On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials

Size: px
Start display at page:

Download "On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials"

Transcription

1 On the Inefficiency of the Adaptive Design for Monitoring Clinical Trials Anastasios A. Tsiatis and Cyrus Mehta tsiatis/ Inefficiency of Adaptive Designs 1

2 OUTLINE OF TOPICS Hypothesis testing problem Fixed sample vs group-sequential vs adaptive test A general framework for considering both adaptive and traditional tests Definition of Optimal sequential tests Generalization of the Neyman-Pearson Theorem Why adaptive tests are inefficient Example Concluding remarks Inefficiency of Adaptive Designs 2

3 Hypothesis Testing Problem Interest will focus on testing for treatment difference Let Z 1,...,Z N be iid p(z,δ), where δ denotes treatment difference For example, Z i = X i Y i, where X i denotes response for ith individual on treatment A, and Y i denotes response for ith individual on treatment B X i N(µ A,σ 2 =1/2) Y i N(µ B,σ 2 =1/2) Hence Z i N(δ, 1), where δ = µ A µ B Problem: Test H 0 : δ 0 vs. H A : δ>0 Inefficiency of Adaptive Designs 3

4 Fixed Sample Test For fixed sample size N, the Neyman-Pearson theorem states that among all level α tests, the test which maximizes power against the alternative δ>0 is given by the rejection region R opt = {z 1,...,z N : N i=1 where C is chosen so that P 0 (R opt )=α p(z i,δ) p(z i, 0) >C}, In our example, this is equivalent to rejecting H 0 when S N N z α, where S N = N i=1 Z i N = (z α + z β ) 2 δa 2, where δ A denotes the clinically important difference that we wish to detect with power 1 β Inefficiency of Adaptive Designs 4

5 Drawbacks Doesn t allow for the possibility of stopping early to reject or accept the null hypothesis Need to specify clinically important alternative Inefficiency of Adaptive Designs 5

6 Group-Sequential Tests Interim analyses are conducted after n 1 <...<n K = N observations with the possibility of stopping the trial at each analysis Stop and reject H 0 after n j observations if S nj C ju or accept H 0 if S nj C jl,s nj = n j i=1 Z i C jl <C ju,j=1,...,k 1 C KL = C KU The boundaries C jl,c ju,j =1,...,K and the maximum sample size N are chosen so that the test has specified level α and power 1 β to detect the clinically important difference δ A Inefficiency of Adaptive Designs 6

7 Traditional designs for clinical trials dictate that we specify the clinically important treatment difference that needs to be detected with specified power using a test at a specified level of significance The difficulty is that often we don t have a good idea on what constitutes a clinically important difference Adaptive designs, which estimate the treatment difference using the observed data and adaptively change the design according to the estimated treatment difference, have a great deal of appeal Inefficiency of Adaptive Designs 7

8 Example of an Adaptive Design Choose initial alternative δ A =.466 We adapt a two-stage design (n 1 =25,n 2 = 50) A standard two stage group-sequential test would be After n 1 = 25 observations stop to reject H 0 if S 25 > (z =2.77) accept H 0 if S 25 < 2.19 (z =0.44) After n 2 = 50 observations (final analysis) reject H 0 if S 50 > (z =1.96) accept H 0 otherwise This test has level.025 and 90% power to detect δ =.466 Inefficiency of Adaptive Designs 8

9 Adaptation If 2.19 S estimate ˆδ = S 25 /25 take ˆn 2 2n 1 (δ A /ˆδ) 2 to correspond roughly to the sample size needed to detect the difference ˆδ with 90% power at the.025 level of significance In our example we take ˆn 2 to be a multiple of n 1 =25uptoa maximum of N = 250. Note that ˆn 2 is random and a function of S n1 To maintain type I error we reject when S 25 + ( ) 1/2 25 (Sˆn2 ˆn 2 25 S 25) > Inefficiency of Adaptive Designs 9

10 Some Notation Let N denote maximum sample size to be considered Let Z N denote the sample space, i.e. all realizations {z 1,...,z N } Let Z j denote the sample space restricted to the first j observations in our sample i.e. all realizations {z 1,...,z j } Let R Z N denote the rejection region and A = R C denote the acceptance region A level α test has the property that P 0 (R) =α Inefficiency of Adaptive Designs 10

11 Stopping Rules (Group-Sequential and Adaptive tests) Decisions to stop the study can be made after n 1 <...<n K = N observations The sample space Z N is partitioned into a sequence of mutually exclusive and exhaustive rejection and acceptance regions (R j, A j ) Z nj, j =1,...,K if (z 1,...,z nj ) R j,thenh 0 is rejected after j observations if (z 1,...,z nj ) A j,thenh 0 is accepted after j observations R= R 1... R K A= A 1... A K Inefficiency of Adaptive Designs 11

12 A level α sequential test has the property that P 0 (R) = K P 0 (R j )=α j=1 Inefficiency of Adaptive Designs 12

13 Example using Adaptive Test Decisions for stopping can be made after n j =25j observations j =1,...,10 R 1 = S 25 > A 1 = S 25 < 2.19 For j =2,...,10 R j =(S 25 Γ j,t j > 13.84) A j =(S 25 Γ j,t j 13.84) where Γ 2 = [11.65, 13.84], Γ 10 =[2.19, 5.49) Γ j = [11.65 (2/j), {2/(j 1)}),j =3,...,9 T j = S 25 +(j 1) 1/2 (S 25j S 25 ) Inefficiency of Adaptive Designs 13

14 Operating Characteristics Sequential tests (including adaptive) allow possibility of stopping early and either rejecting or accepting null hypothesis The operating characteristics can be summarized by Rejection spending function Acceptance spending function β(j, δ) =P δ (R 1 )+...+ P δ (R j ) φ(j, δ) =P δ (A 1 )+...+ P δ (A j ) These are monotone functions in j for j =1,...,K for all δ β(k, δ)+φ(k, δ) =1forallδ A level α test when β(k, 0) = α Inefficiency of Adaptive Designs 14

15 Optimality If we have two competing level α tests for H 0 : δ 0 versus H A : δ>0, with rejection-acceptance regions (R 1j, A 1j ), j =1,...,K and (R 2j, A 2j ), j =1,...,K, then we say that test 1 is uniformly better than test 2 if β 1 (j, δ) β 2 (j, δ) for all j =1,...,K and all δ>0 φ 1 (j, δ) φ 2 (j, δ) for all j =1,...,K and all δ 0 Inefficiency of Adaptive Designs 15

16 Generalization of Neyman-Pearson Theorem Define the α and θ spending functions as α(j) =β(j, 0) θ(j) =φ(j, 0) For prespecified α and θ spending functions, define the sequential likelihood ratio test for testing the simple null hypothesis δ = 0 against the simple alternative δ = δ 1 as the test which rejects at the first time j when n j i=1 p(z i,δ 1 ) p(z i, 0) C uj and accepts at the first time j when n j i=1 p(z i,δ 1 ) p(z i, 0) C lj, Inefficiency of Adaptive Designs 16

17 Generalization of Neyman-Pearson Theorem Theorem 1: The optimal sequential test for the simple null hypothesis H 0 : δ =0 versus the simple alternative H 1 : δ = δ 1 with a specified α(θ)-spending function is the sequential likelihood ratio test By optimal, we mean that for any other sequential test with the same α and θ spending function, we have β LR (j, δ 1 ) β(j, δ 1 ), j =1,...,K Inefficiency of Adaptive Designs 17

18 If we go back to our example of testing equality in the mean of normally distributed responses between two treatments, the sequential likelihood ratio test is equivalent to rejecting at the first j when S nj C uj and accepting at the first j when S nj C lj The test above does not depend on the specific alternative δ 1 > 0, hence it is uniformly more powerful for δ>0thanany other sequential test with the same α and θ spending function Inefficiency of Adaptive Designs 18

19 By reversing the role of rejection and acceptance we can also show that the above test also is uniformly better in accepting the null hypothesis φ LR (j, δ) φ(j, δ), j=1,...,k,δ <0 Consequently, among all sequential tests with a prespecified α and θ spending function, the likelihood ratio sequential test defined above is uniformly best Inefficiency of Adaptive Designs 19

20 Inferiority of the Adaptive Design Any level α adaptive test, no matter how complex, has an induced α and θ spending function as well as rejection and acceptance functions β(j, δ) and φ(j, δ) for j = 1,...,K and for all δ We can always construct a likelihood ratio sequential test with the same α and θ spending function as that for the adaptive design By the main theorem we know that the likelihood ratio sequential test must be uniformly better than the adaptive design Returning to our example of an adaptive design, the alpha-theta function is given by Inefficiency of Adaptive Designs 20

21 Table 1: Alpha Theta Functions j α(j) θ(j) j α(j) θ(j) j α(j) θ(j) Inefficiency of Adaptive Designs 21

22 Figure 1: Comparison of Standard Group Sequential ( ) and Adaptive (---) Designs H0_Rejection_Probability µ=0.36 µ=0.22 µ=0.08 H0_Acceptance_Probability µ=0.08 µ=0.22 µ= Information Fraction Information Fraction H0_Rejection_Probability µ= 0.08 µ= 0.15 H0_Acceptance_Probability µ= 0.08 µ= Information Fraction Information Fraction Inefficiency of Adaptive Designs 22

23 Conclusions Although on the surface adaptive designs have a great deal of appeal, after examining these designs more carefully we find that they are uniformly inferior to standard sequential tests Perhaps a better strategy would be for the statisticians and collaborators to choose a range of possible treatment differences that include A larger treatment difference believed to be plausible δ init A minimally acceptable treatment difference, perhaps corresponding to maximum sample size N Search for standard sequential designs with specified power to detect the minimally acceptable difference and have high probability of rejecting H 0 as early as possible for the plausible range of treatment differences Inefficiency of Adaptive Designs 23

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized.

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. BEST TESTS Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. 1. Most powerful test Let {f θ } θ Θ be a family of pdfs. We will consider

More information

Hypothesis Testing Chap 10p460

Hypothesis Testing Chap 10p460 Hypothesis Testing Chap 1p46 Elements of a statistical test p462 - Null hypothesis - Alternative hypothesis - Test Statistic - Rejection region Rejection Region p462 The rejection region (RR) specifies

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Hypothesis testing is a statistical problem where you must choose, on the basis of data X, between two alternatives. We formalize this as the problem of choosing between two

More information

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm

Lecture Testing Hypotheses: The Neyman-Pearson Paradigm Math 408 - Mathematical Statistics Lecture 29-30. Testing Hypotheses: The Neyman-Pearson Paradigm April 12-15, 2013 Konstantin Zuev (USC) Math 408, Lecture 29-30 April 12-15, 2013 1 / 12 Agenda Example:

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

Multiple Testing in Group Sequential Clinical Trials

Multiple Testing in Group Sequential Clinical Trials Multiple Testing in Group Sequential Clinical Trials Tian Zhao Supervisor: Michael Baron Department of Mathematical Sciences University of Texas at Dallas txz122@utdallas.edu 7/2/213 1 Sequential statistics

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 8 P-values When reporting results, we usually report p-values in place of reporting whether or

More information

Ch. 5 Hypothesis Testing

Ch. 5 Hypothesis Testing Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher s work on estimation. As in estimation,

More information

Topic 17 Simple Hypotheses

Topic 17 Simple Hypotheses Topic 17 Simple Hypotheses Terminology and the Neyman-Pearson Lemma 1 / 11 Outline Overview Terminology The Neyman-Pearson Lemma 2 / 11 Overview Statistical hypothesis testing is designed to address the

More information

6 Sample Size Calculations

6 Sample Size Calculations 6 Sample Size Calculations A major responsibility of a statistician: sample size calculation. Hypothesis Testing: compare treatment 1 (new treatment) to treatment 2 (standard treatment); Assume continuous

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

Topic 15: Simple Hypotheses

Topic 15: Simple Hypotheses Topic 15: November 10, 2009 In the simplest set-up for a statistical hypothesis, we consider two values θ 0, θ 1 in the parameter space. We write the test as H 0 : θ = θ 0 versus H 1 : θ = θ 1. H 0 is

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests

Statistics for Managers Using Microsoft Excel/SPSS Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics for Managers Using Microsoft Excel/SPSS Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests 1999 Prentice-Hall, Inc. Chap. 8-1 Chapter Topics Hypothesis Testing Methodology Z Test

More information

Confidence intervals and point estimates for adaptive group sequential trials

Confidence intervals and point estimates for adaptive group sequential trials Confidence intervals and point estimates for adaptive group sequential trials Lingyun Liu, Ph.D. Cytel Inc. August 02, 2011 Miami, FL Lingyun Liu (Cytel Inc.) JSM August 02, 2011 Miami, FL 1 / 19 Acknowledgement

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

Topic 19 Extensions on the Likelihood Ratio

Topic 19 Extensions on the Likelihood Ratio Topic 19 Extensions on the Likelihood Ratio Two-Sided Tests 1 / 12 Outline Overview Normal Observations Power Analysis 2 / 12 Overview The likelihood ratio test is a popular choice for composite hypothesis

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design Comparing Adaptive Designs and the Classical Group Sequential Approach to Clinical Trial Design Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

F79SM STATISTICAL METHODS

F79SM STATISTICAL METHODS F79SM STATISTICAL METHODS SUMMARY NOTES 9 Hypothesis testing 9.1 Introduction As before we have a random sample x of size n of a population r.v. X with pdf/pf f(x;θ). The distribution we assign to X is

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials Testing a secondary endpoint after a group sequential test Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 9th Annual Adaptive Designs in

More information

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018 Sample Size Re-estimation in Clinical Trials: Dealing with those unknowns Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj University of Kyoto,

More information

Adaptive Designs: Why, How and When?

Adaptive Designs: Why, How and When? Adaptive Designs: Why, How and When? Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj ISBS Conference Shanghai, July 2008 1 Adaptive designs:

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

Introductory Econometrics

Introductory Econometrics Session 4 - Testing hypotheses Roland Sciences Po July 2011 Motivation After estimation, delivering information involves testing hypotheses Did this drug had any effect on the survival rate? Is this drug

More information

Chapters 10. Hypothesis Testing

Chapters 10. Hypothesis Testing Chapters 10. Hypothesis Testing Some examples of hypothesis testing 1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin? 2. Is the new treatment on blood pressure more effective than the

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

8: Hypothesis Testing

8: Hypothesis Testing Some definitions 8: Hypothesis Testing. Simple, compound, null and alternative hypotheses In test theory one distinguishes between simple hypotheses and compound hypotheses. A simple hypothesis Examples:

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu.30 Introduction to Statistical Methods in Economics Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .30

More information

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 71. Decide in each case whether the hypothesis is simple

More information

The Design of a Survival Study

The Design of a Survival Study The Design of a Survival Study The design of survival studies are usually based on the logrank test, and sometimes assumes the exponential distribution. As in standard designs, the power depends on The

More information

Statistics 135 Fall 2008 Final Exam

Statistics 135 Fall 2008 Final Exam Name: SID: Statistics 135 Fall 2008 Final Exam Show your work. The number of points each question is worth is shown at the beginning of the question. There are 10 problems. 1. [2] The normal equations

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS 1a. Under the null hypothesis X has the binomial (100,.5) distribution with E(X) = 50 and SE(X) = 5. So P ( X 50 > 10) is (approximately) two tails

More information

Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box Durham, NC 27708, USA

Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box Durham, NC 27708, USA Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box 90251 Durham, NC 27708, USA Summary: Pre-experimental Frequentist error probabilities do not summarize

More information

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49 4 HYPOTHESIS TESTING 49 4 Hypothesis testing In sections 2 and 3 we considered the problem of estimating a single parameter of interest, θ. In this section we consider the related problem of testing whether

More information

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006 Hypothesis Testing Part I James J. Heckman University of Chicago Econ 312 This draft, April 20, 2006 1 1 A Brief Review of Hypothesis Testing and Its Uses values and pure significance tests (R.A. Fisher)

More information

Chapters 10. Hypothesis Testing

Chapters 10. Hypothesis Testing Chapters 10. Hypothesis Testing Some examples of hypothesis testing 1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin? 2. Is the new treatment more effective than the old one? 3. Quality

More information

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs Christopher Jennison Department of Mathematical Sciences, University of Bath http://people.bath.ac.uk/mascj

More information

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Applied Mathematical Sciences, Vol. 4, 2010, no. 62, 3083-3093 Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Julia Bondarenko Helmut-Schmidt University Hamburg University

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 7 Course Summary To this point, we have discussed group sequential testing focusing on Maintaining

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Spring, 2006 1. DeGroot 1973 In (DeGroot 1973), Morrie DeGroot considers testing the

More information

Composite Hypotheses. Topic Partitioning the Parameter Space The Power Function

Composite Hypotheses. Topic Partitioning the Parameter Space The Power Function Toc 18 Simple hypotheses limit us to a decision between one of two possible states of nature. This limitation does not allow us, under the procedures of hypothesis testing to address the basic question:

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Week 12. Testing and Kullback-Leibler Divergence 1. Likelihood Ratios Let 1, 2, 2,...

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Adaptive Extensions of a Two-Stage Group Sequential Procedure for Testing a Primary and a Secondary Endpoint (II): Sample Size Re-estimation

Adaptive Extensions of a Two-Stage Group Sequential Procedure for Testing a Primary and a Secondary Endpoint (II): Sample Size Re-estimation Research Article Received XXXX (www.interscience.wiley.com) DOI: 10.100/sim.0000 Adaptive Extensions of a Two-Stage Group Sequential Procedure for Testing a Primary and a Secondary Endpoint (II): Sample

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

Optimal group sequential designs for simultaneous testing of superiority and non-inferiority

Optimal group sequential designs for simultaneous testing of superiority and non-inferiority Optimal group sequential designs for simultaneous testing of superiority and non-inferiority Fredrik Öhrn AstraZeneca R & D Mölndal, SE-431 83 Mölndal, Sweden and Christopher Jennison Department of Mathematical

More information

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Valen E. Johnson Texas A&M University February 27, 2014 Valen E. Johnson Texas A&M University Uniformly most powerful Bayes

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Quality Control Using Inferential Statistics In Weibull Based Reliability Analyses S. F. Duffy 1 and A. Parikh 2

Quality Control Using Inferential Statistics In Weibull Based Reliability Analyses S. F. Duffy 1 and A. Parikh 2 Quality Control Using Inferential Statistics In Weibull Based Reliability Analyses S. F. Duffy 1 and A. Parikh 2 1 Cleveland State University 2 N & R Engineering www.inl.gov ASTM Symposium on Graphite

More information

http://www.math.uah.edu/stat/hypothesis/.xhtml 1 of 5 7/29/2009 3:14 PM Virtual Laboratories > 9. Hy pothesis Testing > 1 2 3 4 5 6 7 1. The Basic Statistical Model As usual, our starting point is a random

More information

Topic 17: Simple Hypotheses

Topic 17: Simple Hypotheses Topic 17: November, 2011 1 Overview and Terminology Statistical hypothesis testing is designed to address the question: Do the data provide sufficient evidence to conclude that we must depart from our

More information

The Design of Group Sequential Clinical Trials that Test Multiple Endpoints

The Design of Group Sequential Clinical Trials that Test Multiple Endpoints The Design of Group Sequential Clinical Trials that Test Multiple Endpoints Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Bruce Turnbull

More information

Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009 there were participants

Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009 there were participants 18.650 Statistics for Applications Chapter 5: Parametric hypothesis testing 1/37 Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009

More information

Are Flexible Designs Sound?

Are Flexible Designs Sound? Biometrics 62, 664 683 September 2006 Are Flexible Designs Sound? Carl-Fredrik Burman and Christian Sonesson AstraZeneca R & D, SE-431 83 Mölndal, Sweden email: carl-fredrik.burman@astrazeneca.com Summary.

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 6 AMS-UCSC Thu 26, 2012 Winter 2012. Session 1 (Class 6) AMS-132/206 Thu 26, 2012 1 / 15 Topics Topics We will talk about... 1 Hypothesis testing

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 12 Review So far... We have discussed the role of phase III clinical trials in drug development

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

Hypothesis testing (cont d)

Hypothesis testing (cont d) Hypothesis testing (cont d) Ulrich Heintz Brown University 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 1 Hypothesis testing Is our hypothesis about the fundamental physics correct? We will not be able

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX Term Test 3 December 5, 2003 Name Math 52 Student Number Direction: This test is worth 250 points and each problem worth 4 points DO ANY SIX PROBLEMS You are required to complete this test within 50 minutes

More information

Hypothesis Testing. A rule for making the required choice can be described in two ways: called the rejection or critical region of the test.

Hypothesis Testing. A rule for making the required choice can be described in two ways: called the rejection or critical region of the test. Hypothesis Testing Hypothesis testing is a statistical problem where you must choose, on the basis of data X, between two alternatives. We formalize this as the problem of choosing between two hypotheses:

More information

Lecture 21. Hypothesis Testing II

Lecture 21. Hypothesis Testing II Lecture 21. Hypothesis Testing II December 7, 2011 In the previous lecture, we dened a few key concepts of hypothesis testing and introduced the framework for parametric hypothesis testing. In the parametric

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

A Gatekeeping Test on a Primary and a Secondary Endpoint in a Group Sequential Design with Multiple Interim Looks

A Gatekeeping Test on a Primary and a Secondary Endpoint in a Group Sequential Design with Multiple Interim Looks A Gatekeeping Test in a Group Sequential Design 1 A Gatekeeping Test on a Primary and a Secondary Endpoint in a Group Sequential Design with Multiple Interim Looks Ajit C. Tamhane Department of Industrial

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 5 Course Summary So far, we have discussed Group sequential procedures for two-sided tests Group

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model. Statistical Methods in Business Lecture 5. Linear Regression We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

More information

Hypothesis Testing. Testing Hypotheses MIT Dr. Kempthorne. Spring MIT Testing Hypotheses

Hypothesis Testing. Testing Hypotheses MIT Dr. Kempthorne. Spring MIT Testing Hypotheses Testing Hypotheses MIT 18.443 Dr. Kempthorne Spring 2015 1 Outline Hypothesis Testing 1 Hypothesis Testing 2 Hypothesis Testing: Statistical Decision Problem Two coins: Coin 0 and Coin 1 P(Head Coin 0)

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.0 Introduction to Statistical Methods in Economics Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Basic Concepts of Inference

Basic Concepts of Inference Basic Concepts of Inference Corresponds to Chapter 6 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT) with some slides by Jacqueline Telford (Johns Hopkins University) and Roy Welsch (MIT).

More information

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES 557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES Example Suppose that X,..., X n N, ). To test H 0 : 0 H : the most powerful test at level α is based on the statistic λx) f π) X x ) n/ exp

More information

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis Testing BS2 Statistical Inference, Lecture 11 Michaelmas Term 2004 Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis testing We consider a family of densities F = {f(x; θ),

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2016 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 10 Class Summary Last time... We began our discussion of adaptive clinical trials Specifically,

More information

ECE531 Lecture 4b: Composite Hypothesis Testing

ECE531 Lecture 4b: Composite Hypothesis Testing ECE531 Lecture 4b: Composite Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 16-February-2011 Worcester Polytechnic Institute D. Richard Brown III 16-February-2011 1 / 44 Introduction

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE SEQUENTIAL DESIGN IN CLINICAL TRIALS

SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE SEQUENTIAL DESIGN IN CLINICAL TRIALS Journal of Biopharmaceutical Statistics, 18: 1184 1196, 2008 Copyright Taylor & Francis Group, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400802369053 SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE

More information

Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem

Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem Lei Yang, Ph.D. Statistical Scientist, Roche (China) Holding Ltd. Aug 30 th 2018, Shanghai Jiao Tong

More information

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

Monitoring clinical trial outcomes with delayed response: Incorporating pipeline data in group sequential and adaptive designs. Christopher Jennison

Monitoring clinical trial outcomes with delayed response: Incorporating pipeline data in group sequential and adaptive designs. Christopher Jennison Monitoring clinical trial outcomes with delayed response: Incorporating pipeline data in group sequential and adaptive designs Christopher Jennison Department of Mathematical Sciences, University of Bath,

More information

Group sequential designs with negative binomial data

Group sequential designs with negative binomial data Group sequential designs with negative binomial data Ekkehard Glimm 1 Tobias Mütze 2,3 1 Statistical Methodology, Novartis, Basel, Switzerland 2 Department of Medical Statistics, University Medical Center

More information

A Brief Introduction to Intersection-Union Tests. Jimmy Akira Doi. North Carolina State University Department of Statistics

A Brief Introduction to Intersection-Union Tests. Jimmy Akira Doi. North Carolina State University Department of Statistics Introduction A Brief Introduction to Intersection-Union Tests Often, the quality of a product is determined by several parameters. The product is determined to be acceptable if each of the parameters meets

More information