric our enion o is evenully) posiive soluions. 00 Mhemics Sujec Clssificion. 34C, 34E05, 6A. Key words nd phrses. Fourh order differenil equion; sympoic ehvior of soluions; posiive soluion, regulrly vrying soluion, slowly vrying soluion. c 06 Texs Se Universiy. Sumied Mrch 6, 06. Pulished June 5, 06.

2 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Throughou his pper exensive use is mde of he symol o denoe he sympoic equivlence of wo posiive funcions, i.e., f) g), g) lim f) =. We lso use he symol o denoe he dominnce relion eween wo posiive funcions in he sense h g) f) g), lim f) =. In our nlysis of posiive soluions of.) specil role is plyed y he four funcions s ϕ ) = ps) ds, ϕ ) = s ) s / ps) )/ ds, ψ ) =, ψ ) =, which re he priculr soluions of he unperured differenil equion p) x ) x )) = 0. Noe h he funcions ϕ i nd ψ i, i =, defined ove sisfy he dominnce relion ϕ ) ϕ ) ψ ) ψ ),. Asympoic nd oscillory ehvior of soluions of.) hve een previously considered in [9, 9, 6,, 6, 30, 3]. Kusno nd Tnigw in [9] mde deiled clssificion of ll posiive soluions of he equion.) under he condiion.) nd eslished condiions for he exisence of such soluions. I ws proved h he following four ypes of cominion of he signs of x, x nd p x x ) re possile for n evenully posiive soluion x) of.): p) x ) x )) > 0, x ) > 0, x ) > 0 for ll lrge,.3) p) x ) x )) > 0, x ) > 0, x ) < 0 for ll lrge,.4) p) x ) x )) > 0, x ) < 0, x ) > 0 for ll lrge,.5) p) x ) x )) < 0, x ) < 0, x ) > 0 for ll lrge..6) As resuls of furher nlysis of he four ypes of soluions menioned ove, Kusno nd Tnigw in [9] hve shown h he following six ypes re possile for he sympoic ehvior of posiive soluions of.): P) x) c ϕ ), P) x) c ϕ ) s, P3) x) c 3 s, P4) x) c 4 s, I) ϕ ) x) ϕ ) s, I) x) s, where c i > 0, i =,, 3, 4 re consns. Posiive soluions of.) hving he sympoic ehvior P) P4) re collecively clled primiive posiive soluions of he equion.), while he soluions hving he sympoic ehvior I) nd I) re referred o s inermedie soluions of he equion.). The inerrelion eween he ypes.3)-.6) of he derivives of soluions nd he ypes P) P4), I) nd I) of he sympoic ehvior of soluions is s follows: i) All soluions of ype.3) hve he sympoic ehvior of ype P);

3 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 3 ii) A soluion of ype.4) hs he sympoic ehvior of one of he ypes P), P), P3) nd I); iii) A soluion of ype.5) hs he sympoic ehvior of one of he ypes P3) nd P4); iv) A soluion of ype.6) hs he sympoic ehvior of one of he ypes P3), P4) nd I). The exisence of four ypes of primiive soluions hs een compleely chrcerized for oh su-hlf-liner nd super-hlf-liner cse of.) wih coninuous coefficiens p nd q s he following heorems proven in [9] show. Theorem.. Le p, q C[, ). Equion.) hs posiive soluion x sisfying P3) if nd only if J = p) s)qs) ds) / d <..7) Theorem.. Le p, q C[, ). Equion.) hs posiive soluion x sisfying P4) if nd only if J = p) s)s β qs) ds) / d <..8) Theorem.3. Le p, q C[, ). Equion.) hs posiive soluion x sisfying P) if nd only if J 3 = q)ϕ ) β d <..9) Theorem.4. Le p, q C[, ). Equion.) hs posiive soluion x sisfying P) if nd only if J 4 = q)ϕ ) β d <..0) Unlike primiive soluions, eslishing necessry nd sufficien condiions for he exisence of he inermedie soluions seems o e much more difficul sk. Thus, only sufficien condiions for he exisence of hese soluions ws oined in [9]. Theorem.5. If.0) holds nd if J 3 = q)ϕ ) β d =, hen equion.) hs posiive soluion x such h ϕ ) x) ϕ ),. Theorem.6. If.8) holds nd J = p) s)qs) ds) / d =, hen.) hs posiive soluion x such h x) s. However, shrp condiions for he oscillion of ll soluions of.) in oh cses su-hlf-liner nd super-hlf-liner) hve een oined in [6].

4 4 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Theorem.7. Le β <. All soluions of.) re oscillory if nd only if J = p) s)s β qs) ds) / d =. Thus, our sk is o eslish necessry nd sufficien condiions for.) o possess inermedie soluions of ypes I) nd I) nd o deermine precisely heir sympoic ehvior infiniy. Since his prolem is very difficul for equion.) wih generl coninuous coefficiens p nd q, we will mke n emp o solve he prolem in he frmework of regulr vriion, h is, we limi ourselves o he cse where p nd q re regulrly vrying funcions nd focus our enion on regulrly vrying soluions of.). The recen developmen of sympoic nlysis of differenil equions y he mens of regulrly vrying funcions, which ws iniied y he monogrph of Mrić [], hs shown h here exiss vriey of nonliner differenil equions for which he prolem menioned ove cn e solved compleely. The reder is referred o he ppers [8, 0, 3, 4, 8, 0, 8] for he second order differenil equions, o [,, 5, 7, 5] for he fourh order differenil equions nd o [3]-[7], [3, 4, 7] for some sysems of differenil equions. The presen work cn e considered s coninuion of he previous ppers [,, 5], which re he specil cses of.) wih = or p) u hs feures differen from hem in he sense h he generlized regulrly vrying funcions or generlized Krm funcions) inroduced in [] will e used in order o mke cler he dependence of sympoic ehvior of inermedie soluions on he coefficien p. For reder s convenience he definiion of generlized regulrly vrying funcions nd some of heir sic properies re summrized in Secion. In Secions 3 we consider equion.) wih generlized regulrly vrying p nd q, nd fer showing h ech of wo clsses of is inermedie generlized regulrly vrying soluions of ype I) nd I) cn e divided ino hree disjoin suclsses ccording o heir sympoic ehvior infiniy, we eslish necessry nd sufficien condiions for he exisence of soluions nd deermine he sympoic ehvior of soluions conined in ech of he six suclsses explicily nd precisely. In he finl Secion 4 i is shown h our min resuls, when specilized o he cse where p nd q re regulrly vrying funcions in he sense of Krm, provide complee informion ou he exisence nd sympoic ehvior of regulrly vrying soluions in he sense of Krm for h equion.). This informion comined wih h of he primiive soluions of.) cf. Theorems.-.4) enles us o presen full srucure of he se of regulrly vrying soluions for equions of he form.) wih regulrly vrying coefficiens.. Bsic properies of regulrly vrying funcions We recll h he se of regulrly vrying funcions of index ρ R is inroduced y he following definiion. Definiion.. A mesurle funcion f :, ) 0, ) for some > 0 is sid o e regulrly vrying infiniy of index ρ R if fλ) lim f) = λρ for ll λ > 0.

5 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 5 The oliy of ll regulrly vrying funcions of index ρ is denoed y RVρ). In he specil cse when ρ = 0, we use he noion SV insed of RV0) nd refer o memers of SV s slowly vrying funcions. Any funcion f RVρ) is wrien s f) = ρ g) wih g SV, nd so he clss SV of slowly vrying funcions is of fundmenl impornce in he heory of regulr vriion. If f) lim ρ = lim g) = cons > 0 hen f is sid o e rivil regulrly vrying funcion of he index ρ nd i is denoed y f r RVρ). Oherwise, f is sid o e nonrivil regulrly vrying funcion of he index ρ nd i is denoed y f nr RVρ). The reder is referred o Binghm e l. [] nd Sene [9] for complee exposiion of heory of regulr vriion nd is pplicion o vrious rnches of mhemicl nlysis. To properly descrie he possile sympoic ehvior of nonoscillory soluions of he self-djoin second-order liner differenil equion p)x )) +q)x) = 0, which re essenilly ffeced y he funcion p), Jroš nd Kusno inroduced in [] he clss of generlized Krm funcions wih he following definiion. Definiion.. Le R e posiive funcion which is coninuously differenile on, ) nd sisfies R ) > 0, > nd lim R) =. A mesurle funcion f :, ) 0, ) for some > 0 is sid o e regulrly vrying of index ρ R wih respec o R if f R is defined for ll lrge nd is regulrly vrying funcion of index ρ in he sense of Krm, where R denoes he inverse funcion of R. The symol RV R ρ) is used o denoe he oliy of regulrly vrying funcions of index ρ R wih respec o R. The symol SV R is ofen used for RV R 0). I is esy o see h if f RV R ρ), hen f) = R) ρ l), l SV R. If lim f) R) ρ = lim l) = cons > 0 hen f is sid o e rivil regulrly vrying funcion of index ρ wih respec o R nd i is denoed y f r RV R ρ). Oherwise, f is sid o e nonrivil regulrly vrying funcion of index ρ wih respec o R nd i is denoed y f nr RV R ρ). Also, from Definiion. i follows h f RV R ρ) if nd only if i is wrien in he form f) = gr)), g RVρ). I is cler h RVρ) = RV ρ). We emphsize h here exiss funcion which is regulrly vrying in generlized sense, u is no regulrly vrying in he sense of Krm, so h, roughly speking, he clss of generlized Krm funcions is lrger hn h of clssicl Krm funcions. To help he reder we presen here some elemenry properies of generlized regulrly vrying funcions. Proposiion.3. i) If g RV R σ ), hen g RV R σ ) for ny R. ii) If g i RV R σ i ), i =,, hen g + g RV R σ), σ = mxσ, σ ). iii) If g i RV R σ i ), i =,, hen g g RV R σ + σ ). iv) If g i RV R σ i ), i =, nd g ) s, hen g g RV R σ σ ). v) If l SV R, hen for ny ε > 0, lim R)ε l) =, lim R) ε l) = 0.

6 6 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Nex, we presen fundmenl resul see []), clled generlized Krm inegrion heorem, which will e used hroughou he pper nd ply cenrl role in eslishing our min resuls. Proposiion.4. Le l SV R. Then: i) If >, ii) If <, iii) If =, hen funcions R s)rs) ls) ds R)+ l), ; + R s) Rs) ls) ds R)+ l), ; + R s)rs) ls) ds nd re slowly vrying wih respec o R. R s)rs) ls) ds 3. Asympoic ehvior of inermedie generlized regulrly vrying soluions In wh follows i is lwys ssumed h funcions p nd q re generlized regulrly vrying of index η nd σ wih respec o R, wih R) is defined wih s + ) R) = ps) ds, 3.) / nd expressed s p) = R) η l p ), l p SV R nd q) = R) σ l q ), l q SV R. 3.) From 3.) nd 3.) we hve h Inegring 3.3) from o we hve + + = R )R) η l p ) /. 3.3) + = R s)rs) η l p s) / ds,, 3.4) implying h η. In wh follows we limi ourselves o he cse where η > excluding he oher possiiliies ecuse of compuionl difficuly. Applying he generlized Krm inegrion heorem Proposiion.4) he righ hnd side of 3.4) we oin η ) + R) η + lp ) +, ) From 3.3) nd 3.5) we cn express R ) s follows η ) + R + ) R) 3+ η + lp ) +, +, 3.6) which cn e rewrien in he form η ) + + R )R) m,η) l p ) +, )

7 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 7 The nex lemm, following direcly from he generlized Krm inegrion heorem using 3.7), will e frequenly used in our ler discussions. To h end nd o furher simplify formulion of our min resuls we inroduce he noion: m, η) = η + ), I is cler h m, η) < < 0 < m, η) nd m, η) = m, η) η ; m, η) = η ) m, η) η = m, η). 3.9) In proofs of our min resuls consns m i, η), i =,, will e revied s m i, i =,, respecively. Lemm 3.. Le f) = R) µ L f ), L f SV R. Then: i) If µ > m, η), fs) ds m, η) + + µ + m, η) R)µ+m,η) L f )l p ) +, ; ii) If µ < m, η), fs) ds m, η) + + µ + m, η)) R)µ+m,η) L f )l p ) +, ; iii) If µ = m, η), hen funcions fs) ds = fs) ds = re slowly vrying wih respec o R. Rs) m,η) L f s) ds, Rs) m,η) L f s) ds To mke n in deph nlysis of inermedie soluions of ype I) nd I) of.) we need fir knowledge of he srucure of he funcions ψ, ψ, ϕ nd ϕ regrded s generlized regulrly vrying funcions wih respec o R. From 3.5), 3.6) nd 3.7) i is cler h ψ SV R nd ψ RV R m, η)). Using 3.) nd pplying Lemm 3. wice, we oin ϕ ) = s Rr) η/ l p r) / dr ds 3.0) m, η) +) + m, η)m, η) m, η)) R)m,η) l p ) +),, which shows h ϕ RV R m, η)). Furher, y 3.) nd 3.5), in view of 3.9)-ii), noher wo pplicions of Lemm 3. yield ϕ ) m, η) + implying ϕ RV R ). m, η) m, η) + R),, s Rr) m,η) l p r) + dr ds 3.)

8 8 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 3.. Regulrly vrying soluions of ype I). The firs susecion is devoed o he sudy of he exisence nd sympoic ehvior of generlized regulrly vrying soluions wih respec o R of ype I) wih p nd q sisfying 3.). Expressing such soluion x of.) in he form x) = R) ρ l x ), l x SV R, 3.) since ϕ ) x) ϕ ),, he regulriy index ρ of x mus sisfy m, η) ρ. If ρ = m, η), hen since x)/r) m,η) = l x ),, x is memer of nr RV R m, η)), while if ρ =, hen since x)/r) = l x ) 0,, x is memer of nr RV R ). Thus he se of ll generlized regulrly vrying soluions of ype I) is nurlly divided ino he hree disjoin clsses nr RV R m, η)) RV R ρ) wih ρ m, η), ) or nr RV R ). Our im is o eslish necessry nd sufficien condiions for ech of he ove clsses o hve memer nd furhermore o show h he sympoic ehvior of ll memers of ech clss is governed y unique explici formul descriing he decy order infiniy ccurely. Min resuls. Theorem 3.. Le p RV R η), q RV R σ). Equion.) hs inermedie soluions x nr RV R m, η)) sisfying I) if nd only if σ = βm, η) m, η) nd or q)ϕ ) β d =. 3.3) The sympoic ehvior of ny such soluion x is governed y he unique formul x) X ),, where β ) X ) = ϕ ) sqs)ϕ s) β β ds. 3.4) Theorem 3.3. Le p RV R η), q RV R σ). Equion.) hs inermedie soluions x RV R ρ) wih ρ m, η), ) if nd only if in which cse βm, η) m, η) < σ < β m, η), 3.5) ρ = σ + m, η) 3.6) β nd he sympoic ehvior of ny such soluion x is given y he unique formul x) X ),, where X ) = m, η) +) + ) p) + q)r) +) + ) β m, η) ρ)ρ + )ρρ m, η))). 3.7) Theorem 3.4. Le p RV R η), q RV R σ). Equion.) hs inermedie soluions x nr RV R ) sisfying I) if nd only if σ = β m, η) nd q)ϕ ) β d <. 3.8)

9 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 9 The sympoic ehvior of ny such soluion x is given y he unique formul x) X 3 ),, where β X 3 ) = ϕ ) ) qs) ϕ s) β β ds. 3.9) Preprory resuls. Le x e soluion of.) on [ 0, ) such h ϕ ) x) ϕ ) s. Since lim p)x )) ) = lim x ) = lim x) = 0, lim p)x )) =, 3.0) inegring.) firs on [, ), nd hen on [ 0, ] nd finlly wice on [, ) we oin s s / x) = ξ ps) / + qu)xu) β du dr) ds, 0, 3.) 0 r where ξ = p 0 )x 0 ). To prove he exisence of inermedie soluions of ype I) i is sufficien o prove he exisence of posiive soluion of he inegrl equion 3.) for some consns 0 nd ξ > 0, which is mos commonly chieved y pplicion of Schuder-Tychonoff fixed poin heorem. Denoing y Gx) he righ-hnd side of 3.), o find fixed poin of G i is crucil o choose closed convex suse X C[ 0, ) on which G is self-mp. Since our primry gol is no only proving he exisence of generlized RV inermedie soluions, u eslishing precise sympoic formul for such soluions, choice of such suse X mus e mde ppropriely. I will e shown h such choice of X is possile y solving he inegrl sympoic relion x) s s ps) / r qu)xu) β du dr) / ds,, 3.) for some 0, which cn e considered s n pproximion infiniy) of 3.) in he sense h i is sisfied y ll possile soluions of ype I) of.). Theory of regulr vriion will in fc ensure he solviliy of 3.) in he frmework of generlized Krm funcions. As preprory seps owrd he proofs of Theorems we show h he generlized regulrly vrying funcions X i, i =,, 3 defined respecively y 3.4), 3.7) nd 3.9) sisfy he sympoic relion 3.). Lemm 3.5. Suppose h 3.3) holds. Funcion X given y 3.4) sisfies he sympoic relion 3.) for ny nd elongs o nr RV R m, η)). Proof. From 3.), 3.5) nd 3.0), we hve q)ϕ ) β β+) + m m m m )) β R)σ+βm+m l p ) β +) lq ),, nd pplying iii) of Lemm 3., in view of 3.3), we oin sqs)ϕ s) β ds β+) + m m m m )) β Rs) m l p s) β +) lq s) ds SV R, 3.3)

10 0 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 s, which ogeher wih 3.4) gives where X ) ϕ ) J ) = β+) + m β m m m )) β ) J β ),, Rs) m l p s) β +) lq s) ds. 3.4) Thus, since J SV R, we conclude h X nr RV R m, η)) nd rewrie he previous relion, using 3.0), s X ) R) m l p ) +) m m m m ) ) β ) J β ),. 3.5) To prove h 3.) is sisfied y X, we firs inegre q)x ) β on [, ), pplying Lemm 3. nd using 3.3) we hve m qs) X s) β ds + m ) β ) β β R) m l p ) β +) lq )J ) β β, m m m ) s. Inegring he ove relion on [, ], for ny, we oin s s = m qr) X r) β dr ds m + Rs) m l p s) β +) lq s)j s) β β ds + = m + m m m m ) m m m m ) ) β ) β β m ) β ) β β m m m ) ) β β J s) β β dj s) ) β J ) β,. Inegring he ove relion muliplied y p) nd powered y [, ), pplying Lemm 3. nd using 3.9)-i), we oin r / qω)x ω) dωdu) β dr ds pr) u m m m m ) wice on ) β β ) β m m m m ) R)m l p ) +) J ) β, s, which due o 3.5) proves h X sisfies he desired sympoic relion 3.) for ny. Lemm 3.6. Suppose h 3.5) holds nd le ρ e defined y 3.6). Funcion X given y 3.7) sisfies he sympoic relion 3.) for ny nd elongs o RV R ρ). Proof. Using 3.8) nd 3.6) we oin σ + ρβ + m = ρ + ), σ + ρβ + m = ρ m ). 3.6)

11 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS The funcion X given y 3.7) cn e expressed in he form where X ) λ ) +) β m +) β) R) ρ l p ) + lq ) λ = ρρ m )) m ρ) ρ + ). ) β,, 3.7) Thus, X RV R ρ). Using 3.6) nd 3.7), pplying Lemm 3. wice, we find +)β++β) +) β) m qs) X s) β ds ) β λ β σ + ρβ + m ) nd for ny, s qr) X r) β dr ds +)β+) +) β) m ) β λ β σ + ρβ + m ))σ + ρβ + m ) +)β+) +) β) m = ) β λ β ρ + ))ρ m ) = ) R) σ+ρβ+m l p ) β + lq ), R) σ+ρβ+m l p ) β + lq ) ) β R) ρ m) l p ) β + lq ) ) β +)β+) +) β) m ) β R) ρ m+ η ) l p ) β + lq ) ) β,, λ β ρ + )m ρ) where we hve used 3.9)-i) in he ls sep. We now muliply he ls relion y p), rise o he exponen / nd inegre he oined relion wice on [, ). As resul of pplicion of Lemm 3., we oin for s /ds qu) X u) β du dr) ps) r +)+β+) β)+) m ) β λ β) m ρ)ρ + )) / ρ m ) nd s pr) r u qω) X ω) β dωdu) / dr ds +) ) R) ρ m l p ) β + β + lq ), β)+) m ) β R) ρ ) l p ) β + lq ),. λ β ρρ m ) m ρ)ρ + )) / This, due o 3.7), complees he proof of Lemm 3.6. Lemm 3.7. Suppose h 3.8) holds. Then he funcion X 3 given y 3.9) sisfies he sympoic relion 3.) for ny nd elongs o nr RV R ). Proof. Using 3.), 3.), 3.8) nd pplying iii) of Lemm 3., we oin qs) ϕ s) β m ) βj3 ds ),, 3.8) m +

12 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 where J 3 ) = Rs) m l q s) ds, J 3 SV R, 3.9) implying, from 3.9), m ) β X 3 ) R) β ) m + J β 3),. 3.30) This shows h X 3 RV R ). Nex, we inegre q) X 3 ) β on [, ), using 3.8) we oin qs) X 3 s) β ds m m + m ) β β β ) β β β = m + m ) β β β = m + ) β β ) β β Rs) m l q s) J 3 s) β β ds J 3 s) β β dj3 s)) ) β J 3 ) β SVR,. Furher, inegring previous relion on [, ] for ny fixed, y Lemm 3., we hve s m m + qr)x 3 r) β dr ds ) β β β ) β m + R) m l p ) + J3 ) β,. Muliply he ove y p) nd rise o he exponen /, inegring oined relion wice on [, ), using 3.9)-ii), s resul of pplicion of Lemm 3., we oin s /ds qu)x 3 u) β du dr) ps) nd m ) β m + s m m + r β β pr) ) β ) β r u β β m + m + R) m l p ) qω)x 3 ω) β dωdu) / dr ds +) J3 ) β,, ) β m m + R) J 3 ) β X3 ),, which in view of 3.30), complees he proof of Lemm 3.7. The ove heorems re sis for pplying he Schuder-Tychonoff fixed poin heorem o eslish he exisence of inermedie soluions of he equion.). In fc, inermedie soluions will e consruced y mens of fixed poin echniques, nd ferwrds we confirm h hey re relly generlized regulrly vrying funcions wih he help of he generlized L Hospil rule formuled elow. Lemm 3.8. Le f, g C [T, ). Le lim g) = nd g ) > 0 for ll lrge. 3.3)

13 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 3 Then f ) f) lim inf g lim inf ) g) If we replce 3.3) wih he condiion lim sup f) f ) lim sup g) g ). lim f) = lim nd g ) < 0 for ll lrge, hen he sme conclusion holds. Proofs of min resuls. Proof of he only if pr of Theorems 3., 3.3 nd 3.4. Suppose h.) hs ype I) inermedie soluion x RV R ρ) on [ 0, ). Clerly, ρ [m, ]. Using 3.) nd 3.), we oin inegring.) on [, ) p)x )) ) = qs)xs) β ds = Rs) σ+βρ l q s)l x s) β ds. 3.3) Noing h he ls inegrl is convergen, we conclude h σ + βρ + m 0 nd disinguish he wo cses: ) σ + βρ + m = 0 nd ) σ + βρ + m < 0. Assume h ) holds. Since y Lemm 3.-iii) funcion S 3 defined wih S 3 ) = Rs) m l q s)l x s) β ds, 3.33) is slowly vrying wih respec o R, inegrion of 3.3) on [ 0, ] shows h p)x )) m + R) m l p ) + S3 ),, 3.34) which is rewrien using 3.9)-ii) s x ) m + R) m l p ) + S3 ) /,. Inegriliy of x ) on [, ), nd m < 0, llows us o inegre he previous relion on [, ), implying x ) m + m + R) m l p ) + S3 ) /,, which we my inegre once more on [, ] o oin x) m m + R) S 3 ) /,. 3.35) This shows h x RV R ). Assume nex h ) holds. From 3.3) we find h p)x )) ) m + + R) σ+βρ+m l p ) + lq )l x ) β,, σ + βρ + m which y inegrion on [ 0, ] implies p)x )) m + + Rs) σ+βρ+m l p s) + lq s)l x s) β ds, 3.36) σ + βρ + m 0 s. In view of 3.0), inegrl on righ-hnd side is divergen, so σ + βρ + m 0. We disinguish he wo cses:.) σ + βρ + m = 0 nd.) σ + βρ + m > 0.

14 4 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Assume h.) holds. Denoe y S ) = Then S SV R nd using 3.) we rewrie 3.36) s 0 Rs) m l p s) + lq s)l x s) β ds. 3.37) x ) m + R) η/ l p ) / S ) /,. 3.38) Becuse of inegriliy of x ) on [, ] nd he fc h η +m = m m < 0, vi Lemm 3. we conclude y inegrion of 3.38) on [, ] h x ) m + R) m m l p ) + +) S ) /,. m m which ecuse inegriliy of x ) on [, ) nd m < 0, we my inegre once more on [, ) o ge m x) m m m ) R)m l p ) +) S ) /,. 3.39) implying h x RV R m ). Assume h.) holds. From 3.36), pplicion of Lemm 3. gives +) + m p)x )) l σ + βρ + m )σ + βρ + m ) R)σ+βρ+m p ) + lq )l x ) β, s, which yields +) +) x m ) σ + βρ + m )σ + βρ + m )) / R) σ+βρ+m η l p ) +) lq ) / l x ) β/,. Inegriliy of x ) on [, ] llows us o inegre he previous relion on [, ), implying +) +) x m ) σ + βρ + m )σ + βρ + m )) / where σ+βρ+m η Rs) σ+βρ+m η l p s) +) lq s) / l x s) β/ ds,, 3.40) + m 0, ecuse of he convergence of he ls inegrl. We disinguish wo cses:..) σ+βρ+m η + m = 0 nd..) σ+βρ+m η + m < 0. The cse..) is impossile ecuse he lef-hnd side of 3.40) is inegrle on [ 0, ), while he righ-hnd side is no, ecuse i is in his cse slowly vrying wih respec o R. Assume now h..) holds. Then, pplicion of Lemm 3.) in 3.40) nd inegrion of resuling relion on [, ) leds o +)+) +) m x) σ + βρ + m )σ + βρ + m )) / σ+βρ+m η + m ) Rs) σ+βρ+m η +m l p s) +) lq s) / l x s) β/ ds, 3.4)

15 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 5 s, which rings us o he oservion of wo possile cses:...) σ+βρ+m η + m = 0 nd...) σ+βρ+m η + m < 0. In he cse...) he inegrl in he righ-hnd side of relion 3.4) is slowly vrying wih respec o R y Proposiion.4 nd so x SV R oo. In he cse...) n pplicion of Lemm 3. gives +) +) x) m σ + βρ + m )σ + βρ + m )) / σ + βρ + m η ) σ + βρ + m η ) ) + m + m 3.4) R) σ+βρ+m η +m l p ) +) lq ) / l x ) β/,, implying h x RV R σ+βρ+m η + m ). Suppose h x is ype I) soluion of.) elonging o nr RV R m ). From he ove oservions his is possile only when.) holds, in which cse 3.39) is sisfied y x). Thus, ρ = m, σ = m β m. Using x) = R) m l x ), 3.39) cn e expressed s where l x ) K l p ) +) S ) /,, 3.43) K = m m m m ), nd S is defined y 3.37). Then 3.43) is rnsformed ino he differenil sympoic relion for S : S ) β S ) K β R) m l p ) β +) lq ),. 3.44) From 3.39), since lim x)/ϕ ) =, we hve lim S ) =. Inegring 3.44) on [ 0, ], since lim S ) β =, in view of noion 3.4) nd 3.3), we find h he second condiion in 3.3) is sisfied nd β ) S ) / Kβ J β ),, implying wih 3.43) h x) R) m l p ) +) β ) K β J ),. 3.45) Noing h in he proof of Lemm 3.5, using 3.), 3.5) nd 3.0), we hve oined expression 3.5) for X given y 3.4), 3.45) in fc proves h x) X ),, compleing he only if pr of he proof of Theorem 3.. Nex, suppose h x is soluion of.) elonging o RV R ρ), ρ m, ). This is possile only when...) holds, in which cse x sisfies he sympoic relion 3.4). Therefore, ρ = σ + βρ + m η which jusifies 3.6). An elemenry clculion shows h + m ρ = σ + m, 3.46) β m < ρ < = βm m < σ < β m,

16 6 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 which deermines he rnge 3.5) of σ. In view of 3.6) nd 3.46), we conclude from 3.4) h x enjoys he sympoic ehvior x) X ),, where X is given y 3.7). This proves he only if pr of he Theorem 3.3. Finlly, suppose h x is ype-i) inermedie soluion of.) elonging o nr RV R ). Then, he cse ) is he only possiiliy for x, which mens h σ = β m nd 3.35) is sisfied y x, wih S 3 defined y 3.33). Using x) = R) l x ), 3.35) cn e expressed s l x ) K 3 S 3 ) /,, where K 3 = m m +, 3.47) implying he differenil sympoic relion S 3 ) β S 3 ) K β 3 R) m l q ),. 3.48) From 3.35), since lim x)/r) = 0, we hve lim S 3 ) = 0, implying h he lef-hnd side of 3.48) is inegrle over [ 0, ). This, in view of 3.8) nd he noion 3.9), implies he second condiion in 3.8). Inegring 3.48) on [, ) nd comining resul wih 3.47), we find h ) β x) R) β K 3 J 3 ),, which due o he expression 3.30) gives x) X 3 ) s. This proves he only if pr of Theorem 3.4. Proof of he pr if of Theorems 3., 3.3 nd 3.4. Suppose h 3.3) or 3.5) or 3.8) holds. From Lemms 3.5, 3.6 nd 3.7 i is known h X i, i =,, 3, defined y 3.4), 3.7) nd 3.9) sisfy he sympoic relion 3.) for ny. We perform he simulneous proof for X i, i =,, 3 so he suscrips i =,, 3 will e deleed in he res of he proof. By 3.) here exiss T 0 > such h X) s s ps) / T 0 r qu) Xu) β du dr) / ds X), T ) Le such T 0 e fixed. Choose posiive consns m nd M such h m β, M β. 3.50) Define he inegrl operor s / Gx) = s ) qu) xu) β du dr) ds, T0, 3.5) ps) nd le i c on he se T 0 r X = {x C[T 0, ) : mx) x) M X), T 0 }. 3.5) I is cler h X is closed, convex suse of he loclly convex spce C[T 0, ) equipped wih he opology of uniform convergence on compc suinervls of [T 0, ). I cn e shown h G is coninuous self-mp on X nd h he se GX ) is relively compc in C[T 0, ). i) GX ) X : Le x) X. Using 3.49), 3.50) nd 3.5) we oin s / Gx) M β/ s ) qu) Xu) β du dr) ds ps) T 0 r

17 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 7 nd M β/ X) M X), T 0, Gx) m β/ s ) ps) s s T 0 r qu) Xu) β du dr) / ds β/ X) m m X), T 0. This shows h Gx) X ; h is, G mps X ino iself. ii) GX ) is relively compc. The inclusion GX ) X ensures h GX ) is loclly uniformly ounded on [T 0, T ], for ny T > T 0. From r / Gx) = qω) xω) dωdu) β dr ds, pr) we hve Gx) ) = From he inequliy M β/ ps) ps) s T 0 r T 0 s T 0 r u qu) xu) β du dr) / ds, [T0, T ]. qu) Xu) β du dr) / ds Gx) ) 0, [T 0, T ], holding for ll x X i follows h GX ) is loclly equiconinuous on [T 0, T ] [T 0, ). Then, he relive compcness of GX ) follows from he Arzel-Ascoli lemm. iii) G is coninuous on X. Le {x n )} e sequence in X converging o x) in X uniformly on ny compc suinervl of [T 0, ). Le T > T 0 ny fixed rel numer. From 3.5) we hve where G n ) = Gx n ) Gx) T 0 s ps) / G ns) ds, [T 0, T ], ) / qs) x n s) β ds T 0 s qs) xs) β ds) /. Using he inequliy x λ y λ x y λ, x, y R + holding for λ 0, ), we see h if, hen /. G n ) s )qs) x n s) β xs) ds) β On he oher hnd, using he men vlue heorem, if < we oin G n ) ) M β s )qs)xs) β ds s )qs) x n s) β xs) β ds. Thus, using h q) xn ) β x) β 0 s n ech poin [T 0, ) nd q) x n ) β x) β M β q)x) β for T 0, while q)x) β is inegrle on [T 0, ), he uniform convergence G n ) 0 on [T 0, ) follows y he pplicion of he Leesgue domined convergence heorem. We conclude h Gx n ) Gx) uniformly on ny compc suinervl of [T 0, ) s n, which proves he coninuiy of G.

18 8 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Thus, ll he hypoheses of he Schuder-Tychonoff fixed poin heorem re fulfilled nd so here exiss fixed poin x X of G, which sisfies inegrl equion x) = s ) ps) s T 0 r qu) xu) β du dr) / ds, T0. Differeniing he ove expression four imes shows h x) is soluion of.) on [T 0, ), which due o 3.5) is n inermedie soluion of ype I). Therefore, he proof of our min resuls will e compleed wih he verificion h he inermedie soluions of.) consruced ove re cully regulrly vrying funcions wih respec o R. We define he funcion nd pu χ) = s ) ps) l = lim inf s T 0 r x) χ), qu) Xu) β du dr) / ds, T0, x) L = lim sup χ). By Lemms 3.5, 3.6 nd 3.7 we hve X) χ),. Since, x X, i is cler h 0 < l L <. We firs consider L. Applying Lemm 3.8 four imes, we oin L lim sup x ) χ = lim sup ) lim sup q)x) β lim sup = lim sup ps) ps) s )qs)xs) β ds s )qs)xs) β ds ) / = q)x) β x) ) β/ = L β/, χ) s / T 0 qu) xu) β du dr) r ds s / T 0 qu) Xu) r β du dr) ds ) / qs)xs) β ds lim sup qs)xs) β ds lim sup x) ) β/ X) ) / where we hve used X) χ),, in he ls sep. Since β/ <, he inequliy L L β/ implies h L. Similrly, repeed pplicion of Lemm 3.8 o l leds o l, from which i follows h L = l =, h is, x) lim = = x) χ) X),. χ) Therefore i is concluded h if p RV R η) nd q RV R σ), hen he ype-i) soluion x under considerion is memer of RV R ρ), where ρ = m or ρ = σ + m β m, ) or ρ =, ccording o wheher he pir η, σ) sisfies 3.3), 3.5) or 3.8), respecively. Needless o sy, ny such soluion x RV R ρ) enjoys one nd he sme sympoic ehvior 3.4), 3.7) or 3.9), respecively. This complees he if prs of Theorems 3., 3.3 nd 3.4.

19 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS Regulrly vrying soluions of ype I). Le us urn our enion o he sudy of inermedie soluions of ype I) of equion.); h is, hose soluions x such h x) s. As in he preceding secion use is mde of he expressions 3.) nd 3.) for he coefficiens p, q nd soluions x. Since ψ SV R, ψ ) = nd ψ RV R m, η)), ψ ) = cf. 3.7) nd 3.5)), he regulriy index ρ of x mus sisfy 0 ρ m, η). If ρ = 0, hen since x) = l x ),, x is memer of nr SV R, while if ρ = m, η), hen x)/r) m,η) 0,, nd so x is memer of nr RV R m, η)). If 0 < ρ < m, η), hen x elongs o RV R ρ) nd clerly sisfies x) nd x)/r) m,η) 0 s. Therefore, i is nurl o divide he oliy of ype-i) inermedie soluions of.) ino he following hree clsses nr SV R, RV R ρ), ρ 0, m, η)), nr RV R m, η)). Our purpose is o show h, for ech of he ove clsses, necessry nd sufficien condiions for he memership re eslish nd h he sympoic ehvior infiniy of ll memers of ech clss is deermined precisely y unique explici formul. Min resuls. Theorem 3.9. Le p RV R η), q RV R σ). Then.) hs inermedie soluions x nr SV R sisfying I) if nd only if / σ = m, η) nd s) qs) ds) d =. 3.53) p) The sympoic ehvior of ny such soluion x is governed y he unique formul x) Y ),, where β s / ) β Y ) = s s r)qr) dr) ds. 3.54) ps) Theorem 3.0. Le p RV R η), q RV R σ). Then.) hs inermedie soluions x RV R ρ) wih ρ 0, ) if nd only if m, η) < σ < η + β + )m, η) 3.55) in which cse ρ is given y 3.6) nd he sympoic ehvior of ny such soluion x is governed y he unique formul x) Y ), where Y ) = m, η) +) + ) p) + q)r) +) + ρ m, η) ρ)) ρ m, η)) ρ + ) ) β. 3.56) Theorem 3.. Le p RV R η), q RV R σ). Then.) hs inermedie soluions x nr RV R m, η)) sisfying I) if nd only if / σ = η + β + )m, η), s) s β qs) ds) d <. 3.57) p) The sympoic ehvior of ny such soluion x is governed y he unique formul x) Y 3 ),, where β s ) /ds ) Y 3 ) = s r)r β β qr) dr. 3.58) ps)

20 0 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Preprory resuls. Le x e ype-i) inermedie soluion of.) defined on [ 0, ). I is known h lim x ) = 0, lim p) x ) x )) = lim p) x ) x ) = lim x) =. 3.59) Inegring.) wice on [ 0, ], hen on [ 0, ) nd finlly on [ 0, ], we oin, for 0, r ) / x) = c 0 + c pr) / +c 3 r 0 )+ r u)qu)xu) β du dr ds, 3.60) 0 0 s where c 0 = x 0 ), c = p 0 ) x 0 )), nd c 3 = p 0 ) x 0 )) ). From 3.60) we esily see h x) sisfies he inegrl sympoic relion r / x) r u)qu)xu) du) β dr ds,, 3.6) pr) s for some, which will ply cenrl role in consrucing generlized RVinermedie soluions of ype I). Lemm 3.. Suppose h 3.53) holds. Then he funcion Y given y 3.54) sisfies he sympoic relion 3.6) for ny nd elongs o nr SV R. Proof. Firs we give n expression for Y ) in erms of R), l p ) nd l q ). Applying Lemm 3. wice we hve s s = qu) du ds Ru) m l q u) du ds Using 3.), 3.5) nd 3.9)-ii), we hve p) + m + l + m ) R)+m p ) + lq ),. + ) / +) m s)qs) ds l + m )) / R) m p ) +) lq ) /. 3.6) Inegring he ove on [, ] for ny, we show h Y ) W β β ) Q β ) where Q ) = Rs) m l p s) +) lq s) / ds SV R, 3.63) W = m ) + + m ). From 3.63) we conclude h Y nr SV R. To verify he sympoic relion 3.6) for Y, we inegre q)y ) β wice on [, ] nd use Y nr SV R o oin s qr)y r) β dr ds m + + σ + m )σ + m ) R)σ+m l p ) + lq )Y ) β

21 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS s, which ogeher wih 3.63), y ssumpion 3.53) nd 3.9)-ii), yields ) / s)qs)y s) β ds p) + β 3.65) m + ) β R) m l p ) +) lq ) / β ) β + m ) Q β ), s. Inegrion of 3.65) on [, ) gives r / r u)qu)y u) du) β dr pr) + β m + + m ) ) β β ) β β m + R) m l p ) +) lq ) / Q ) β β, s, implying, y inegrion on [, ], r / r u)qu)y u) du) β dr ds s pr) W β β ) β β Rs) m l p s) +) lq s) / Q s) β β ds W β β ) β β Q s) β β dq s) = W β β ) β Q ) β,, eslishing, in view of 3.63), h Y sisfies he sympoic relion 3.6). Lemm 3.3. Suppose h 3.55) holds nd le ρ e defined y 3.6). Then he funcion Y given y 3.56) sisfies he sympoic relion 3.6) for ny nd elongs o RV R ρ). Proof. Using 3.) nd 3.8), since η +) + = m, we cn express Y ) in he form ) Y ) W R) ρ l p ) β + lq ), 3.66) where +) + C = m, ν = ρm ρ) ) ρ m )ρ + ), W = C ) β. 3.67) ν Therefore, Y RV R ρ). Nex we prove h Y sisfies he sympoic relion 3.6) nd o h end we firs inegre q)y ) β wice on [, ] for some wih pplicion of Lemm 3. nd equliies 3.9), 3.6): s W β qr)y r) β dr ds s Rr) σ+ρβ l p ) β + lq ) ) β drds W β + σ + ρβ + m )σ + ρβ + m ) m + R) σ+ρβ+m l p ) β + lq ) ) β W β + + = ρ + )ρ m ) m R) ρ m) l p ) β + lq ) ) β

22 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 W β + + = ρ + )ρ m ) m R) ρ m η ) l p ) β + lq ) ) β,, implying furher h r / r u)qu)y u) du) β dr ds s pr) W β + ) / ) ρ + )ρ m ) m + Rr) ρ m l p r) β + β + l q r) dr ds m +) W β/ +) ) ρ + )ρ m )) / m ρ)ρ R)ρ l p ) β) + lq ) = W β/ C ) / ) R) ρ ν l p ) β) + lq ),, s which y 3.66) nd 3.67) proves h Y sisfies he sympoic relion 3.6). Lemm 3.4. Suppose h 3.57) holds. Then he funcion Y 3 given y 3.58) sisfies he sympoic relion 3.6) for ny nd elongs o RV R ). Proof. Using 3.5) nd 3.57), pplicion of Lemm 3. we hve s r β qr) dr ds m β + s s. Since y 3.9)-ii) we hve h from he ls relion, we conclude h s /ds s r)r qr)dr) β ps) +) β + m ) / m + ) + m + m ) s. We denoe y Q 3 ) = Rr) η +)m l p s) β + lq s)ds +) β + m η + )m )η m ) R)η m l p ) β+ + lq ), η + )m = m + ), 3.68) Rs) m l p s) β + +) lq s) / ds, 3.69) Rs) m l p s) β + +) lq s) / ds SV R 3.70) nd comining 3.69) wih 3.58) nd 3.5), we oin he following sympoic represenion for Y 3 ) in erms of R), l p ) nd l q ): Y 3 ) W β 3 R) m l p ) + β ) Q β 3),, 3.7) where m ++ + W 3 = m + )m + m + ). 3.7)

23 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 3 From 3.7) we conclude h Y 3 RV R m ) nd compue wih he help of Lemm 3., s qr)y 3 r) β dr ds β ) β Q β 3) W β β 3 s. Nex, using 3.57) nd 3.68) we oin s /ds s r)qr)y 3 r) dr) β ps) β β ) β β +) + m R) σ+mβ+m σ + m β + m )σ + m β + m ) l p) β+ + lq ), β β) 3 m +) +) W m + )m + m + )) / Rs) m l p s) β + +) lq s) / Q 3 s) β β ds ) β β β ) = Q β 3) β β) +) +) W3 m m + )m + m + )) / β β) +) +) Q 3 s) β β d Q3 s)) W3 m,. m + )m + m + )) / Noing h he ls expression in he previous relion is slowly vrying wih respec o R, inegrion of his relion over [, ] leds o r / r u)qu)y 3 u) du) β dr ds pr) s β β = ) Q β 3) ) Q β 3) β β) +)+) +) W3 m R) m m + )m + m + )) / W β β) 3 W / 3 R) m l p ) +,, m l p ) + nd in view of 3.7) proves h he desired inegrl sympoic relion 3.6) is sisfied y Y 3. Proof of min resuls. Proof of he only if pr of Theorems 3.9, 3.0 nd 3.. Suppose h.) hs ype-i) inermedie soluion x RV R ρ), ρ [0, m ], defined on [ 0, ). We egin y inegring.) on [ 0, ]. Using 3.), 3.), we hve p) x )) ) 0 qs)xs) β ds = 0 Rs) σ+βρ l q s)l x s) β ds, 3.73) nd conclude y 3.59) h σ + βρ + m 0. Thus, we disinguish he wo cses: ) σ + βρ + m = 0 nd ) σ + βρ + m > 0. Le cse ) hold, so h H 4 ) = 0 Rs) σ+βρ l q s)l x s) β ds = 0 Rs) m l q s)l x s) β ds, 3.74)

24 4 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 nd H 4 SV R. Inegrion of 3.73) on [ 0, ] wih 3.9)-ii) yields x ) m + R) m η lp ) + H4 ) = m + R) m l p ) + H4 ) /,, Since m < 0 we my inegre previous relion on [, ) nd oin vi Lemm 3. h x ) m + m + R) m H 4 ) /,. The righ hnd side in he ls relion is inegrle on [, ), ecuse m < m, u on he oher hnd in view of 3.59) he lef hnd side of ls relion isn inegrle on [, ), so we conclude h his cse is impossile. Le cse ) hold. Then, from 3.73) i follows h p) x )) ) m + + σ + βρ + m R) σ+βρ+m l p ) + lq )l x ) β which, inegred on [ 0, ] nd he fc h σ + βρ + m > 0, gives +) x + m ) σ + βρ + m )σ + βρ + m ) R) σ+βρ+m η ) / l p ) +) lq ) / l x ) β/, s, implying in view of 3.59) y inegrion on [, ), +) x + m ) σ + βρ + m )σ + βρ + m ) Rs) σ+βρ+m η ) / l p s) + lq s)l x s) β) / ds. 3.75) Thus, we furher consider he following wo possile cses:.) σ+βρ+m η + m = 0 nd.) σ+βρ+m η + m < 0. Suppose h.) holds, nd le H 3 ) = Rs) m l p s) +) lq s) / l x s) β/ ds. 3.76) Using 3.68) nd 3.9)-ii), since we hve σ + ρβ + m = m + ), inegrion of 3.75) on [ 0, ] implies x) ++) + m m + )m + ) + m ) ) /R) m l p ) + H3 ),. 3.77) Since H 3 SV R, we conclude h x RV R m ). Suppose h.) holds. Applicion of Lemm 3. in 3.75) implies x ) +)+) +) m σ + βρ + m )σ + βρ + m )) / σ+βρ+m η + m ) R) σ+βρ+m η +m l p ) +) lq ) / l x ) β/,. 3.78)

25 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 5 Inegring 3.78) on [ 0, ] using 3.59) we oin +)+) +) m x) σ + βρ + m )σ + βρ + m )) / σ+βρ+m η + m )) 0 Rs) σ+βρ+m η +m l p s) +) lq s) / l x s) β/ ds,. 3.79) Thus, since x) s, from he previous relion we conclude h wo possiiliies my hold:..) σ+βρ+m η + m = 0 nd..) σ+βρ+m η + m > 0. In he cse..), using 3.9)-ii) we oin σ + βρ + m =. Applicion of Lemm 3. in 3.79) leds us o where H ) = x) ++) m + ) /H ),, 3.80) + m ) Rs) m l p s) +) lq s) / l x s) β/ ds, H SV R. 3.8) 0 Thus, x SV R. Applicion of Lemm 3. in 3.79) in he cse..) gives +) ) +) x) m σ + βρ + m )σ + βρ + m )) / σ + βρ + m η ) σ + βρ + m η ) ) + m ) + m R) σ+βρ+m η +m l p ) +) lq ) / l x ) β/ ds,. 3.8) This implies h x RV σ+βρ+m η + m ). Now, le x e ype-i) inermedie soluion of.) elonging o nr SV R. Then, from he ove oservions i is cler h only he cse..) is dmissile, in which cse σ = m, nd 3.80) is sisfied y x). Using x) = l x ), from 3.80) we hve l x ) W / H ),, 3.83) where W is given y 3.64) nd H is defined y 3.8). Then, 3.83) is rnsformed ino he following differenil sympoic relion for H, H ) β H ) W β/ R) m l p ) +) lq ) /,. 3.84) From 3.59), since lim x) =, we hve lim H ) =. Inegring 3.84) on [ 0, ], using h lim H ) β =, in view of noion 3.64) nd 3.6), we find h he second condiion in 3.53) is sisfied nd H ) W β/ β ) Q β ), which wih 3.83) implies x) W β β ) Q β ),. 3.85)

26 6 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Noe h in Lemm 3. we hve oined expression 3.63) for Y ) given y 3.54). Therefore, 3.85) in fc proves h x) Y ),, compleing he only if pr of Theorem 3.9. Nex, le x e ype-i) inermedie soluion of.) elonging o RV R ρ) for some ρ 0, m ). Clerly, only cse..) cn hold nd hence x sisfies he sympoic relion 3.8). This mens h ρ = σ + βρ + m η + m ρ = σ + m, 3.86) β verifying h he regulriy index ρ is given y 3.6). An elemenry compuion shows h 0 < ρ < m m < σ < + m β ), showing h he rnge of σ is given y 3.55). In view of 3.6) nd 3.86), we conclude from 3.8) h x enjoys he sympoic ehvior x) Y ),, where Y is given y 3.56). This proves he only if pr of he Theorem 3.0. Finlly, le x is ype-i) inermedie soluion of.) elonging o RV R m ). Since only he cse.) is possile for x, i sisfies 3.77), where H 3 is defined y 3.76), implying ρ = m nd σ = + m β ). Using x) = R) m l x ), 3.77) cn e expressed s l x ) W / 3 l p ) + H3 ),, 3.87) where W 3 is defined y 3.7), implying he differenil sympoic relion β H 3 ) β H 3 ) W3 R) m l p ) β+ +) lq ) /,. 3.88) From 3.77), since lim R) m x) = 0, we hve h lim H 3 ) = 0, implying h he lef-hnd side od 3.88) is inegrle over [, ). This, in view of 3.69) nd noion 3.70) implies he second condiion in 3.57). Inegring 3.88) on [, ) nd comining resul wih 3.87), using he expression 3.7), we find h x) W β 3 R) m l p ) + ) β Q β 3) Y 3 ),, where Q 3 is defined wih 3.70). Thus he only if pr of he Theorem 3. hs een proved. Proof of he if pr of Theorem 3.9, 3.0 nd 3.. Suppose h 3.53) or 3.55) or 3.57) holds. From Lemms 3., 3.3 nd 3.4 i is known h Y i, i =,, 3, defined y 3.54), 3.56) nd 3.58) sisfy he sympoic relion 3.6). We perform he simulneous proof for Y i, i =,, 3 so he suscrips i =,, 3 will e deleed in he res of he proof. By 3.6) here exiss T 0 > such h r ) / r u)qu)y u) β du dr ds Y ), T0. s pr) T 0 T 0 Le such T 0 e fixed. We my ssume h Y is incresing on [T 0, ). Since 3.6) holds wih = T 0, here exiss T > T 0 such h r ) / r u)qu)y u) β Y ) du dr ds s pr) T 0, T. T 0

27 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 7 Choose posiive consns k nd K such h k β, β K 4, ky T ) KY T 0 ). Considering he inegrl operor r ) / Hy) = y 0 + r u)qu) yu) β du dr ds, T0, s pr) T 0 T 0 where y 0 is consn such h ky T ) y 0 K Y T 0), we my verify h H is coninuous self-mp on he se Y = {y C[T 0, ) : ky ) y) KY ), T 0 }, nd h H sends Y ino relively compc suse of C[T 0, ). Thus, H hs fixed poin y Y, which generes soluion of equion.) of ype I) sisfying he ove inequliies nd hus yields h Denoing L) = 0 < lim inf s pr) y) y) lim sup Y ) Y ) <. r nd using Y ) L) s we oin 0 < lim inf r u)qu)y u) β du) / dr ds y) y) lim sup L) L) <. Then, proceeding excly s in he proof of he if pr of Theorems , wih pplicion of Lemm 3.8, we conclude h y) L) Y ),. Therefore, y is generlized regulrly vrying soluion wih respec o R wih requesed regulriy index nd he sympoic ehvior 3.54), 3.56), 3.58) depending on if q RV R σ) sisfies, respecively, 3.53) or 3.55) or 3.57). Thus, he if pr of Theorems 3.9, 3.0 nd 3. hs een proved. 4. Corollries The finl secion is concerned wih equion.) whose coefficiens p) nd q) re regulrly vrying funcions in he sense of Krm). I is nurl o expec h such equion my possess. Our purpose here is o show h he prolem of geing necessry nd sufficien condiions for he exisence of inermedie soluions which re regulrly vrying in he sense of Krm, cn e emedded in he frmework of generlized regulrly vrying funcions, so h he resuls of he preceding secion provide full informion ou he exisence nd he precise sympoic ehvior of inermedie regulrly vrying soluions of.). We ssume h p) nd q) re regulrly vrying funcions of indices η nd σ, respecively, i.e., p) = η l p ), q) = σ l q ), l p, l q SV, 4.) nd seek regulrly vrying soluions x) of.) expressed in he from x) = ρ l x ), l x SV. 4.)

28 8 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 We egin y noicing h in order h he condiion.) e sisfied we hve o ssume h η +. Since R) defined y 3.) due o 4.) kes he form, R) = s + η lp s) ds) / i is esy o see h η ) R RV. 4.3) An imporn remrk is h he possiiliy η = + should e excluded. If his equliy holds, hen R) is slowly vrying y 4.3), nd his fc prevens p) from eing generlized regulrly vrying funcion wih respec o R. In fc, if p RV R η ) for some η, hen here exiss f RVη ) such h p) = fr)), which implies h p SV. Bu his conrdics he hypohesis h p RVη) = RV + ). Thus, he cse η = + is impossile, nd so η mus e resriced o η > +, 4.4) in which cse R sisfies R) η η l p ) /,, 4.5) implying h R RV ) η. Since R is monoone incresing, is inverse funcion R ) is regulrly vrying of index /η ). Therefore, ny regulrly vrying funcion of index λ is considered s generlized regulrly vrying funcion wih respec o R which regulriy index is λ/η ), nd conversely ny generlized regulrly vrying funcion wih respec o R of index λ is regrded s regulrly vrying funcion in he sense of Krm of index λ = λ η )/. I follows form 4.) nd 4.) h η σ ρ ) p RV R ), q RV R ), x RV R. η η η Pu η η = η, σ σ = η, ρ ρ = η. Noe h 4.4) implies η > ecuse > 0 nd h he wo consns given y 3.8) re reduced o m, η ) = η η, m, η ) = η. I urns ou herefore h ny ype-i) inermedie regulrly vrying soluion of.) is memer of one of he hree clsses η ) η nr RV, RVρ), ρ, + η ) + η ), nr RV, while ny ype-i) inermedie regulrly vrying soluion elongs o one of he hree clsses nr SV, RVρ), ρ 0, ), nr RV). Bsed on he ove oservions we re le o pply our min resuls in Secion 3, eslishing necessry nd sufficien condiions for he exisence of inermedie regulrly vrying soluions of.) nd deermining he sympoic ehvior of ll such soluions explicily.

29 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 9 Firs, we se he resuls on ype-i) inermedie soluions h cn e derived s corollries of Theorems 3., 3.3 nd 3.4. Theorem 4.. Assume h p RVη) nd q RVσ). Equion.) possess inermedie soluions elonging o nr RV η ) if nd only if σ = β η β nd q)ϕ ) β d =. Any such soluion x enjoys one nd he sme sympoic ehvior x) X ) s, where X ) is given y 3.4). Theorem 4.. Assume h p RVη) nd q RVσ). Equion.) possess inermedie regulrly vrying soluions of index ρ wih ρ η, + η ) if nd only if β η β < σ < β η ) β, in which cse ρ is given y ρ = η + σ + 4.6) β nd ny such soluion x enjoys one nd he sme sympoic ehvior p) q) ) β x) ρρ )),. η) ρ + η ) Theorem 4.3. Assume h p RVη) nd q RVσ). Equion.) possess inermedie soluions elonging o nr RV ) + η if nd only if σ = β η ) β nd q) ϕ ) β d <. Any such soluion x enjoys one nd he sme sympoic ehvior x) X 3 ) s, where X 3 ) is given y 3.9). Proof. To prove Theorem 4. nd 4.3 we need only o check h σ = m, η )β m, η ) σ = β η β, σ = β m, η ) σ = β η ) β, nd o prove Theorem 4. i suffices o noe h ρ = σ + m, η ) β ρ = + σ η +, β nd o comine he relion 4.5) wih he equliy m, η ) +) + [m, η ) ρ )ρ + ) ρ m, η )ρ ) ] = η)ρ + η )ρρ )). Similrly, we re le o gin hrough knowledge of ype-i) inermedie regulrly vrying soluions of.) from Theorems 3.9, 3.0 nd 3..

30 30 A. B. TRAJKOVIĆ, J. V. MANOJLOVIĆ EJDE-06/9 Theorem 4.4. Assume h p RVη) nd q RVσ). Equion.) possess inermedie nonrivil slowly vrying soluions if nd only if / σ = η nd s) qs) ds) d =. p) The sympoic ehvior of ny such soluion x is governed y he unique formul x) Y ),, where Y ) is given y 3.54). Theorem 4.5. Assume h p RVη) nd q RVσ). Equion.) possess inermedie regulrly vrying soluions of index ρ wih ρ 0, ) if nd only if η < σ < η β, in which cse ρ is given y 4.6) nd he sympoic ehvior of ny such soluion x is governed y he unique formul p) q) ) β x) ),. ρ ρ) η ) ρ + η ) Theorem 4.6. Assume h p) RVη) nd q) RVσ). Equion.) possess inermedie nonrivil regulrly vrying soluions of index if nd only if /d σ = η β nd s)s qs)ds) β <. p) The sympoic ehvior of ny such soluion x is governed y he unique formul x) Y 3 ),, where Y 3 ) is given y 3.58). The ove corollries comined wih Theorems..4 enle us o descrie in full deils he srucure of RV-soluions of equion.) wih RV-coefficiens. Denoe wih R he se of ll regulrly vrying soluions of.) nd define he suses Rρ) = R RVρ), r Rρ) = R r RVρ), nr Rρ) = R nr RVρ). Corollry 4.7. Le p RVη), q RVσ). i) If σ < β η β, or σ = β η β nd J 3 <, hen R = r R η ) + η ) r R r R0) r R). ii) If σ = β η β nd J 3 =, hen R = nr R η ) + η ) r R r R0) r R). iii) If σ β η β, β η ) β ), hen R = R σ + + η ) + η ) r R r R0) r R). β iv) If σ = β η ) β nd J 4 <, hen R = r R + η ) + η ) nr R r R0) r R). v) If σ = β η ) β nd J 4 =, or σ β η ) β, η ), or σ = η nd J <, hen R = r R0) r R).

31 EJDE-06/9 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS 3 vi) If σ = η nd J =, hen R = nr R0) r R). vii) If σ η, η β ), hen R = R σ + + η ) r R). β viii) If σ = η β nd J <, hen R = r R) nr R). ix) If σ = η β nd J =, or σ > η β, hen R =. Acknowledgemens. The uhors re greful o he nonymous referee who mde numer of useful suggesions which improved he quliy of his pper. Boh uhors cknowledge finncil suppor hrough he Reserch projec OI of he Minisry of Educion nd Science of Repulic of Seri References [] N. H. Binghm, C. M. Goldie, J. L. Teugels; Regulr Vriion, Encyclopedi of Mhemics nd is Applicions, 7, Cmridge Universiy Press, 987. [] J. Jroš, T. Kusno; Self-djoin differenil equions nd generlized Krm funcions, Bull. Clsse Sci. M. N., Sci. Mh., Acd. Sere Sci. Ars, CXXIX, No ), [3] J. Jroš, T. Kusno; Slowly vrying soluions of clss of firs order sysems of nonliner differenil equions, Ac Mh. Univ. Comenine, vol. LXXXII, 03), no., [4] J. Jroš, T. Kusno; Exisence nd precise sympoic ehvior of srongly monoone soluions of sysems of nonliner differenil equions, Diff. Equ. Applic., 5 03), no., [5] J. Jroš, T. Kusno; Asympoic Behvior of Posiive Soluions of Clss of Sysems of Second Order Nonliner Differenil Equions, Elecronic Journl of Quliive Theory of Differenil Equions 03, no. 3, 3. [6] J. Jroš, T. Kusno; On srongly monoone soluions of clss of cyclic sysems of nonliner differenil equions, J. Mh. Anl. Appl ), [7] J. Jroš, T. Kusno; Srongly incresing soluions of cyclic sysems of second order differenil equions wih power-ype nonlineriies, Opuscul Mh. exf35 05), no., [8] J. Jroš, T. Kusno, J. Mnojlović; Asympoic nlysis of posiive soluions of generlized Emden-Fowler differenil equions in he frmework of regulr vriion, Cen. Eur. J. Mh., ), 03) 5 33 [9] K. Kmo, H. Usmi; Nonliner oscillions of fourh order qusiliner ordinry differenil equions, Ac Mh. Hungr., 3 3) 0), 07. [0] T. Kusno, J. Mnojlović; Asympoic ehvior of posiive soluions of suliner differenil equions of Emden-Fowler ype, Compu. Mh. Appl. 6 0), [] T. Kusno, J. Mnojlović; Posiive soluions of fourh order Emden-Fowler ype differenil equions in he frmework of regulr vriion, Appl. Mh. Compu., 8 0), [] T. Kusno, J. Mnojlović; Posiive soluions of fourh order Thoms-Fermi ype differenil equions in he frmework of regulr vriion, Ac Applicnde Mhemice, 0), [3] T. Kusno, J. Mnojlović, V. Mrić; Incresing soluions of Thoms-Fermi ype differenil equions - he suliner cse, Bull. T. de Acd. Sere Sci. Ars, Clsse Sci. M. N., Sci. Mh., CXLIII, No.36, 0), 36. [4] T. Kusno, J. Mnojlović, J. Milošević; Inermedie soluions of second order qusiliner differenil equion in he frmework of regulr vriion, Appl. Mh. Compu., 9 03),

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

1. Introduction. 1 b b

1. Introduction. 1 b b Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Solutions of half-linear differential equations in the classes Gamma and Pi

Solutions of half-linear differential equations in the classes Gamma and Pi Soluions of hlf-liner differenil equions in he clsses Gmm nd Pi Pvel Řehák Insiue of Mhemics, Acdemy of Sciences CR CZ-6662 Brno, Czech Reublic; Fculy of Educion, Msryk Universiy CZ-60300 Brno, Czech Reublic

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations Honours Inroducory Mhs Course 0 Inegrion, Differenil nd Difference Equions Reding: Ching Chper 4 Noe: These noes do no fully cover he meril in Ching, u re men o supplemen your reding in Ching. Thus fr

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

Hardy s inequality in L 2 ([0, 1]) and principal values of Brownian local times

Hardy s inequality in L 2 ([0, 1]) and principal values of Brownian local times Fields Insiue Communicions Volume, Hrdy s inequliy in [, ] nd principl vlues of Brownin locl imes Giovnni Pecci oroire de Proiliés e Modèles léoires Universié Pris VI & Universié Pris VII Pris, Frnce nd

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017 MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g

More information

How to prove the Riemann Hypothesis

How to prove the Riemann Hypothesis Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:5-6 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS Elecronic Journal of Differenial Equaions, Vol. 217 217, No. 118, pp. 1 14. ISSN: 172-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

More information

ASYMPTOTIC FORMS OF WEAKLY INCREASING POSITIVE SOLUTIONS FOR QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS

ASYMPTOTIC FORMS OF WEAKLY INCREASING POSITIVE SOLUTIONS FOR QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 2007(2007), No. 126, pp. 1 12. ISSN: 1072-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu (login: fp) ASYMPTOTIC FORMS OF

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales Asympoic relionship beween rjecories of nominl nd uncerin nonliner sysems on ime scles Fim Zohr Tousser 1,2, Michel Defoor 1, Boudekhil Chfi 2 nd Mohmed Djemï 1 Absrc This pper sudies he relionship beween

More information

A new model for solving fuzzy linear fractional programming problem with ranking function

A new model for solving fuzzy linear fractional programming problem with ranking function J. ppl. Res. Ind. Eng. Vol. 4 No. 07 89 96 Journl of pplied Reserch on Indusril Engineering www.journl-prie.com new model for solving fuzzy liner frcionl progrmming prolem wih rning funcion Spn Kumr Ds

More information

More on Magnetically C Coupled Coils and Ideal Transformers

More on Magnetically C Coupled Coils and Ideal Transformers Appenix ore on gneiclly C Couple Coils Iel Trnsformers C. Equivlen Circuis for gneiclly Couple Coils A imes, i is convenien o moel mgneiclly couple coils wih n equivlen circui h oes no involve mgneic coupling.

More information

TEACHING STUDENTS TO PROVE BY USING ONLINE HOMEWORK Buma Abramovitz 1, Miryam Berezina 1, Abraham Berman 2

TEACHING STUDENTS TO PROVE BY USING ONLINE HOMEWORK Buma Abramovitz 1, Miryam Berezina 1, Abraham Berman 2 TEACHING STUDENTS TO PROVE BY USING ONLINE HOMEWORK Bum Armoviz 1, Mirym Berezin 1, Arhm Bermn 1 Deprmen of Mhemics, ORT Brude College, Krmiel, Isrel Deprmen of Mhemics, Technion IIT, Hf, Isrel Asrc We

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Communicions on Sochsic Anlysis Vol 6, No 4 2012 603-614 Serils Publicions wwwserilspublicionscom THE ITÔ FORMULA FOR A NEW STOCHASTIC INTEGRAL HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Absrc

More information

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS Wu, G.-.: Lplce Trnsform Overcoming Principle Drwbcks in Applicion... THERMAL SIENE: Yer 22, Vol. 6, No. 4, pp. 257-26 257 Open forum LAPLAE TRANSFORM OVEROMING PRINIPLE DRAWBAKS IN APPLIATION OF THE VARIATIONAL

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

..,..,.,

..,..,., 57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3 (

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

A new model for limit order book dynamics

A new model for limit order book dynamics Anewmodelforlimiorderbookdynmics JeffreyR.Russell UniversiyofChicgo,GrdueSchoolofBusiness TejinKim UniversiyofChicgo,DeprmenofSisics Absrc:Thispperproposesnewmodelforlimiorderbookdynmics.Thelimiorderbookconsiss

More information

PRECISE ASYMPTOTIC BEHAVIOR OF STRONGLY DECREASING SOLUTIONS OF FIRST-ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

PRECISE ASYMPTOTIC BEHAVIOR OF STRONGLY DECREASING SOLUTIONS OF FIRST-ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 204 204), No. 206, pp. 4. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu PRECISE ASYMPTOTIC BEHAVIOR OF STRONGLY

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Characteristic Function for the Truncated Triangular Distribution., Myron Katzoff and Rahul A. Parsa

Characteristic Function for the Truncated Triangular Distribution., Myron Katzoff and Rahul A. Parsa Secion on Survey Reserch Mehos JSM 009 Chrcerisic Funcion for he Trunce Tringulr Disriuion Jy J. Kim 1 1, Myron Kzoff n Rhul A. Prs 1 Nionl Cener for Helh Sisics, 11Toleo Ro, Hysville, MD. 078 College

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations Journl of Mhemics nd Sisics 5 ():136-14, 9 ISS 1549-3644 9 Science Publicions On he Pseudo-Specrl Mehod of Solving Liner Ordinry Differenil Equions B.S. Ogundre Deprmen of Pure nd Applied Mhemics, Universiy

More information

Yan Sun * 1 Introduction

Yan Sun * 1 Introduction Sun Boundry Vlue Problems 22, 22:86 hp://www.boundryvlueproblems.com/conen/22//86 R E S E A R C H Open Access Posiive soluions of Surm-Liouville boundry vlue problems for singulr nonliner second-order

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1 D Trnsformions Compuer Grphics COMP 770 (6) Spring 007 Insrucor: Brndon Lloyd /6/07 Geomery Geomeric eniies, such s poins in spce, exis wihou numers. Coordines re nming scheme. The sme poin cn e descried

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION Avilble online hp://scik.org Eng. Mh. Le. 15, 15:4 ISSN: 49-9337 CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION PANDEY, C. P. 1, RAKESH MOHAN AND BHAIRAW NATH TRIPATHI 3 1 Deprmen o Mhemics, Ajy

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

Engineering Letter, 16:4, EL_16_4_03

Engineering Letter, 16:4, EL_16_4_03 3 Exisence In his secion we reduce he problem (5)-(8) o an equivalen problem of solving a linear inegral equaion of Volerra ype for C(s). For his purpose we firs consider following free boundary problem:

More information

M r. d 2. R t a M. Structural Mechanics Section. Exam CT5141 Theory of Elasticity Friday 31 October 2003, 9:00 12:00 hours. Problem 1 (3 points)

M r. d 2. R t a M. Structural Mechanics Section. Exam CT5141 Theory of Elasticity Friday 31 October 2003, 9:00 12:00 hours. Problem 1 (3 points) Delf Universiy of Technology Fculy of Civil Engineering nd Geosciences Srucurl echnics Secion Wrie your nme nd sudy numer he op righ-hnd of your work. Exm CT5 Theory of Elsiciy Fridy Ocoer 00, 9:00 :00

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation ISSN 1749-3889 (prin), 1749-3897 (online) Inernaional Journal of Nonlinear Science Vol.5(2008) No.1,pp.58-64 The Exisence, Uniqueness and Sailiy of Almos Periodic Soluions for Riccai Differenial Equaion

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS Mrin Bohner Deprmen of Mhemics nd Sisics, Universiy of Missouri-Roll 115 Roll Building, Roll, MO 65409-0020, USA E-mil: ohner@umr.edu Romn Hilscher

More information

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients Hsil nd Veselý Advnces in Difference Equions 2015 2015:190 DOI 10.1186/s13662-015-0533-4 R E S E A R C H Open Access Non-oscillion of perurbed hlf-liner differenil equions wih sums of periodic coefficiens

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

arxiv: v1 [math.fa] 9 Dec 2018

arxiv: v1 [math.fa] 9 Dec 2018 AN INVERSE FUNCTION THEOREM CONVERSE arxiv:1812.03561v1 [mah.fa] 9 Dec 2018 JIMMIE LAWSON Absrac. We esablish he following converse of he well-known inverse funcion heorem. Le g : U V and f : V U be inverse

More information