Sensitivity Analysis When Model Outputs Are Functions

Size: px
Start display at page:

Download "Sensitivity Analysis When Model Outputs Are Functions"

Transcription

1 LAUR Sensitivity Analysis When Model Outputs Are Functions Michael D. McKay and Katherine Campbell formerly of the Statistical Sciences Group Los Alamos National Laboratory Presented at the Fourth International Conference on Sensitivity Analysis of Model Output (SAMO), Santa Fe, NM, USA, March 8-11, 2004, and from a presentation at the International Conference on Probabilistic Safety Assessment and Management (PSAM 6), San Juan, Puerto Rico, June 23-28, 2002.

2 Main points 1. Functions--think of y(t)--are characterized by shapes and features which: are defined by relationships among neighboring points, e.g., values around a maximum. may be identified by inspection may be characterized (and identified) via a decomposition, e.g., into linear, quadratic, etc. terms. 2. Functional sensitivity analysis is not a blind procedure.

3 Outline 1. Point-by-point analysis with (1) environmental pathways model and (2) particle beam accelerator model. 2. Analysis of features from pathways model. 3. Introduce basis function decomposition. 4. Use data-adaptive principal components basis for analysis of (1) pathways model and (2) particle beam transport model. 5. Use fixed basis of (Legendre) polynomials for analysis of particle beam transport model.

4 Model of environmental pathways 0. COMPARTMENTS 1. Vegetation surface 2. Vegetation interior 3. Terrestrial invertebrates 4. Small herbivores 5. Large herbivores 6. Insectivores 7. Predators 8. Litter 84 MODEL INPUTS Input Lower Upper Nominal X X

5 Output of pathways model Compartment 3 when inputs range over plausible values Concentration Time in days

6 Importance indicator R 2 as a function of time X24 X63 R 2 Time in days

7 Output of proton beam transport model Particle density Position in meters

8 R 2 as a function of position R 2 Position in meters

9 Output of pathways model Compartment 3 when inputs range over plausible values Concentration Time in days

10 Scalar outputs: Candidates for analysis of pathways model output Equilibrium concentration (how high): Y 1 = C max Time to Equilibrium (how fast): Y 2 = t max = 0.9 C max Time dependent outputs: C(t) Normalized: C(t) / C max where C max = C(t max ) Standard time: C * (u) = C(u x t max ) / C max, 0 u 1

11 R 2 for equilibrium concentration R 2 Parameters ordered by R 2

12 R 2 for time to equilibrium R 2 Parameters ordered by R 2

13 Standardized output from pathways model Normalized concentration (color-coded by X63) Standardized time

14 Functional sensitivity analysis Given N model runs with functional output {y i (t), t = 1,, T; i = 1,, N}: (5) Expand each y i (t) in a set of basis functions: y i (t) ~ Y N T - K + ikϕk k= 1 y t h t ( ) ( ) Y for 1 i N or ~ H N K Φ K T (K T). (2) Perform sensitivity and importance analysis on the (new data) {h i1 },, {h ik },, {h ik }.

15 Options for basis functions Φ Fixed basis functions (Legendre) polynomials, trigonometric functions, Haar functions, wavelets,. Data-adaptive basis functions Principal components, partial least squares, canonical correlation,... I have found this website useful -- Eric Weisstein's World of Mathematics mathworld.wolfram.com

16 Data-adaptive basis: principal components Principal components (PCs) Rotation in T-dimensional space (i.e., an orthonormal transformation) Diagonalizes Var(Y) Maximizes variance in first n components; most of the significant effects captured by K<<T components

17 Expansion of C(t) for one run in the first 4 PCs C(t) is + and fit well by 4 terms Mean * first P.C. Mean value from all runs

18 Principal component functions

19 PCs as perturbations of mean function PC 1: 99.3% Mean + m*p.c. 2 PC 2: 0.73% Mean Mean m*p.c. 2 PC 3: 0.02% PC 4: %

20 R 2 for coefficients of PCs PC 1: 99.3% (equilibrium value) PC 2: 0.73% (~time to equilibrium) PC 3: 0.02% PC 4: %

21 Comparison of R 2 First principal component Feature: Equilibrium Concentration

22 Comparison of R 2 (cont) Second principal component Feature: Time to equilibrium

23 Recall the main points 1. Functions--think of y(t)--are characterized by shapes and features which: are defined by relationships among neighboring points, e.g., values around a maximum. may be identified by inspection may be characterized (and identified) via a decomposition, e.g., into linear, quadratic, etc. terms. 2. Functional sensitivity analysis is not a blind procedure.

24 Approximation of a beam profile Mean 0.012*PC1 Mean over all runs

25 Principal component functions PC 1: 69.4% PC 2: 27.2% PC 3: 2.1% PC 4: 1.3%

26 PCs as perturbations of mean function Mean m*p.c. 2 PC 1: 69.4% Mean + m*p.c. 2 PC 2: 27.2% Mean PC 3: 2.1% PC 4: 1.3%

27 R 2 for coefficients of PCs PC 1: 69.4% (beam width) PC 2: 27.2% (beam center) PC 3: 2.1% (tail weight) PC 4: 1.3% (skewness)

28 PC analysis for beam profiles 68.66% 95.59% 97.62% 98.9% 99.22% 99.39% Principal components perturbations of mean function dependence on pyfac dependence on yshift dependence on dy1 dependence on ptfac dependence on tfac

29 Fixed basis: Legendre polynomials Orthogonal polynomials in t on [-1,1] φ 0 (t) = 1 (1, 1, 1, 1, 1) for T = 5 φ 1 (t) = t (-1, -.5, 0,.5, 1) φ 2 (t) = ½ (3t 2 1) ½ (2, -.25, -1, -.25, 2) sometimes polynomials in sin(πt/2) may be ill suited for some problems

30 First four Legendre polynomials

31 Next four Legendre polynomials

32 Legendre polynomials in sin(x) Legendre analysis for beam profiles 5.24% 16.15% 33.08% 74.78% 79.37% 90.91% perturbations of mean function dependence on pyfac dependence on yshift dependence on dy1 dependence on ptfac dependence on tfac

33 Data-adaptive basis: partial least squares (PLS) Takes input variables in addition to output variables into account in choosing the basis functions. Can provide valuable insight. Resulting basis vectors (for computer model output from designed computer experiments) tend to be similar to principal components Does not form an orthonormal basis or provide a linear variance decomposition in coefficients {h ik }.

34 PLS analysis for beam profiles PLS components 68.57% 95.54% 96.44% 98.31% 98.78% 99.08% perturbations of mean function Dependence on pyfac Dependence on yshift Dependence on dy1 Dependence on ptfac Dependence on tfac

35 Comparison of basis functions Adaptive Usually concentrate information in first few terms. Respond to shape changes across problems. Variability affects both coefficients and shape of basis functions Fixed May spread description of simple features across many terms. Consistent fundamental shapes across problems. Variability only affects coefficients.

36 Two important points not covered Curve registration -- a monotonic transformation of time (translation/scale). One indication that it is needed is that y ( t ), the sample mean, is not representative the sample of curves. y t Penalty methods can be used to enforce a degree of smoothness of basis functions, which can make comparisons across problems easier. (See Ramsay and Silverman reference, Functional Data Analysis.) ( )

37 Summary Point-by-point analyses may work well for functions of time representing evolving systems. Manual selection of appropriate features can be useful. Adaptive basis decompositions may reveal dependencies not easily extracted by other means.

38 References Campbell, K. (2001). Functional Sensitivity Analysis of Computer Model Output, Proceedings of the Seventh Army Conference on Statistics, Santa Fe, NM. Frank, I. E. and Friedman, J. H. (1993). A Statistical View of Some Chemometrics Regression Tools, Technometrics 35, McKay, M. D. (1997). Nonparametric Variance-based Methods of Assessing Uncertainty Importance, Reliability Engineering and System Safety, 57, Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis, Springer, New York. Saltelli, A., Chan, K., Scott, E. M. (Eds.), Sensitivity Analysis, John Wiley and Sons, Ltd. (2000).

39 What are Principal Components? 1. Geometrical interpretation in 2 dimensions: coordinate rotations that maximize sample variance. 2. Algebraic description: eigenvectors of (sample) the covariance matrix. 3. Empirical (sample dependent) orthonormal basis functions that best fit functional data.

40 5 points in original coordinates (X 1, X 2 ) X 2 P 3 P 4 5 SS = ( X X ) 2 2i 2 i= 1 2 P 1 P 2 P 5 Rotation coming X 1 5 SS = ( X X ) 1 1i 1 i= 1 2

41 5 points in rotated coordinates (X 1*, X 2* ) X 2 * SS > SS * 1 1 P 4 X 1 * P 3 P 2 P 1 P 5 SS < SS * 2 2

42 Geometrical principal component The first principal component (PC) is the direction for which the orthogonal projection of the data points has the most spread, as measured by the sum of squares about the mean (SS * ). The second principal component is the direction orthogonal to the first PC for which the data points have the second most spread. And so forth for the third, fourth, etc.

43 Algebra of principal components Let X be an N x K matrix whose rows are vectors of k-dimensional data and whose columns have zero mean. For N = 3 points and K = 3 components, p1 x11 x12 x13 P = p = X = x x x p 3 x31 x32 x 33. Let β be a K x 1 vector of coefficients that defines a linear combination for the K components of a data vector. For the first point, the linear combination is x β = β x + β x + β x

44 More algebra of principal components The (unit length) β that maximizes the sample variance of the N values Xβ, max ' X' Xβ/ N, β β' β=1 satisfies X' Xβ=λβ. That β is the dominant eigenvector of X X, which is the first principal component.

45 Basis functions and principal components Consider N functions y i (t), with mean 0, defined at T points t j. Write y i (t) in terms of K T basis functions φ k (t) as K y ( t ) = h ϕ ( t). i ik k k = 1 The orthonormal functions φ k (t) that minimize N T K ( ) yi t j hik ϕk ( t j ) i= 1 j= 1 k = 1 are K eigenvectors/principal components of the N x T covariance matrix of the y i (t j ). 2

Introduction to Statistical Methods for Understanding Prediction Uncertainty in Simulation Models

Introduction to Statistical Methods for Understanding Prediction Uncertainty in Simulation Models LA-UR-04-3632 Introduction to Statistical Methods for Understanding Prediction Uncertainty in Simulation Models Michael D. McKay formerly of the Statistical Sciences Group Los Alamos National Laboratory

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 32: Infinite-dimensional/Functionvalued Traits: Covariance Functions and Random Regressions Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 Longitudinal traits Many classic quantitative

More information

Regularized Discriminant Analysis and Reduced-Rank LDA

Regularized Discriminant Analysis and Reduced-Rank LDA Regularized Discriminant Analysis and Reduced-Rank LDA Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Regularized Discriminant Analysis A compromise between LDA and

More information

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016 Lecture 8 Principal Component Analysis Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 13, 2016 Luigi Freda ( La Sapienza University) Lecture 8 December 13, 2016 1 / 31 Outline 1 Eigen

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yuanzhen Shao MA 26500 Yuanzhen Shao PCA 1 / 13 Data as points in R n Assume that we have a collection of data in R n. x 11 x 21 x 12 S = {X 1 =., X x 22 2 =.,, X x m2 m =.

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

Principal Component Analysis. Applied Multivariate Statistics Spring 2012

Principal Component Analysis. Applied Multivariate Statistics Spring 2012 Principal Component Analysis Applied Multivariate Statistics Spring 2012 Overview Intuition Four definitions Practical examples Mathematical example Case study 2 PCA: Goals Goal 1: Dimension reduction

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Matrix Algebra, part 2

Matrix Algebra, part 2 Matrix Algebra, part 2 Ming-Ching Luoh 2005.9.12 1 / 38 Diagonalization and Spectral Decomposition of a Matrix Optimization 2 / 38 Diagonalization and Spectral Decomposition of a Matrix Also called Eigenvalues

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS

MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS T H I R D E D I T I O N MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS STANLEY I. GROSSMAN University of Montana and University College London SAUNDERS COLLEGE PUBLISHING HARCOURT BRACE

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

Explaining Correlations by Plotting Orthogonal Contrasts

Explaining Correlations by Plotting Orthogonal Contrasts Explaining Correlations by Plotting Orthogonal Contrasts Øyvind Langsrud MATFORSK, Norwegian Food Research Institute. www.matforsk.no/ola/ To appear in The American Statistician www.amstat.org/publications/tas/

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology Introduction to Functional Data Analysis A CSCU Workshop Giles Hooker Biological Statistics and Computational Biology gjh27@cornell.edu www.bscb.cornell.edu/ hooker/fdaworkshop 1 / 26 Agenda What is Functional

More information

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 21 Symmetric matrices An n n

More information

Regularization via Spectral Filtering

Regularization via Spectral Filtering Regularization via Spectral Filtering Lorenzo Rosasco MIT, 9.520 Class 7 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

MATH 829: Introduction to Data Mining and Analysis Principal component analysis

MATH 829: Introduction to Data Mining and Analysis Principal component analysis 1/11 MATH 829: Introduction to Data Mining and Analysis Principal component analysis Dominique Guillot Departments of Mathematical Sciences University of Delaware April 4, 2016 Motivation 2/11 High-dimensional

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques. I assume the reader is familiar with basic linear algebra, including the

More information

International Journal of Pure and Applied Mathematics Volume 19 No , A NOTE ON BETWEEN-GROUP PCA

International Journal of Pure and Applied Mathematics Volume 19 No , A NOTE ON BETWEEN-GROUP PCA International Journal of Pure and Applied Mathematics Volume 19 No. 3 2005, 359-366 A NOTE ON BETWEEN-GROUP PCA Anne-Laure Boulesteix Department of Statistics University of Munich Akademiestrasse 1, Munich,

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

M E M O R A N D U M. Faculty Senate approved November 1, 2018

M E M O R A N D U M. Faculty Senate approved November 1, 2018 M E M O R A N D U M Faculty Senate approved November 1, 2018 TO: FROM: Deans and Chairs Becky Bitter, Sr. Assistant Registrar DATE: October 23, 2018 SUBJECT: Minor Change Bulletin No. 5 The courses listed

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques, which are widely used to analyze and visualize data. Least squares (LS)

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6. Orthogonal Projections Math 2 Linear Algebra 6. Orthogonal Projections Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2 Jiwen He, University of

More information

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas Plan of Class 4 Radial Basis Functions with moving centers Multilayer Perceptrons Projection Pursuit Regression and ridge functions approximation Principal Component Analysis: basic ideas Radial Basis

More information

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation)

Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) Principal Component Analysis -- PCA (also called Karhunen-Loeve transformation) PCA transforms the original input space into a lower dimensional space, by constructing dimensions that are linear combinations

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques. Broadly, these techniques can be used in data analysis and visualization

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Independent Component Analysis and Its Application on Accelerator Physics

Independent Component Analysis and Its Application on Accelerator Physics Independent Component Analysis and Its Application on Accelerator Physics Xiaoying Pang LA-UR-12-20069 ICA and PCA Similarities: Blind source separation method (BSS) no model Observed signals are linear

More information

which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar.

which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar. It follows that S is linearly dependent since the equation is satisfied by which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar. is

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces Singular Value Decomposition This handout is a review of some basic concepts in linear algebra For a detailed introduction, consult a linear algebra text Linear lgebra and its pplications by Gilbert Strang

More information

Vectors and Matrices Statistics with Vectors and Matrices

Vectors and Matrices Statistics with Vectors and Matrices Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #3-9/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A - augmented with SAS proc

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1 FUNCTIONAL DATA ANALYSIS Contribution to the International Handbook (Encyclopedia) of Statistical Sciences July 28, 2009 Hans-Georg Müller 1 Department of Statistics University of California, Davis One

More information

Fitting. PHY 688: Numerical Methods for (Astro)Physics

Fitting. PHY 688: Numerical Methods for (Astro)Physics Fitting Fitting Data We get experimental/observational data as a sequence of times (or positions) and associate values N points: (x i, y i ) Often we have errors in our measurements at each of these values:

More information

Linear Models 1. Isfahan University of Technology Fall Semester, 2014

Linear Models 1. Isfahan University of Technology Fall Semester, 2014 Linear Models 1 Isfahan University of Technology Fall Semester, 2014 References: [1] G. A. F., Seber and A. J. Lee (2003). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley. [2] A. C. Rencher and

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Hypothesis Testing For Multilayer Network Data

Hypothesis Testing For Multilayer Network Data Hypothesis Testing For Multilayer Network Data Jun Li Dept of Mathematics and Statistics, Boston University Joint work with Eric Kolaczyk Outline Background and Motivation Geometric structure of multilayer

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Anders Øland David Christiansen 1 Introduction Principal Component Analysis, or PCA, is a commonly used multi-purpose technique in data analysis. It can be used for feature

More information

DIAGONALIZATION OF THE STRESS TENSOR

DIAGONALIZATION OF THE STRESS TENSOR DIAGONALIZATION OF THE STRESS TENSOR INTRODUCTION By the use of Cauchy s theorem we are able to reduce the number of stress components in the stress tensor to only nine values. An additional simplification

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Jianhua Z. Huang, Haipeng Shen, Andreas Buja

Jianhua Z. Huang, Haipeng Shen, Andreas Buja Several Flawed Approaches to Penalized SVDs A supplementary note to The analysis of two-way functional data using two-way regularized singular value decompositions Jianhua Z. Huang, Haipeng Shen, Andreas

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs 3 Analytical Solutions of Linear ODE-IVPs Before developing numerical

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

This appendix provides a very basic introduction to linear algebra concepts.

This appendix provides a very basic introduction to linear algebra concepts. APPENDIX Basic Linear Algebra Concepts This appendix provides a very basic introduction to linear algebra concepts. Some of these concepts are intentionally presented here in a somewhat simplified (not

More information

Linear Algebra. and

Linear Algebra. and Instructions Please answer the six problems on your own paper. These are essay questions: you should write in complete sentences. 1. Are the two matrices 1 2 2 1 3 5 2 7 and 1 1 1 4 4 2 5 5 2 row equivalent?

More information

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods Alternatives to Basis Expansions Basis expansions require either choice of a discrete set of basis or choice of smoothing penalty and smoothing parameter Both of which impose prior beliefs on data. Alternatives

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

Adaptive Nonparametric Density Estimators

Adaptive Nonparametric Density Estimators Adaptive Nonparametric Density Estimators by Alan J. Izenman Introduction Theoretical results and practical application of histograms as density estimators usually assume a fixed-partition approach, where

More information

Experimental design. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Experimental design. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Experimental design Matti Hotokka Department of Physical Chemistry Åbo Akademi University Contents Elementary concepts Regression Validation Hypotesis testing ANOVA PCA, PCR, PLS Clusters, SIMCA Design

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Continuous Probability Distributions from Finite Data. Abstract

Continuous Probability Distributions from Finite Data. Abstract LA-UR-98-3087 Continuous Probability Distributions from Finite Data David M. Schmidt Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (August 5, 1998) Abstract Recent approaches

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Evaluating prediction uncertainty in simulation models

Evaluating prediction uncertainty in simulation models Submitted to Computer Physics Communications LA-UR-98 1362 Evaluating prediction uncertainty in simulation models Michael D. McKay, 1 John D. Morrison, Stephen C. Upton Los Alamos National Laboratory Los

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

METHODS OF ENGINEERING MATHEMATICS

METHODS OF ENGINEERING MATHEMATICS METHODS OF ENGINEERING MATHEMATICS Edward J. Hang Kyung K. Choi Department of Mechanical Engineering College of Engineering The University of Iowa Iowa City, Iowa 52242 METHODS OF ENGINEERING MATHEMATICS

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

The Principal Component Analysis

The Principal Component Analysis The Principal Component Analysis Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) PCA Fall 2017 1 / 27 Introduction Every 80 minutes, the two Landsat satellites go around the world, recording images

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

Motivating the Covariance Matrix

Motivating the Covariance Matrix Motivating the Covariance Matrix Raúl Rojas Computer Science Department Freie Universität Berlin January 2009 Abstract This note reviews some interesting properties of the covariance matrix and its role

More information

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide

More information

Mathematical Methods for Engineers and Scientists 1

Mathematical Methods for Engineers and Scientists 1 K.T. Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis, Determinants and Matrices With 49 Figures and 2 Tables fyj Springer Part I Complex Analysis 1 Complex Numbers 3 1.1 Our Number

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

On the Identifiability of the Functional Convolution. Model

On the Identifiability of the Functional Convolution. Model On the Identifiability of the Functional Convolution Model Giles Hooker Abstract This report details conditions under which the Functional Convolution Model described in Asencio et al. (2013) can be identified

More information

Independent component analysis for functional data

Independent component analysis for functional data Independent component analysis for functional data Hannu Oja Department of Mathematics and Statistics University of Turku Version 12.8.216 August 216 Oja (UTU) FICA Date bottom 1 / 38 Outline 1 Probability

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Factor models. March 13, 2017

Factor models. March 13, 2017 Factor models March 13, 2017 Factor Models Macro economists have a peculiar data situation: Many data series, but usually short samples How can we utilize all this information without running into degrees

More information

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA)

CS168: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) CS68: The Modern Algorithmic Toolbox Lecture #7: Understanding Principal Component Analysis (PCA) Tim Roughgarden & Gregory Valiant April 0, 05 Introduction. Lecture Goal Principal components analysis

More information