Summary Fluids. Density (r), pressure (p),

Size: px
Start display at page:

Download "Summary Fluids. Density (r), pressure (p),"

Transcription

1 Density (r), pressure (p), Summary Fluids Pressure transmitted uniformly and isotropically (all directions): Paschal s Principle Pressure vs depth for static liquid Bouyancy: upward force = weight of displaced liquid (Archimedes) Fluids in motion for ideal fluids (laminar, incompressible, nonviscous, ) Equation of continuity (rva=constant) Work-energy requirement (p + rv 2 /2 + rgy = constant): Bernouli s equation Implications (more today) And then Chapt. 19 Temperature, Heat, and the beginnings of Thermodynamics slide 1

2 review Hydrodynamic Relations Av = Av Equation of Continuity p + rv + rgy = p + rv + rgy Bernouli's Equation A v p < A 2 1 > v 2 1 < p 2 1 Venturi tube demo Air flow demo slide 2

3 Sample Problem 15-9 p + rv + rgy = p + rv + rgy Find velocity of water when it exits tank Top of tank <=> Hole in tank p gh p v r = r + 0 v 2gh Note same v as if it were dropped from height h = Same pressure - Cons Energy slide 3

4 Viscosity and geometry limit utility of Bernouli s equation p + rv + rgy = p + rv + rgy Bernouli's Equation v? 2 gh Viscosity measures friction between fluid and pipe, nozzle, Vertical nozzle: doesn t quite rise to ideal height Clearly oil (more viscosity) rises even less But Bernouli explains a lot: Pix shows real case for water and nozzle slide 4

5 b a How airplane wings lift p + rv + rgy = p + rv + rgy p - p = r( v -v ) b a F = ( p - p ) A b 2 a a a b b Potential energies ( y ) difference negligible Streamline flow requires time to travel a-> a be the same as time for b -> b For a the distance traveled is larger, so velocity must be higher (v a >v b ) From Bernouli s equation: p a < p b slide 5

6 House Plumbing Why have elbow or trap? needs water in trap to work properly (acceptably) Having only air between B and A produces smelly bathrooms due to the main sewer line Plumbing in left figure doesn t work: water in trap gets sucked out when large volume of water flows at A to main sewer (eg, someone upstream showers) so that pressure at A lowered Plumbing in right figure works: the way real house plumbing is done slide 6

7 1 Blood Flow in Arteries 2 A v p < A 2 1 > v 2 1 < p 2 1 Av = Note opposite happens when artery inflates = embolism Av p + rv + rgy = p + rv + rgy Plaque buildup in artery (arteriosclerosis) means (eqn of continuity) speed in blockage higher than in unblocked artery Speed higher in blockage means pressure is lower there (Bernouli eqn) Lower pressure makes artery more likely to collapse slide 7

8 Throwing Curves p + rv + rgy = p + rv + rgy w Left: no spin, thrown ball flies straight Right: ball spins (cc-wise) Viscosity makes air flow faster around side 2 than side 1 2 v p > v 2 1 < p 2 1 Bernouli s eqn: p 2 < p 1 Net force (side 2 side 1) produces curve ball Also works for drop ball slide 8

9 Heat and Temperature topics (begins in Chapter 19) Temperature vs Heat Measuring temperature Temperature scales and absolute zero Thermal expansion today Heat capacity (absorption) Specific heat phase transitions Heat and Work 1st law of thermodynamics heat transfer slide 9

10 Heat and Temperature Rely initially on your intuitive sense + temperature is a property of a body reflecting our sense of hot and cold heat is a form of energy Intuition: a body with high temperature has more heat than it would have at low temperature Temperature initially measured empirically to conform to this intutition Bodies at the same temperature are in thermal equilibrium Thermal equilibrium bodies in contact ultimately come to the same temperature 19 th century brought understanding that temperature is a measure of the average random speed of molecules slide 10

11 Joule s Experiment 1843 James Prescott Joule showed that a specific amount of mechanical energy reproducibly raised the temperature of a material Demonstrated that lost mechanical energy (in closed system) can be accounted as Heat: the Conservation of Total Energy = First Law of Thermodynamics 1 calorie = J raises 1 gram of water from 14.5 o C to 15.5 o C Q Q CT D cmt D C = heat capacity c = specific heat Will return to this slide 11

12 Heat energy moves Heat energy (Q ) always flows from hot body to cold body aside: we will consider this later as a statement, or consequence, of the Second Law of Thermodynamics Like other forms of energy (kinetic, potential, ) Q is measured in Joules also calories, BTU,... Read text! In upper and lower illustration to left, the system and environment Will initially exchange heat energy Then rate of exchange will slow down as temperatures get closer Both systems will ultimately arrive at the same temperature, and then Q=0 (as in middle figure) Now we have two laws of thermodynamics First discuss ways of measuring temperature and effects of temperature on materials slide 12

13 Familiar Temperature Measures Rely on (for now) empirical fact Most materials expand when temperature increases Old fashioned glass thermometer, with bulb and capillary containing fluid If temperature increases, fluid expands into capillary Scale provides measure Capillary where fluid expands to Large volume bulb filled with fluid slide 13

14 Gas Thermometer Fixed amount of gas and fixed volume of bulb ~1800: find empirically pressure and temperature proportional to each other T p Gay-Lussac Law Will return to this and other ideal gas laws later slide 14

15 Temperature Scales set with Water (freeze and boil) Define temperature scales Gas thermometer can measure temperature of bath by extrapolating p (or V) of gas to zero freezing water o C o F K T T F C 9 = TC = T - K slide 15

16 Gas Thermometer and Absolute Zero Measure temperature and pressure over range where it remains a gas Most cases, a phase change will occur find empirically pressure and temperature proportional to each other (Gay-Lussac) T = Cp extrapolate to lower temperatures all gases: extrapolation intercepts p=0 at T 0 = o C = absolute zero slide 16

17 Real Temperatures and Life Temperature (we now know and will soon demonstrate) is a measure of the average random motion (kinetic energy) of molecules No temperature can be lower than absolute zero Absolute zero is where all molecular motion stops life life slide 17

18 Temperature Scales and Expansion Three temperature scales Mass of any system stays constant (until Relativitistic Quant Mech) Empirically as temperature increases, most materials increase their volume Coefficient of linear expansion, a (small) Typically ~10-6 to 10-3 ( 0 C) -1 D L = La DT slide 18

19 Area and Volume Changes How much do circle, hole, and ruler change in area? D A Ag DT A +D A = ( L +D L )( L +DL ) = L ( 1 + ad TL ) ( 1 + adt) x» A( 1 + 2aDT) D A = A( 2a ) DT g = 2a x x x x y Temperature increase causes most material volumes to increase = density decrease How much do solids change in volume? D V V b DT b = 3a slide 19

20 Use Material Expansion for Thermometers See table for typical expansions Note: fluid in mercury thermometer expands more than the glass envelope Liquids typically expand more than solids Gases (fixed pressure) typically expand more than liquids Different gases have similar values see later slide 20

21 Insight into Expansion with Temperature Molecular explanation: as temperature of solid increases, molecules move faster around average locations, but further from each other (expansion) High enough temp (kinetic energy), bonds holding atoms in lattice break (liquid), but forces still hold atoms nearby (not fixed average location like solid) and more temp makes for greater separations (expansion) Raise temp even higher, bonds completely break --- gas --- more temp, more energy (expansion) PHASE CHANGES Solid Liquid Gas slide 21

22 Heat and Temperature Remember to leave HW8 in box So Far Temperature vs Heat Measuring temperature Temperature scales and absolute zero Thermal expansion To Come Heat capacity (absorption) Specific heat phase transitions Heat and Work Develop 1st law of thermodynamics heat transfer conduction convection radiation Kinetic Theory of Gases slide 22

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

More information

Work by Friction. A box slides 10 m across a surface. A frictional force of 20 N is acting on the box.

Work by Friction. A box slides 10 m across a surface. A frictional force of 20 N is acting on the box. Work by Friction A box slides 10 m across a surface. A frictional force of 20 N is acting on the box. What is the work done by friction? What happened to this energy? Work by Friction A box slides 10 m

More information

Fluids II (Fluids in motion)

Fluids II (Fluids in motion) hys0 Lectures 6-7 Fluids II (Fluids in motion) Key points: Bernoulli s Equation oiseuille s Law Ref: 0-8,9,0,,. age 0-8 Fluids in Motion; Flow Rate and the Equation of Continuity If the flow of a fluid

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology Agenda Today: HW Quiz, Thermal physics (i.e., heat) Thursday: Finish thermal physics, atomic structure (lots of review from chemistry!) Chapter 10, Problem 26 A boy reaches out of a window and tosses a

More information

Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat

Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat SPH3U Thermal Physics electrons and holes in semiconductors An Introductory ourse in Thermodynamics converting energy into work magnetism thin films and surface chemistry thermal radiation (global warming)

More information

Zeroth Law of Thermodynamics

Zeroth Law of Thermodynamics Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.)

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) (Syllabus) Temperature Thermal Expansion Temperature and Heat Heat and Work The first Law Heat Transfer Temperature Thermodynamics:

More information

Chapter 7 Notes. Matter is made of tiny particles in constant motion

Chapter 7 Notes. Matter is made of tiny particles in constant motion Chapter 7 Notes Section 7.1 Matter is made of tiny particles in constant motion Atomic Theory Greek philosophers (430 BC ) Democritus and Leucippus proposed that matter is made of tiny particles called

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

Chapter 18. Temperature, Heat, and the First Law of Thermodynamics Temperature

Chapter 18. Temperature, Heat, and the First Law of Thermodynamics Temperature Chapter 18 Temperature, Heat, and the First Law of Thermodynamics 18.2 Temperature 18.3: The Zeroth aw of Thermodynamics If bodies A and B are each in thermal equilibrium with a third body T, then A and

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Heat & Temperature. What are heat & temperature and how do they relate?

Heat & Temperature. What are heat & temperature and how do they relate? Heat & Temperature What are heat & temperature and how do they relate? SPS7. Students will relate transformations and flow of energy within a system. a. Identify energy transformations within a system

More information

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009 Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

More information

Recap: Static Fluids

Recap: Static Fluids Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

More information

Fluids, Continuity, and Bernouli

Fluids, Continuity, and Bernouli Fluids, Continuity, and Bernouli Announcements: Exam Tomorrow at 7:30pm in same rooms as before. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Clicker question 1 A satellite, mass m,

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Thermodynamics and Statistical Physics Key contents: Temperature scales Thermal expansion Temperature and heat, specific heat Heat and

More information

Heat and Temperature

Heat and Temperature Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-3: LUIDS Essential Idea: luids cannot be modelled as point particles. Their distinguishable response to compression from solids creates a set

More information

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the

More information

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

More information

Fluid dynamics - Equation of. continuity and Bernoulli s principle.

Fluid dynamics - Equation of. continuity and Bernoulli s principle. Fluid statics Fluid dynamics - Equation of What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle continuity and Bernoulli s principle. Lecture 4 Dr

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade) Reminder: HW #0 due Thursday, Dec, :59 p.m. (last HW that contributes to the final grade) Recitation Quiz # tomorrow (last Recitation Quiz) Formula Sheet for Final Exam posted on Bb Last Time: Pressure

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Unit 5 Thermodynamics

Unit 5 Thermodynamics Unit 5 Thermodynamics Unit 13: Heat and Temperature Unit 14: Thermal Expansion /Heat Exchange/ Change of Phase Test: Units 13-14 Thermal Energy The total kinetic and potential energy of all the molecules

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:

More information

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

More information

Thermodynamics and States of Matter

Thermodynamics and States of Matter Thermodynamics and States of Matter There are three states (also called phases) ) of matter. The picture to the side represents the same chemical substance, just in different states. There are three states

More information

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009 Physics 111 Lecture 30 (Walker: 15.6-7) Fluid Dynamics April 15, 2009 Midterm #2 - Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8)

More information

Chapter 4: Heat Capacity and Heat Transfer

Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer 4.1 Material Structure 4.2 Temperature and Material Properties 4.3 Heating

More information

Matter and Thermal Energy

Matter and Thermal Energy Section States of Matter Can you identify the states of matter present in the photo shown? Kinetic Theory The kinetic theory is an explanation of how particles in matter behave. Kinetic Theory The three

More information

Chapter 7.1. States of Matter

Chapter 7.1. States of Matter Chapter 7.1 States of Matter In this chapter... we will learn about matter and different states of matter, many of which we are already familiar with! Learning about Kinetic Molecular Theory will help

More information

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules.

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Thermal energy Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Heat is the transfer of thermal energy between substances. Until the

More information

High temperature He is hot

High temperature He is hot Lecture 9 What is Temperature and Heat? High temperature He is hot Some important definitions * Two objects are in Thermal contact with each other if energy can be exchanged between them. Thermal equilibrium

More information

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury? Q15 Is it possible for a solid metal ball to float in mercury? A). Yes. B). No. The upward force is the weight of liquid displaced and the downward force is the weight of the ball. If the density of the

More information

Thermal Process Control Lap 4 Thermal Energy. Notes:

Thermal Process Control Lap 4 Thermal Energy. Notes: Thermal Process Control Lap 4 Thermal Energy Notes: 1) Temperature Measurement a) Define temperature i) A measure of the amount of heat contained in a solid, liquid, or gas ii) Result of molecular motion

More information

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE 9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m

More information

Physics 207 Lecture 22. Lecture 22

Physics 207 Lecture 22. Lecture 22 Goals: Lecture Chapter 15 Use an ideal-fluid model to study fluid flow. Investigate the elastic deformation of solids and liquids Chapter 16 Recognize and use the state variables that characterize macroscopic

More information

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE? How can a plane fly? How does a perfume spray work? What is the venturi effect? Why does a

More information

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase Heat Section 1 Preview Section 1 Temperature and Thermal Equilibrium Section 2 Defining Heat Section 3 Changes in Temperature and Phase Heat Section 1 TEKS The student is expected to: 6E describe how the

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan. Heat

Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan. Heat Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan Heat Nature of Heat: Heat is the transfer of energy (every in transit) from one body to another due to the temperature difference

More information

Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

More information

Lecture 22. Temperature and Heat

Lecture 22. Temperature and Heat Lecture 22 Temperature and Heat Today s Topics: 0 th Law of Thermodynamics Temperature Scales Thermometers Thermal Expansion Heat, Internal Energy and Work Heat Transfer Temperature and the Zeroth Law

More information

Recap: Bernoulli s Principle

Recap: Bernoulli s Principle Recap: Bernoulli s Principle The sum of pressure plus kinetic energy per unit volume of a flowing fluid is constant. P + ½ρv 2 = constant pressure K.E. per unit volume (ρ = mass vol ) Result: Relates pressure

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

Fluids Bernoulli s equation

Fluids Bernoulli s equation Chapter 11 Fluids Bernoulli s equation 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work yields a

More information

UNIT 1 - FORCE TEMPERATURE IN THERMAL SYSTEMS ACTIVITY LESSON DESCRIPTION SCORE/POINTS

UNIT 1 - FORCE TEMPERATURE IN THERMAL SYSTEMS ACTIVITY LESSON DESCRIPTION SCORE/POINTS NAME PERIOD UNIT 1 - FORCE TEMPERATURE IN THERMAL SYSTEMS ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. TX PP. 64-76 /46 2. WS READING GUIDE CONCEPT APPLICATION /21 3. MS MATH PRACTICE (Heat formula) /20

More information

Quest Chapter 21. More heat energy means more of what type of energy? Does the mass change? So, what must change? What is the same in both containers?

Quest Chapter 21. More heat energy means more of what type of energy? Does the mass change? So, what must change? What is the same in both containers? 1 When a container of gas is heated, what happens to the average speed of its molecules? 1. Additional information is needed. 2. increases 3. doesn t change 4. decreases 2 (part 1 of 3) Two glasses of

More information

Fluid flow Pressure Bernoulli Principle Surface Tension

Fluid flow Pressure Bernoulli Principle Surface Tension Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Depends on the radius of the pipe. example: Low speed Large flow

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

T (K or C) Q (quant.) Phase change. (quant.) C T. Temperature change 14-0

T (K or C) Q (quant.) Phase change. (quant.) C T. Temperature change 14-0 T (K or C) G L S Q Q (quant.) Phase change Q (quant.) C T Temperature change 14-0 Temperature How do we keep track of energy when it is distributed over many, many [~10 23 ] objects that are constantly

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Physics 101: Lecture 18 Fluids II

Physics 101: Lecture 18 Fluids II Exam III Physics 101: Lecture 18 Fluids II Textbook Sections 9.6 9.8 Physics 101: Lecture 18, Pg 1 Review Static Fluids Pressure is force exerted by molecules bouncing off container P = F/A Gravity/weight

More information

3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes

3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes Section 3.3 Phase Changes 3.3 Phase Changes Solid, liquid and gas During a phase change, a substance rearranges the order of its particles (atoms or molecules). Examples of phase change include melting

More information

Fluid flow Pressure Bernoulli Principle Surface Tension

Fluid flow Pressure Bernoulli Principle Surface Tension Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension A v L A is the area Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Relating: Fluid flow rate to Average speed

More information

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density

More information

Archimedes Principle

Archimedes Principle Archimedes Principle applies in air the more air an object displaces, the greater the buoyant force on it if an object displaces its weight, it hovers at a constant altitude if an object displaces less

More information

Heat and Temperature

Heat and Temperature Chapter 4 Heat Heat and Temperature Heat is a form of energy Heat is the energy of random motion of molecules constituting the body. It flows from a hot body to a cold body. Unit of heat is joule (J) and

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

This Week. 6/2/2015 Physics 214 Summer

This Week. 6/2/2015 Physics 214 Summer This Week Heat and Temperature Water and Ice Our world would be different if water didn t expand Engines We can t use all the energy! Why is a diesel engine more efficient? Geysers: You have to be faithful

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

If we change the quantity causing the deformation from force to force per unit area, we get a relation that does not depend on area.

If we change the quantity causing the deformation from force to force per unit area, we get a relation that does not depend on area. 2/24 Chapter 12 Solids Recall the rigid body model that we used when discussing rotation. A rigid body is composed of a particles constrained to maintain the same distances from and orientations relative

More information

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!!

Temp vs. Heat. Absolute Temperature Scales. Common Temperature Scales. Thermal Energy. Heat and Temperature are not the same!! Thermal Energy Heat and Temperature are not the same!! Cold is the absence of heat, not an energy Same concept as light/dark Cold can t come in, heat flows out Heat flows from High Temp Low Temp Temp vs.

More information

Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

More information

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams Dr.Salwa Alsaleh Salwams@ksu.edu.sa fac.ksu.edu.sa/salwams What is Temperature? It is the measurement of the AVERAGE kinetic energy of the particles of matter. Temperature We associate the concept of temperature

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. ( Heat, Temperature ) is a form of energy that flows from a hot body to a cold body. 2. The SI unit for ( heat, temperature) is Joule,

More information

EXPERIMENT 6: ABSOLUTE ZERO

EXPERIMENT 6: ABSOLUTE ZERO LAB SECTION: NAME: EXPERIMENT 6: ABSOLUTE ZERO Introduction: In this lab, you will use the relationship between temperature and volume for a gaseous substance (we will use air) to determine the temperature

More information

Temperature and Heat. Prof. Yury Kolomensky Apr 20, 2007

Temperature and Heat. Prof. Yury Kolomensky Apr 20, 2007 Temperature and Heat Prof. Yury Kolomensky Apr 20, 2007 From Mechanics to Applications Mechanics: behavior of systems of few bodies Kinematics: motion vs time Translational and rotational Dynamics: Newton

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Chapter 14. Fluid Mechanics

Chapter 14. Fluid Mechanics Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Chapter 1 Heating Processes

Chapter 1 Heating Processes Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s) Fluid Mechanics Flow Rate and Continuity Equation If you have a pipe that is flowing a liquid you will have a flow rate. The flow rate is the volume of fluid that passes any particular point per unit of

More information

HEAT AND TEMPERATURE Vikasana-Bridge Course 2012

HEAT AND TEMPERATURE Vikasana-Bridge Course 2012 HEAT AND TEMPERATURE TOPICS Introduction Effects of heat Specific heat Basics of thermodynamics Introduction Heat may be defined as energy in transit from a high temperature region to a lower temperature

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

Physical Science. Thermal Energy & Heat

Physical Science. Thermal Energy & Heat Physical Science Thermal Energy & Heat Sometimes called internal energy Depends on the object's mass, temperature, and phase (solid, liquid, gas) TOTAL potential and kinetic energy of all the particles

More information

There are three phases of matter: Solid, liquid and gas

There are three phases of matter: Solid, liquid and gas FLUIDS: Gases and Liquids Chapter 4 of text There are three phases of matter: Solid, liquid and gas Solids: Have form, constituents ( atoms and molecules) are in fixed positions (though they can vibrate

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat 16-1 Temperature and the Zeroth Law of Thermodynamics Definition of heat: Heat is the energy transferred between objects because of a temperature difference. Objects are

More information

Recap. There are 3 different temperature scales: Celsius, Kelvin, and Fahrenheit

Recap. There are 3 different temperature scales: Celsius, Kelvin, and Fahrenheit Recap Temperature, T, is related to the average kinetic energy of each atom/molecule the given material consists of: The ideal gas law relates pressure to density and temperature: There are 3 different

More information

Chapter: States of Matter

Chapter: States of Matter Table of Contents Chapter: States of Matter Section 1: Matter Section 2: Changes of State Section 3: Behavior of Fluids 1 What is matter? Matter is anything that takes up space and has mass. Matter Matter

More information

Physical Science Chapter 5 Cont2. Temperature & Heat

Physical Science Chapter 5 Cont2. Temperature & Heat Physical Science Chapter 5 Cont2 Temperature & Heat What are we going to study? Temperature Heat Specific Heat and Latent Heat Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics

More information

04/01/1998 Developments in DP Flowmeters By Jesse Yoder

04/01/1998 Developments in DP Flowmeters By Jesse Yoder 04/01/1998 Developments in DP Flowmeters By Jesse Yoder Developments in DP Flowmeters Improvements in Primary Elements Are Keeping Differential Pressure Flowmeters the First Choice for Many Process Applications

More information

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v)

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v) PHYSICS 220 Lecture 22 Temperature and Ideal Gas Moving Observer and Source Combine: f o = f s (1-v o /v) / (1-v s /v) A: You are driving along the highway at 65 mph, and behind you a police car, also

More information

Introduction to Fluid Flow

Introduction to Fluid Flow Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection, and Radiation 16-1

More information

Chapter 17. Temperature. Dr. Armen Kocharian

Chapter 17. Temperature. Dr. Armen Kocharian Chapter 17 Temperature Dr. Armen Kocharian Temperature We associate the concept of temperature with how hot or cold an objects feels Our senses provide us with a qualitative indication of temperature Our

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information