Course Name : Physics I Course # PHY 107

Size: px
Start display at page:

Download "Course Name : Physics I Course # PHY 107"

Transcription

1 Course Name : Physics I Course # PHY 107 Lecture-2 : Representation of Vectors and the Product Rules Abu Mohammad Khan Department of Mathematics and Physics North South University Copyright: It is unlawful to distribute or use this lecture material without the written permission from the author

2 Lecture-2: Topics to be covered 1. Unit vectors and their properties 2. Addition/Subtraction rules 3. Product rules for vectors: a) Dot/Scalar product b) Cross/Vector product 4. Polar form of product rules and the geometrical interpretations 5. Examples

3 Unit Vectors: Definition: any vector whose length or magnitude is one is called a unit vector. In Cartesian Coordinate system, the unit vector along the x-axis is denoted by ^i, and similarly ^j, are the unit vectors along the y- and z- axes. ^k In three dimensions, any vector is expressed as A=( A x, A y, A z )= A x ^i + A y ^j+ A z ^k The unit vectors are mutually perpendicular. For any two vectors, the addition/subtraction is given by A± B=( A x, A y, A z )±(B x, B y, B z )=( A x ±B x )^i +( A y ±B y ) ^j+( A z ±B z ) ^k The polar form of the sum can be obtained by Pythagorean Theorem.

4 Product Rules for Vectors: There are two rules for product between two vectors: 1) Dot or Scalar Product: It is defined for the unit vectors as ^i ^i=^j ^j= ^k ^k=1 unit vectors, ^i ^j=^j ^k=^k ^i=0. Orthogonality of vectors 2) Cross or Vector Product: It is defined for the unit vectors as ^i ^i=^j ^j=^k ^k=0, (Parallel Vector properties) ^i ^j= ^k, ^j ^k=^i, ^k ^i=^j, (The Right-hand Rule) ^j ^i= ^k, ^k ^j= ^i, ^i ^k= ^j (Note the change in direction)

5 In Cartesian form, these two products between any two vectors are very well known and easy to remember: The Dot product between any two vector is now given by A B=( A x ^i + A y ^j+ A z ^k) (Bx ^i +B y ^j+b z ^k)= A x B x + A y B y + A z B z Scalar The Cross product between any two vectors is now given by A B=^i ( A y B = z A z B y ) ^j( A x B z A z B x )+ ^k ( A x B y A y B x ) ^i ^j ^k A x A y A z quantity B x B y B z Vector

6 Polar form of the Dot product (Geometrical Interpretation) A B= A ( B cosθ )=( A cosθ ) B = A B cosθ. So, it is really a scalar multiplication (multiplying a number by another number), also known as scaling. The result is a scalar.

7 Polar Form of the Cross Product (Geometrical Interpretation) A B= A B sinθ ^n =( AB sinθ ) ^n =(Area of the Parallelogran) ^n Area of the Parallelogram= AB sinθ Note that: A surface or plane is a vector quantity The area is the magnitude of the surface and the direction of the surface or plane is given by ^n which is known as the normal unit vector.

8 Volume or Scalar Triple product: Area of the bottom face= A B = AB sin 90 = AB Volume of the parallelopiped = C ( A B) = C x C y C z A x A y A z B x B y B z Scalar quantity Using the properties of Determinant, it is to show that: A ( B C)= C ( A B)= B ( C A).

9 Example: Vectors C and D have magnitudes of 3 and 4 units respectively. What is the angle between the directions of C and D if the magnitude of the vector product is zero? 12 units? C D By definition of thr cross product : C D=CD sinθ Applying the given values, we obtain 0=(3)(4)sinθ θ =0,180 These are parallel or anti-parallel vectors. For the 2nd case, applying the given values, we obtain 12=(3)(4)sinθ θ =π /2 rad or 90 These are orthogonal or perpendicular vectors.

10 Example: The two vectors a and b in Figure have equal magnitudes of 10.0 m and the angles are θ 1 =30 O and θ 2 =105. O. Find the (a) x and (b) x components of their vector sum r, (c) the magnitude of r, and (d) the angle r makes with the positive direction of the x axis. Solution: r x =a x +b x =acosθ 1 +b cos(θ 1 +θ 2 ) =(10cos 30 O +10 cos135 O )m=1.59 m. r y =a y +b y =asinθ 1 +b sin(θ 1 +θ 2 ) =(10sin 30 O +13sin 105 O )m=12.1m. Therefore, by Pythagorean Theorem, r= r x 2 +r y 2 = (1.59) 2 +(12.1) 2 m=12.2 m. θ r =tan 1 (r y /r x )=tan 1 (12.1/1.59)=82.5 O.

11 Example: For the vectors in the figure below, with a = 4, b = 3, and c = 5, what are (a) the magnitude and (b) the direction of a x b, (c) the magnitude and (d) the direction of a x c, and (e) the magnitude and (f) the direction of b x c? (The z axis is not shown, but it is perpendicular to the page and outward). Solution: From the diagram, th egiven vectors are: a=4 ^i=(4,0)=(4,0 O ), b=3 ^j=(0,3)=(3,90 O ), c= 4 ^i 3 ^j=(4,3)=(5,217 O ). Firstly, a b=(4 ^i) (3 ^j)=12(^i ^j)=12 ^k. Therefore, (a) magnitude of a b=12 and (b) Direction of a b= ^k. Similarly, b c=(3 ^j) ( 4 ^i 3 ^j) =( 12 ^j ^i)+( 9 ^j j) = 12( ^k)+( 9) 0=12 ^k. Therefore, (e) magnitude of b c=12 and (f) Direction of a b= ^k.

Lecture 2: Vector-Vector Operations

Lecture 2: Vector-Vector Operations Lecture 2: Vector-Vector Operations Vector-Vector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information

the Further Mathematics network

the Further Mathematics network the Further Mathematics network www.fmnetwork.org.uk 1 the Further Mathematics network www.fmnetwork.org.uk Further Pure 3: Teaching Vector Geometry Let Maths take you Further 2 Overview Scalar and vector

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

MAC Module 5 Vectors in 2-Space and 3-Space II

MAC Module 5 Vectors in 2-Space and 3-Space II MAC 2103 Module 5 Vectors in 2-Space and 3-Space II 1 Learning Objectives Upon completing this module, you should be able to: 1. Determine the cross product of a vector in R 3. 2. Determine a scalar triple

More information

Section 10.7 The Cross Product

Section 10.7 The Cross Product 44 Section 10.7 The Cross Product Objective #0: Evaluating Determinants. Recall the following definition for determinants: Determinants a The determinant for matrix 1 b 1 is denoted as a 1 b 1 a b a b

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How a sinusoidal

More information

Section 13.4 The Cross Product

Section 13.4 The Cross Product Section 13.4 The Cross Product Multiplying Vectors 2 In this section we consider the more technical multiplication which can be defined on vectors in 3-space (but not vectors in 2-space). 1. Basic Definitions

More information

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction.

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction. EQT 101-Engineering Mathematics I Teaching Module CHAPTER 3 : VECTORS 3.1 Introduction Definition 3.1 A ector is a quantity that has both magnitude and direction. A ector is often represented by an arrow

More information

PDHonline Course G383 (2 PDH) Vector Analysis. Instructor: Mark A. Strain, P.E. PDH Online PDH Center

PDHonline Course G383 (2 PDH) Vector Analysis. Instructor: Mark A. Strain, P.E. PDH Online PDH Center PDHonline Course G383 (2 PDH) Vector Analysis Instructor: Mark A. Strain, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Chapter 8 Vectors and Scalars

Chapter 8 Vectors and Scalars Chapter 8 193 Vectors and Scalars Chapter 8 Vectors and Scalars 8.1 Introduction: In this chapter we shall use the ideas of the plane to develop a new mathematical concept, vector. If you have studied

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

Vector (cross) product *

Vector (cross) product * OpenStax-CNX module: m13603 1 Vector (cross) product * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract Vector multiplication

More information

Vector/Matrix operations. *Remember: All parts of HW 1 are due on 1/31 or 2/1

Vector/Matrix operations. *Remember: All parts of HW 1 are due on 1/31 or 2/1 Lecture 4: Topics: Linear Algebra II Vector/Matrix operations Homework: HW, Part *Remember: All parts of HW are due on / or / Solving Axb Row reduction method can be used Simple operations on equations

More information

1.3 LECTURE 3. Vector Product

1.3 LECTURE 3. Vector Product 12 CHAPTER 1. VECTOR ALGEBRA Example. Let L be a line x x 1 a = y y 1 b = z z 1 c passing through a point P 1 and parallel to the vector N = a i +b j +c k. The equation of the plane passing through the

More information

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two Course Name : Physics I Course # PHY 107 Lecture-5 : Newton s laws - Part Two Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is

More information

CHAPTER 10 VECTORS POINTS TO REMEMBER

CHAPTER 10 VECTORS POINTS TO REMEMBER For more important questions visit : www4onocom CHAPTER 10 VECTORS POINTS TO REMEMBER A quantity that has magnitude as well as direction is called a vector It is denoted by a directed line segment Two

More information

ECS 178 Course Notes QUATERNIONS

ECS 178 Course Notes QUATERNIONS ECS 178 Course Notes QUATERNIONS Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview The quaternion number system was discovered

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

Semester University of Sheffield. School of Mathematics and Statistics

Semester University of Sheffield. School of Mathematics and Statistics University of Sheffield School of Mathematics and Statistics MAS140: Mathematics (Chemical) MAS152: Civil Engineering Mathematics MAS152: Essential Mathematical Skills & Techniques MAS156: Mathematics

More information

BSc (Hons) in Computer Games Development. vi Calculate the components a, b and c of a non-zero vector that is orthogonal to

BSc (Hons) in Computer Games Development. vi Calculate the components a, b and c of a non-zero vector that is orthogonal to 1 APPLIED MATHEMATICS INSTRUCTIONS Full marks will be awarded for the correct solutions to ANY FIVE QUESTIONS. This paper will be marked out of a TOTAL MAXIMUM MARK OF 100. Credit will be given for clearly

More information

scalar and - vector - - presentation SCALAR AND VECTOR

scalar and - vector - - presentation SCALAR AND VECTOR http://www.slideshare.net/fikrifadzal/chapter-14scalar-and-vector- and presentation SCLR ND VECTOR Scalars Scalars are quantities which have magnitude without directioni Examples of scalars temperaturere

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Vector Algebra August 2013

Vector Algebra August 2013 Vector Algebra 12.1 12.2 28 August 2013 What is a Vector? A vector (denoted or v) is a mathematical object possessing both: direction and magnitude also called length (denoted ). Vectors are often represented

More information

Scalar & Vector tutorial

Scalar & Vector tutorial Scalar & Vector tutorial scalar vector only magnitude, no direction both magnitude and direction 1-dimensional measurement of quantity not 1-dimensional time, mass, volume, speed temperature and so on

More information

Chapter 3: 2D Kinematics Tuesday January 20th

Chapter 3: 2D Kinematics Tuesday January 20th Chapter 3: 2D Kinematics Tuesday January 20th Chapter 3: Vectors Review: Properties of vectors Review: Unit vectors Position and displacement Velocity and acceleration vectors Relative motion Constant

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

The geometry of least squares

The geometry of least squares The geometry of least squares We can think of a vector as a point in space, where the elements of the vector are the coordinates of the point. Consider for example, the following vector s: t = ( 4, 0),

More information

The Cross Product The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is

The Cross Product The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is The Cross Product 1-1-2018 The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is v w = (v 2 w 3 v 3 w 2 )î+(v 3 w 1 v 1 w 3 )ĵ+(v 1 w 2 v 2 w 1 )ˆk = v 1 v 2 v 3 w 1 w 2 w 3. Strictly speaking,

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

EGR2013 Tutorial 8. Linear Algebra. Powers of a Matrix and Matrix Polynomial

EGR2013 Tutorial 8. Linear Algebra. Powers of a Matrix and Matrix Polynomial EGR1 Tutorial 8 Linear Algebra Outline Powers of a Matrix and Matrix Polynomial Vector Algebra Vector Spaces Powers of a Matrix and Matrix Polynomial If A is a square matrix, then we define the nonnegative

More information

The Cross Product of Two Vectors

The Cross Product of Two Vectors The Cross roduct of Two Vectors In proving some statements involving surface integrals, there will be a need to approximate areas of segments of the surface by areas of parallelograms. Therefore it is

More information

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring /

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring / The Cross Product Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) The Cross Product Spring 2012 1 / 15 Introduction The cross product is the second multiplication operation between vectors we will

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

Module 02: Math Review

Module 02: Math Review Module 02: Math Review 1 Module 02: Math Review: Outline Vector Review (Dot, Cross Products) Review of 1D Calculus Scalar Functions in higher dimensions Vector Functions Differentials Purpose: Provide

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

University of Sheffield. PHY120 - Vectors. Dr Emiliano Cancellieri

University of Sheffield. PHY120 - Vectors. Dr Emiliano Cancellieri University of Sheffield PHY120 - Vectors Dr Emiliano Cancellieri October 14, 2015 Contents 1 Lecture 1 2 1.1 Basic concepts of vectors........................ 2 1.2 Cartesian components of vectors....................

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Vector Analysis 1.1 VECTOR ANALYSIS. A= Aa A. Aa, A direction of the vector A.

Vector Analysis 1.1 VECTOR ANALYSIS. A= Aa A. Aa, A direction of the vector A. 1 Vector nalsis 1.1 VECTR NYSIS Introduction In general, electromagnetic field problem involves three space variables, as a result of which the solutions tend to become complex. This can be overcome b

More information

Vectors. However, cartesian coordinates are really nothing more than a way to pinpoint an object s position in space

Vectors. However, cartesian coordinates are really nothing more than a way to pinpoint an object s position in space Vectors Definition of Scalars and Vectors - A quantity that requires both magnitude and direction for a complete description is called a vector quantity ex) force, velocity, displacement, position vector,

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

Vectors. Introduction

Vectors. Introduction Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this chapter Addition Subtraction Introduction

More information

Vectors Summary. can slide along the line of action. not restricted, defined by magnitude & direction but can be anywhere.

Vectors Summary. can slide along the line of action. not restricted, defined by magnitude & direction but can be anywhere. Vectors Summary A vector includes magnitude (size) and direction. Academic Skills Advice Types of vectors: Line vector: Free vector: Position vector: Unit vector (n ): can slide along the line of action.

More information

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality Worksheet for Lecture (due December 4) Name: Section 6 Inner product, length, and orthogonality u Definition Let u = u n product or dot product to be and v = v v n be vectors in R n We define their inner

More information

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector. Lecture 3: Vectors Any set of numbers that transform under a rotation the same way that a point in space does is called a vector i.e., A = λ A i ij j j In earlier courses, you may have learned that a vector

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below: Vectors Extending the concepts of kinematics into two and three dimensions, the idea of a vector becomes very useful. By definition, a vector is a quantity with both a magnitude and a spatial direction.

More information

Math 1272 Solutions for Fall 2005 Final Exam

Math 1272 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Exam ) This fraction appears in Problem 5 of the undated-? exam; a solution can be found in that solution set. (E) ) This integral appears in Problem 6 of the Fall 4 exam;

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =,

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =, SUPPLEMENT I 1. Vectors Definition. A vector is a quantity that has both a magnitude and a direction. A twodimensional vector is an ordered pair a = a 1, a 2 of real numbers. The numbers a 1 and a 2 are

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1

Exercise. Exercise 1.1. MA112 Section : Prepared by Dr.Archara Pacheenburawana 1 MA112 Section 750001: Prepared by Dr.Archara Pacheenburawana 1 Exercise Exercise 1.1 1 8 Find the vertex, focus, and directrix of the parabola and sketch its graph. 1. x = 2y 2 2. 4y +x 2 = 0 3. 4x 2 =

More information

Math Review 1: Vectors

Math Review 1: Vectors Math Review 1: Vectors Coordinate System Coordinate system: used to describe the position of a point in space and consists of 1. An origin as the reference point 2. A set of coordinate axes with scales

More information

Complex Numbers and Quaternions for Calc III

Complex Numbers and Quaternions for Calc III Complex Numbers and Quaternions for Calc III Taylor Dupuy September, 009 Contents 1 Introduction 1 Two Ways of Looking at Complex Numbers 1 3 Geometry of Complex Numbers 4 Quaternions 5 4.1 Connection

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar J. Peraire Dynamics 16.07 Fall 2004 Version 1.1 REVIEW - Vectors By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making

More information

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1)

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Math 20C Multivariable Calculus Lecture 1 1 Coordinates in space Slide 1 Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Vector calculus studies derivatives and

More information

Notes on multivariable calculus

Notes on multivariable calculus Notes on multivariable calculus Jonathan Wise February 2, 2010 1 Review of trigonometry Trigonometry is essentially the study of the relationship between polar coordinates and Cartesian coordinates in

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

Coordinates and vectors. Background mathematics review

Coordinates and vectors. Background mathematics review Coordinates and vectors Background mathematics review David Miller Coordinates and vectors Coordinate axes and vectors Background mathematics review David Miller y Coordinate axes and vectors z x Ordinary

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering -2016 Engineering Mechanics Statics 3. Force Vectors; Position Vector & Dot product Position Vector A position vector is a fixed vector that locates a point in space relative

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

MAT01A1: Complex Numbers (Appendix H)

MAT01A1: Complex Numbers (Appendix H) MAT01A1: Complex Numbers (Appendix H) Dr Craig 14 February 2018 Announcements: e-quiz 1 is live. Deadline is Wed 21 Feb at 23h59. e-quiz 2 (App. A, D, E, H) opens tonight at 19h00. Deadline is Thu 22 Feb

More information

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension Course Name : Physics I Course # PHY 107 Note - 3 : Motion in One Dimension Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is unlawful

More information

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis.

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis. Questions on Vectors and Tensors 1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis. Compute 1. a. 2. The angle

More information

GEOMETRY AND VECTORS

GEOMETRY AND VECTORS GEOMETRY AND VECTORS Distinguishing Between Points in Space One Approach Names: ( Fred, Steve, Alice...) Problem: distance & direction must be defined point-by-point More elegant take advantage of geometry

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

VECTORS IN COMPONENT FORM

VECTORS IN COMPONENT FORM VECTORS IN COMPONENT FORM In Cartesian coordinates any D vector a can be written as a = a x i + a y j + a z k a x a y a x a y a z a z where i, j and k are unit vectors in x, y and z directions. i = j =

More information

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications.

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications. The Cross Product In this section, we will learn about: Cross products of vectors and their applications. THE CROSS PRODUCT The cross product a x b of two vectors a and b, unlike the dot product, is a

More information

Vectors, dot product, and cross product

Vectors, dot product, and cross product MTH 201 Multivariable calculus and differential equations Practice problems Vectors, dot product, and cross product 1. Find the component form and length of vector P Q with the following initial point

More information

Last week we presented the following expression for the angles between two vectors u and v in R n ( ) θ = cos 1 u v

Last week we presented the following expression for the angles between two vectors u and v in R n ( ) θ = cos 1 u v Orthogonality (I) Last week we presented the following expression for the angles between two vectors u and v in R n ( ) θ = cos 1 u v u v which brings us to the fact that θ = π/2 u v = 0. Definition (Orthogonality).

More information

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units. Scalar Example Speed Distance Age Heat Number

More information

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored.

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored. Chapter 3 Vectors Name: Lab Partner: Section: 3.1 Purpose In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored. 3.2 Introduction A vector is

More information

Chapter 3. The Scalar Product. 3.1 The scalar product using coördinates

Chapter 3. The Scalar Product. 3.1 The scalar product using coördinates Chapter The Scalar Product The scalar product is a way of multiplying two vectors to produce a scalar (real number) Let u and v be nonzero vectors represented by AB and AC C v A θ u B We define the angle

More information

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions?

Lecture Wise Questions from 23 to 45 By Virtualians.pk. Q105. What is the impact of double integration in finding out the area and volume of Regions? Lecture Wise Questions from 23 to 45 By Virtualians.pk Q105. What is the impact of double integration in finding out the area and volume of Regions? Ans: It has very important contribution in finding the

More information

Vectors and Matrices

Vectors and Matrices Vectors and Matrices Scalars We often employ a single number to represent quantities that we use in our daily lives such as weight, height etc. The magnitude of this number depends on our age and whether

More information

VECTORS, TENSORS AND INDEX NOTATION

VECTORS, TENSORS AND INDEX NOTATION VECTORS, TENSORS AND INDEX NOTATION Enrico Nobile Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste, 34127 TRIESTE March 5, 2018 Vectors & Tensors, E. Nobile March 5, 2018 1 /

More information

Lecture 3- Vectors Chapter 3

Lecture 3- Vectors Chapter 3 1 / 36 Lecture 3- Vectors Chapter 3 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 21 th, 2018 2 / 36 Course Reminders The course

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry So far, all our calculus has been two-dimensional, involving only x and y. Nature is threedimensional,

More information

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II OLLSCOIL N heirenn M NUD THE NTIONL UNIVERSITY OF IRELND MYNOOTH MTHEMTICL PHYSICS EE112 Engineering Mathematics II Prof. D. M. Heffernan and Mr. S. Pouryahya 1 5 Scalars and Vectors 5.1 The Scalar Quantities

More information

Lecture 3- Vectors Chapter 3

Lecture 3- Vectors Chapter 3 1 / 36 Lecture 3- Vectors Chapter 3 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 21 th, 2018 2 / 36 Course Reminders The course

More information

VECTORS IN 2-SPACE AND 3-SPACE GEOMETRIC VECTORS VECTORS OPERATIONS DOT PRODUCT; PROJECTIONS CROSS PRODUCT

VECTORS IN 2-SPACE AND 3-SPACE GEOMETRIC VECTORS VECTORS OPERATIONS DOT PRODUCT; PROJECTIONS CROSS PRODUCT VECTORS IN -SPACE AND 3-SPACE GEOMETRIC VECTORS VECTORS OPERATIONS DOT PRODUCT; PROJECTIONS CROSS PRODUCT GEOMETRIC VECTORS Vectors can represented geometrically as directed line segments or arrows in

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

Math 276, Spring 2007 Additional Notes on Vectors

Math 276, Spring 2007 Additional Notes on Vectors Math 276, Spring 2007 Additional Notes on Vectors 1.1. Real Vectors. 1. Scalar Products If x = (x 1,..., x n ) is a vector in R n then the length of x is x = x 2 1 + + x2 n. We sometimes use the notation

More information

If the pull is downward (Fig. 1), we want C to point into the page. If the pull is upward (Fig. 2), we want C to point out of the page.

If the pull is downward (Fig. 1), we want C to point into the page. If the pull is upward (Fig. 2), we want C to point out of the page. 11.5 Cross Product Contemporary Calculus 1 11.5 CROSS PRODUCT This section is the final one about the arithmetic of vectors, and it introduces a second type of vector vector multiplication called the cross

More information

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk Vector Operations Vector Operations ME 202 Multiplication by a scalar Addition/subtraction Scalar multiplication (dot product) Vector multiplication (cross product) 1 2 Graphical Operations Component Operations

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

1.1 Bound and Free Vectors. 1.2 Vector Operations

1.1 Bound and Free Vectors. 1.2 Vector Operations 1 Vectors Vectors are used when both the magnitude and the direction of some physical quantity are required. Examples of such quantities are velocity, acceleration, force, electric and magnetic fields.

More information

Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 3 VECTORS

Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 3 VECTORS CS131 Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 3 VECTRS Vectors in two and three dimensional space are defined to be members of the sets R 2 and R 3 defined by: R 2 = {(x,

More information

Understanding Quaternions: Rotations, Reflections, and Perspective Projections. Ron Goldman Department of Computer Science Rice University

Understanding Quaternions: Rotations, Reflections, and Perspective Projections. Ron Goldman Department of Computer Science Rice University Understanding Quaternions: Rotations, Reflections, and Perspective Projections Ron Goldman Department of Computer Science Rice University The invention of the calculus of quaternions is a step towards

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information