CHAPTER 9 ROTATIONAL DYNAMICS

Size: px
Start display at page:

Download "CHAPTER 9 ROTATIONAL DYNAMICS"

Transcription

1 CHAPTER 9 ROTATIONAL DYNAMICS PROBLEMS. REASONING The drawing shows the forces acting on the person. It also shows the lever arms for a rotational axis perpendicular to the plane of the paper at the place where the person s toes touch the floor. Since the person is in equilibrium, the sum of the forces must be zero. Likewise, we know that the sum of the torques must be zero. SOLUTION Taking upward to be the positive direction, we have F + F W FEET HANDS Remembering that counterclockwise torques are positive and using the axis and the lever arms shown in the drawing, we find Wl W F HANDS l HANDS ( )(.84 m) F HANDS Wl W 584 N l HANDS.5 m 39 N Substituting this value into the balance-of-forces equation, we find F W F 584 N 39 N 9 N FEET HANDS The force on each hand is half the value calculated above, or 96 N. Likewise, the force on each foot is half the value calculated above, or 96 N. 3. SSM REASONING The drawing shows the bridge and the four forces that act on it: the upward force F exerted on the left end by the support, the force due to the weight W h of the hiker, the weight W b of the bridge, and the upward force F exerted on the right side by the support. Since the bridge is in equilibrium, the sum of the torques about any axis of rotation Σ τ, and the sum of the forces in the vertical direction must be zero must be zero ( ) ( F y ) Σ. These two conditions will allow us to determine the magnitudes of F and F. F W h F Axis +y +τ +x W b

2 SOLUTION a. We will begin by taking the axis of rotation about the right end of the bridge. The torque produced by F is zero, since its lever arm is zero. When we set the sum of the torques equal to zero, the resulting equation will have only one unknown, F, in it. Setting the sum of the torques produced by the three forces equal to zero gives 4 ( ) ( ) Σ τ FL+ W L + W L h 5 b Algebraically eliminating the length L of the bridge from this equation and solving for F gives F 4W + W N + 36 N 59 N ( ) ( ) 5 h b 5 b. Since the bridge is in equilibrium, the sum of the forces in the vertical direction must be zero: Σ F F W W + F Solving for F gives y h b F F+ Wh + Wb 59 N N + 36 N N 3. REASONING The net torque Στ acting on the CD is given by Newton s second law for rotational motion (Equation 9.7) as Στ Ι α, where I is the moment of inertia of the CD and α is its angular acceleration. The moment of inertia can be obtained directly from Table 9., and the angular acceleration can be found from its definition (Equation 8.4) as the change in the CD s angular velocity divided by the elapsed time. SOLUTION The net torque is Στ Ι α. Assuming that the CD is a solid disk, its moment of inertia can be found from Table 9. as I MR, where M and R are the mass and radius of the CD. Thus, the net torque is ( MR ) Σ τ Iα α The angular acceleration is given by Equation 8.4 as α ( ω ω ) / t, where ω and ω are the final and initial angular velocities, respectively, and t is the elapsed time. Substituting this expression for α into Newton s second law yields ( MR ) α ( MR ) ω ω Σ τ t ( )( ) 3 rad/s rad/s 4 7 kg 6. m 8. N m.8 s

3 34. REASONING According to Newton s second law for rotational motion, Στ Iα, the angular acceleration α of the blades is equal to the net torque Στ applied to the blades divided by their total moment of inertia I, both of which are known. SOLUTION The angular acceleration of the fan blades is τ.8 N m α Σ 8. rad/s I. kg m (9.7) 48. REASONING a. The kinetic energy is given by Equation 9.9 as KE R Iω. Assuming the earth to be a uniform solid sphere, we find from Table 9. that the moment of inertia is I MR. The mass and radius of the earth are M kg and R m (see the inside of the text s front cover). The angular speed ω must be expressed in rad/s, and we note that the earth turns once around its axis each day, which corresponds to π rad/day. b. The kinetic energy for the earth s motion around the sun can be obtained from Equation 9.9 as KE R Iω. Since the earth s radius is small compared to the radius of the earth s orbit (R orbit.5 m, see the inside of the text s front cover), the moment of inertia in this case is just I MR. The angular speed ω of the earth as it goes around orbit the sun can be obtained from the fact that it makes one revolution each year, which corresponds to π rad/year. SOLUTION a. According to Equation 9.9, we have KE R Iω ( 5 MR )ω 5 " #$ 5 ( kg) ( m) %"( &' $ * #) π rad day + ( - day + ( h + % * -* -',) 4 h,) 36 s, &.57 9 J b. According to Equation 9.9, we have

4 KE R Iω MR ( orbit )ω (" ( kg) (.5 m) π rad * $ )# yr %" yr %" ' $ ' day %" h % + $ ' $ '- &# 365 day &# 4 h &# 36 s&, J 5. SSM REASONING The kinetic energy of the flywheel is given by Equation 9.9. The moment of inertia of the flywheel is the same as that of a solid disk, and, according to Table 9. in the text, is given by I MR. Once the moment of inertia of the flywheel is known, Equation 9.9 can be solved for the angular speed ω in rad/s. This quantity can then be converted to rev/min. SOLUTION Solving Equation 9.9 for ω, we obtain, ( KE ) ( KE ) 9 R R 4(. J) ω I MR (3 kg)(.3 m) rad / s Converting this answer into rev/min, we find that ω ( rad/s) " rev % $ ' # π rad & " 6 s % $ ' 6. 5 rev/min # min & 59. SSM REASONING Let the two disks constitute the system. Since there are no external torques acting on the system, the principle of conservation of angular momentum applies. Therefore we have L L, or initial final I ω + I ω ( I + I ) ω A A B B A B final This expression can be solved for the moment of inertia of disk B. SOLUTION Solving the above expression for I B, we obtain! ω I B I final ω A $ ( A # & (3.4 kg m.4 rad/s 7. rad/s + )* kg m " ω B ω final % ) 9.8 rad/s (.4 rad/s), 6. REASONING The supernova explosion proceeds entirely under the influence of internal forces and torques. External forces and torques play no role. Therefore, the star s angular

5 momentum is conserved during the supernova and its subsequent transformation from a solid sphere into an expanding spherical shell: Lf L. The star s initial and final angular momenta are given by L Iω (Equation 9.), where I is the star s moment of inertia, and ω is its angular velocity. Initially, the star is a uniform solid sphere with a moment of inertia given by I MR (see Table 9. in the text). Following the supernova, the moment of 5 inertia of the expanding spherical shell is 3 I MR (see Table 9. in the text). We will use the angular-momentum-conservation principle to calculate the final angular velocity ω f of the expanding supernova shell. SOLUTION Applying the angular-momentum-conservation principle yields I f ω! I f! ω or L f L M R f ω 3 f M R ω 5 or ω f 3R ω Substituting R R, R f 4.R, and ω. rev/d, we obtain the final angular velocity of the expanding shell: 3 R ω ω f 54.R ( ) ( ) 3ω 3. rev/d.75 rev/d 8 8 5R f

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34 Fall 07 PHYS 3 Chapter 9: 5, 0,, 3, 3, 34 5. ssm The drawing shows a jet engine suspended beneath the wing of an airplane. The weight W of the engine is 0 00 N and acts as shown in the drawing. In flight

More information

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015 Raymond A. Serway Chris Vuille Chapter Eight Rotational Equilibrium and Rotational Dynamics Application of Forces The point of application of a force is important This was ignored in treating objects as

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-5: ROTATIONAL DYNAMICS; TORQUE AND ROTATIONAL INERTIA LSN 8-6: SOLVING PROBLEMS IN ROTATIONAL DYNAMICS Questions From Reading Activity? Big Idea(s):

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I

More information

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size Recap: Solid Rotational Motion (Chapter 8) We have developed equations to describe rotational displacement θ, rotational velocity ω and rotational acceleration α. We have used these new terms to modify

More information

Rotation. I. Kinematics - Angular analogs

Rotation. I. Kinematics - Angular analogs Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity.

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity. High School Physics - Problem Drill 10: Rotational Motion and Equilbrium 1. If a bike wheel of radius 50 cm rotates at 300 rpm what is its angular velocity and what is the linear speed of a point on the

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics 1 Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related 2 Torque The door is free to rotate

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-8: ANGULAR MOMENTUM AND ITS CONSERVATION Questions From Reading Activity? Big Idea(s): The interactions of an object with other objects can be

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

1 of 5 7/13/2015 9:03 AM HW8 due 6 pm Day 18 (Wed. July 15) (7426858) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1. Question Details OSColPhys1 10.P.028.WA. [2611790] The specifications for

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Chapter 7. Rotational Motion

Chapter 7. Rotational Motion Chapter 7 Rotational Motion In This Chapter: Angular Measure Angular Velocity Angular Acceleration Moment of Inertia Torque Rotational Energy and Work Angular Momentum Angular Measure In everyday life,

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Lecture 14 Rotational dynamics Torque Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Archimedes, 87 1 BC EXAM Tuesday March 6, 018 8:15 PM 9:45 PM Today s Topics:

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Moment of Inertia Angular momentum 13-2 1 Current assignments Prelecture due Tuesday after Thanksgiving HW#13 due next Wednesday, 11/24 Turn in written assignment

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

10-6 Angular Momentum and Its Conservation [with Concept Coach]

10-6 Angular Momentum and Its Conservation [with Concept Coach] OpenStax-CNX module: m50810 1 10-6 Angular Momentum and Its Conservation [with Concept Coach] OpenStax Tutor Based on Angular Momentum and Its Conservation by OpenStax College This work is produced by

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Non-textbook problem #I: Let s start with a schematic side view of the drawbridge and the forces acting on it: F axle θ

Non-textbook problem #I: Let s start with a schematic side view of the drawbridge and the forces acting on it: F axle θ PHY 309 K. Solutions for Problem set # 10. Non-textbook problem #I: Let s start with a schematic side view of the drawbridge and the forces acting on it: F axle θ T mg The bridgeis shown just asit begins

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience: CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion To understand the concept of torque. To relate angular acceleration and torque. To work and power in rotational motion. To understand angular momentum. To understand

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

Physics 101 Lecture 11 Torque

Physics 101 Lecture 11 Torque Physics 101 Lecture 11 Torque Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Force vs. Torque q Forces cause accelerations q What cause angular accelerations? q A door is free to rotate about an axis

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

Part 1 of 1. (useful for homework)

Part 1 of 1. (useful for homework) Chapter 9 Part 1 of 1 Example Problems & Solutions Example Problems & Solutions (useful for homework) 1 1. You are installing a spark plug in your car, and the manual specifies that it be tightened to

More information

Teach Yourself AP Physics in 24 Hours. and Equilibrium. Physics Rapid Learning Series

Teach Yourself AP Physics in 24 Hours. and Equilibrium. Physics Rapid Learning Series Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presents Teach Yourself AP Physics in 4 Hours 1/53 *AP is a registered trademark of the College Board, which does not

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Angular Momentum and Its Conservation

Angular Momentum and Its Conservation Angular Momentum and Its Conservation Bởi: OpenStaxCollege Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster and faster simply by

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Torque Rotational Dynamics Current assignments Prelecture Thursday, Nov 20th at 10:30am HW#13 due this Friday at 5 pm. Clicker.1 What is the center of mass of

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Exercise Torque Magnitude Ranking Task. Part A

Exercise Torque Magnitude Ranking Task. Part A Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0

More information

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics Holt Physics Chapter 8 Rotational Equilibrium and Dynamics Apply two equal and opposite forces acting at the center of mass of a stationary meter stick. F 1 F 2 F 1 =F 2 Does the meter stick move? F ext

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Worksheet for Exploration 10.1: Constant Angular Velocity Equation

Worksheet for Exploration 10.1: Constant Angular Velocity Equation Worksheet for Exploration 10.1: Constant Angular Velocity Equation By now you have seen the equation: θ = θ 0 + ω 0 *t. Perhaps you have even derived it for yourself. But what does it really mean for the

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy.

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy. Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

PHYS 111 HOMEWORK #11

PHYS 111 HOMEWORK #11 PHYS 111 HOMEWORK #11 Due date: You have a choice here. You can submit this assignment on Tuesday, December and receive a 0 % bonus, or you can submit this for normal credit on Thursday, 4 December. If

More information

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8 AP Physics Rotational Motion Introduction: Which moves with greater speed on a merry-go-round - a horse near the center or one near the outside? Your answer probably depends on whether you are considering

More information

3. ROTATIONAL MOTION

3. ROTATIONAL MOTION 3. ROTATONAL OTON. A circular disc of mass 0 kg and radius 0. m is set into rotation about an axis passing through its centre and perpendicular to its plane by applying torque 0 Nm. Calculate the angular

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque: Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Classical Mechanics Lecture 15

Classical Mechanics Lecture 15 Classical Mechanics Lecture 5 Today s Concepts: a) Parallel Axis Theorem b) Torque & Angular Acceleration Mechanics Lecture 5, Slide Unit 4 Main Points Mechanics Lecture 4, Slide Unit 4 Main Points Mechanics

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Physics 130: Questions to study for midterm #1 from Chapter 8

Physics 130: Questions to study for midterm #1 from Chapter 8 Physics 130: Questions to study for midterm #1 from Chapter 8 1. If the beaters on a mixer make 800 revolutions in 5 minutes, what is the average rotational speed of the beaters? a. 2.67 rev/min b. 16.8

More information

Angular Momentum L = I ω

Angular Momentum L = I ω Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics 8.3 The Equations of Rotational Kinematics 8.4 Angular Variables and Tangential Variables The relationship between the (tangential) arc length, s, at some radius, r, and

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it

More information

Rotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem

Rotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem Slide 1 / 34 Rotational ynamics l Slide 2 / 34 Moment of Inertia To determine the moment of inertia we divide the object into tiny masses of m i a distance r i from the center. is the sum of all the tiny

More information

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM

Angular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM Angular Momentum CONSERVATION OF ANGULAR MOMENTUM Objectives Calculate the angular momentum vector for a moving particle Calculate the angular momentum vector for a rotating rigid object where angular

More information

Class XI Chapter 7- System of Particles and Rotational Motion Physics

Class XI Chapter 7- System of Particles and Rotational Motion Physics Page 178 Question 7.1: Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie

More information

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: TOPIC : Rotational motion Date : Marks : 120 mks Time : ½ hr 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: a) zero velocity b) constantt velocity c)

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics 1 Linear Motion Rotational Motion all variables considered positive if motion in counterclockwise direction displacement velocity acceleration angular displacement (Δθ) angular velocity

More information